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1 Introduction

introduction [1]

2 Luminosity

luminosity [2]

2.1 Motivations

Written by a theorist!
The luminosity L of a collider is the proportionality

constant between the event rate dN/dt and the corre-
sponding cross section σ of a given process, according to
the relation

dN

dt
= Lσ, N = σ

∫
dtL = σL (1)

where L is the luminosity integrated during a given period
of data taking.

Because, for a given process, an experiment counts, in
practice, the number of events observed within the de-
tector acceptance, the experimental cross section can be
quoted making use of (1) as

σ =
N

L
(2)

Therefore, it is clear that to fully exploit the experi-
mental information contained in N , the error affecting the
luminosity L must not exceed (possibly, be smaller than)
the experimental error affecting N . In principle, the col-
lider luminosity can be inferred from machine and beam
parameters, from which, however, the luminosity depends

a Present address: Insert the address here if needed

in a highly non-trivial way. Furthermore, the rather lim-
ited knowledge of the luminosity parameters would lead
to a measurement of the luminosity limited by an error (at
the some per cent level?), which should be completely un-
satisfactory in the light of a program of precision physics.
To by-pass this problem, the strategy adopted at mod-
ern e+e− accelerators to monitor luminosity consists in
identifying a process (or more processes) not influenced
by too many and too large uncertainties, and determining
the luminosity through the “data-theory driven” relation

L =
N

σth
(3)

where N and σ are the number of events and the the-
oretical cross section of the chosen reference process, re-
spectively. Because of the relation (3), the total luminosity
error will be given by the sum in quadrature of the relative
experimental and theoretical uncertainty, i.e.

δL

L
=

δN

N
⊕ δσth

σth
(4)

where the second term in the r.h.s. is the experimental
(systematic and statistical) error affecting the measure-
ment of the normalization process, and the second one is
the relative theoretical uncertainty of the cross section cal-
culation. It follows that, to maintain small the total error
δL/L, the reference process must be a reaction with clean
topology, high statistics and calculable with high theoret-
ical accuracy. In particular, the latter requirement implies
that the predictions must include the contribution of all
the relevant higher-order corrections beyond the lowest-
order approximation of perturbation theory.

For example, at high-energy accelerators LEP/SLC run-
ning in the ’90s around the Z pole to perform precision
tests of the Standard Model, the process of e+e− pro-
duction (Bhabha scattering [?]), with the final-state lep-
tons detected at small scattering angles, was used because
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dominated by the electromagnetic interaction and, there-
fore, calculable in perturbation theory, at least in princi-
ple, with very high theoretical accuracy. A total (exper-
imental plus theoretical) precision of ∼ 0.05 ÷ 0.1% was
achieved at the end of LEP/SLC operation [?,?,?], thanks
to the work of different theoretical groups and the excel-
lent performances of precision luminometers.

At presently running flavour factories, the normaliza-
tion reaction primarily used is the large-angle Bhabha pro-
cess [?]. Actually, at all flavour factories, the final–state
leptons are detected at wide scattering angles, within a
typical central acceptance region of ∼ 40◦÷ ∼ 140◦, be-
cause of the absence of dedicated luminosity counters, for
example, at small scattering angles. Usually, the two pho-
ton and muon pair production processes are used as a
cross check of the Bhabha results. At CLEO–c all the the
three QED channels e+e− → e+e−, γγ, µ+µ− are consid-
ered and the luminosity is derived as an average of the
measurements of the three processes.

It is worth noting that the comparison between theo-
retical predictions and luminosity data necessarily require
the development of sophisticated Monte Carlo (MC) pro-
grams, to pass the generated events through the experi-
mental software environment, to enable the implementa-
tion of cuts as flexible as possible (to resemble realistic
data taking conditions) and allow the simulation of differ-
ential cross sections, of strong experimental interest. Two
examples of comparisons between luminosity data and MC
expectations in shown in FIgs... for the KLOE experiment
at DAΦNE and CLEO–c at CESR.

The goal of flavour factories is to perform measure-
ments of the collider luminosity with a total uncertainty
better that 1% and, possibly, even better, at the one per
mille level. Such a high-precision luminosity measurement
is of utmost importance to perform accurate measure-
ments of the e+e− → hadrons cross section, which is, in
turn, a key ingredient in high–precision calculations of the
running of αQED and lepton g − 2.

Here we should include something more about exp. is-
sues, such as trigger, efficiency... as in EPJ C47 (2006)
589 by KLOE or in CLEO-c Appendix C of PRD... Fed-
erico, Achim, others?.

2.2 LO cross sections and NLO corrections

by A. Arbuzov in coll. with myself and BabaYaga authors
Formulae for Born cross sections of the three QED

processes used in the luminosity measurement

1. e+e− → e+e−
2. e+e− → γγ
3. e+e− → µ+µ−

and review of the status of NLO corrections. State that
pure weak contributions are irrelevant at flavour factories,
with the exception of γ-Z interference (about 0.1%) at the
B-factories. A couple of questions:

1. Should we include a plot for the QED cross section
scaling 1/s as a function of the c.m. energy in the 1-
10 GeV range, in the LO and NLO approximations,
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Fig. 1. Data-theory comparison for the energy distribution of
the e+e− final state of the Bhabha process at KLOE.

Fig. 2. Data-theory comparison for the angular distributions
of the three QED channels at CLEO-c.
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Fig. 3. Lowest-order Feynman diagrams for the Bhabha pro-
cess in QED
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Fig. 4. Lowest-order Feynman diagrams for the process
e+e− → γγ

to show the typical values of QED cross sections and
NLO radiative corrections in typical experimental set-
up? Personally, I vote yes

2. Should we include a few examples of Feynman dia-
grams for NLO (real/virtual) corrections, to give the
reader an idea of which corrections we are speaking
about? My answer is yes, I think it can help...

2.3 NNLO corrections

jointly prepared by the two main groups of mostly up-to-
date two-loop calculations, i.e. S. Actis, R. Bonciani, M.
Czakon, A. Ferroglia, J. Gluza, P. Mastrolia, A. Penin, E.
Remiddi, T. Riemann and J.J. van der Bij. I will check
the exact list of contributors with Roberto and Tord, if
further contributions come.

A few questions, emerged from exchange of emails with
people above:

1. Should we include one-two examples of Feynman dia-
grams contributing to NNLO corrections? I think so,
useful for a review.

2. Should we include here plot(s) about the size of NNLO
effects or should we postpone them in the final section
on present th. accuracy of generators? Personally, I
vote for the second option. For sure, we will include
numerical results on NNLO corrections, to quantify
their typical size.

3. Light pairs, in particular e+e− → e+e−e+e−. We un-
derstand that such a contribution is included in Bhabha
event sample, when requiring at least two tracks in the
detector (at least for KLOE). Is the same true for other
experiments? Is there substantial interest for a very
precise evaluation of such an effect, beyond the soft +
virtual approximation? Presently, light pairs are not
included in MCs (yes in MCGPJ?) and are a source of
th. uncertainty at the 0.05% level.

Since Bhabha scattering involves stable charged lep-
tons both in the initial and in the final states, it can
be measured experimentally with very high precision. At
LEP, the experimental error in the luminosity measure-
ment has been reduced to 0.4 permille [?] and it is ex-
pected to be even smaller at the ILC: the goal of the
TESLA forward calorimeter collaboration is to reach the
experimental accuracy of 0.1 permille in the first year of
run [?]. Finally, at the low-energy accelerators DAΦNE

and VEPP-2M the cross section of the large-angle scat-
tering is measured with the accuracy of about 1 permille
[?,?].

The theoretical error on the Bhabha scattering differ-
ential cross section directly affects the luminosity mea-
surement precision. This is the reason whyin recent years
a significant effort was devoted to the calculation of the
perturbative corrections to this process (for the next-to-
leading order corrections see Section ??).

The calculation of the full NNLO corrections to the
Bhabha scattering cross section requires three types of in-
gredients: i) the two-loop matrix elements for the e+e− →
e+e− process; ii) the one-loop matrix elements for the
e+e− → e+e−γ process, both in the case in which the ad-
ditional photon is soft or hard-collinear1; iii) the tree-level
matrix elements for e+e− → e+e−γγ, with two soft, two
hard-collinear or one soft and one hard-collinear photons,
and of e+e− → e+e−e+e−, with the second e+e− pair
to be considered as soft or hard-collinear. Dependent on
the kinematics, other final states like e.g. e+e−µ+µ− or
those with hadrons are also possible. Moreover, the fixed-
order corrections should be matched with a parton shower
generator that takes into account the logarithmically en-
hanced contributions of soft and collinear photons at all
orders in perturbation theory (see Section ??).

The first complete one-loop prediction in the Standard
Model was [?], followed by [?] and several others, and the
leading virtual NNLO corrections from the top quark in
[?,?,?]. The complete electroweak two-loop corrections are
available in form of few form factors [?,?], but they are not
implemented for Bhabha scattering so far. While further
only the logarithmically enhanced terms of the two-loop
electroweak corrections were calculated [?], in pure QED
the situation is considerably different. The advent of new
calculational techniques and a deeper understanding of the
IR structure of unbroken theories, such as QED or QCD,
made in such a way that nowadays the complete set of
two-loop QED corrections is available. The calculation of
these corrections will be presented in section 2.3.1.

We consider now the one-loop matrix elements with
three particles in the final state. The diagrams involving
the emission of a soft photon are known and they were in-
cluded in the calculations of the two-loop matrix elements,
in order to remove the IR soft divergencies. However, al-
though the contributions due to a hard-collinear photon
are taken into account in logarithmic accuracy by the par-
ton shower, a full calculation of the diagrams involving a
hard-photon in a general phase-space configuration is still
missing. In section 2.3.2, we will comment on the possible
strategies which can be adopted in order to calculate these
corrections.

Concerning the tree level graphs with four particles in
the final state, we can distinguish once more between the
soft-photon contributions, which are included in the two-
loop calculations, and the contributions involving one hard
or two hard photons, which are taken into account in loga-

1 By hard-collinear we mean a hard photon which is collinear
to a charged particle within a given acollinearity angle imposed
by the experimental cuts.
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rithmic accuracy by the parton shower in the Monte Carlo
event generators. The production of a soft e+e− pair was
also studied, but only with logarithmic accuracy and it
is included in the two-loop calculation (see section 2.3.1).
However, the production of a hard-collinear pair of e+e−
is not included in the current calculation of the NNLO
corrections. Further comments on final states with four
particles will be given in section 2.3.3.

Finally, in on section ?? we draw our conclusions.

2.3.1 Virtual corrections for the e+e− → e+e− Process

The calculation of the virtual two-loop QED corrections
to the Bhabha scattering differential cross section was car-
ried out in the last 10 years. This calculation was made
possible by an improvement of the techniques employed in
the evaluation of multiloop Feynman diagrams. An essen-
tial tool used to manage the calculation is the Laporta al-
gorithm [?], which allows to reduce a generic combination
of dimensionally-regularized scalar integrals to a combi-
nation of a small set of independent integrals called the
“Master Integrals” (MIs) of the problem under considera-
tion. The calculation of the MIs is then pursued by means
of a variety of methods. Particularly important are the
differential equations method [?] and the Mellin-Barnes
techniques [?]. quote also here: [?,?,?,?,?,?,?,?]

(Some comments about the two methods??).
Both methods proved to be very useful in the evaluation
of virtual corrections to Bhabha scattering because they
show there strength in preoblems with a small number of
different kinematical parameters. They both allow one to
obtain an analytic expression for the integrals, which must
be written in terms of a suitable functional basis. A ba-
sis which was extensively employed in the calculation of
multiloop Feynman diagrams of the type discussed here
is represented by the Harmonic Polylogarithms [?] and
their generalizations. Another fundamental achievement
which allowed to complete the calculation of the QED
two-loop corrections was an improved understanding of
the IR structure of QED. In particular, the relation be-
tween the collinear logarithms in which the electron mass
me plays the role of a natural cut-off and the correspond-
ing poles in the dimensionally regularized massless theory
was investigated [?,?,?].

A first complete diagrammatic calculation of the two-
loop QED virtual corrections to Bhabha scattering can
be found in [?]. However, this result was obtained in the
fully massless approximation (me = 0), by employing di-
mensional regularization (DR) to regulate both soft and
collinear divergencies. Today, the complete set of two-loop
corrections to Bhabha scattering in pure QED have been
evaluated using me as a collinear regulator, as required in
order to include these fixed-order calculations in available
Monte Carlo event generators. The Feynman diagrams in-
volved in the calculation can be divided in three gauge in-
dependent sets: i) diagrams without fermion loops (“pho-
tonic” diagrams), ii) diagrams involving a closed electron
loop, and iii) diagrams involving a closed loop of a fermion
heavier than the electron or hadrons. These three sets are

discussed in more details in the following of this section.

Photonic Corrections

A large part of the NNLO photonic corrections can be
obtained in a closed analytic form, retaining the full de-
pendence on me [?], by using the Laporta algorithm for
the reduction of the Feynman diagrams to a combination
of MIs, and then the differential equations method for the
MIs analytic evaluation. With this technique it is possi-
ble to calculate, for instance, the NNLO corrections to
the form factors [?,?]. However, a calculation of the two-
loop photonic boxes retaining the full dependence on me

seems to be is beyond the reach of this method. This is
due to the fact that the number of Master Integrals be-
longing to the same topology after the reduction process
in some cases is large. Therefore, one has should be able
to solve analytically large systems of first-order ordinary
linear differential equations, which is not easy or even not
possible. Alternatively, in order to calculate the different
MIs involved, one could use the Mellin-Barnes techniques,
as shown in [?,?,?,?], or a combination of both methods.
The calculation is very complicated and a full result is
not yet available2. However, the full dependence on me

is not phenomenologically relevant. In fact, the physical
problem exhibits a well defined mass hierarchy. The mass
of the electron is always very small compared to the other
kinematic invariants and it can be safely neglected every-
where, with the exception of the terms in which it acts
as a collinear regulator. The ratio of the photonic NNLO
corrections to the Born cross section is the following

dσ(2,PH)

dσ(Born)
=
α2

π2

2∑
i=0

δ(PH,i)Li
e +O

(
m2

e

s
,
m2

e

t

)
, (5)

where Le = ln (s/m2
e) and where the coefficients δ(PH,i)

are functions of the scattering angle θ. The approximation
given by Eq. (5) is sufficient for a phenomenological de-
scription of the process3. The coefficients of the double and
single collinear logarithm in Eq. (5), δ(PH,2) and δ(PH,1),
were obtained in [?,?]. However, the precision required for
luminosity measurements at e+e− colliders demands the
calculation of the non-logarithmic coefficient, δ(PH,0). The
latter was obtained in [?] by reconstructing the differen-
tial cross section in the s � m2

e 6= 0 limit from the di-
mensionally regularized massless approximation [?]. The
main idea of the method developed in [?] is outlined be-
low. As far as the leading term in the small electron mass
expansion is considered, the difference between the mas-
sive and the dimensionally regularized massless Bhabha
scattering can be viewed as a difference between two reg-
ularization schemes for the infrared divergences. With the

2 For the planar double box diagrams, all the MI integrals
are known [?] for small me, while the MIs for the non-planar
double box diagrams are not completed.

3 It can be shown that the terms suppressed by a positive
power of m2

e/s do not play any phenomenological role already
at very low c.m. energies,

√
s ∼ 10 MeV. Moreover, the terms

m2
e/t (or m2

e/u) become important in the extremely forward
(backward) region, unreachable for the experimental set ups.
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known massless two-loop result at hand, the calculation
of the massive one is reduced to constructing the infrared
matching term which relates the two above mentioned reg-
ularization schemes. To perform the matching an auxiliary
amplitude is constructed, which has the same structure of
the infrared singularities but is sufficiently simple to be
evaluated at least in leading order in the small mass ex-
pansion. A particular form of the auxiliary amplitude is
dictated by the general theory of infrared singularities in
QED and involves the exponent of the one-loop correc-
tion as well as the two-loop corrections to the logarithm
of the electron form factor. The difference between the
full and the auxiliary amplitudes is infrared finite. It can
be evaluated by using dimensional regularization for each
amplitude and then taking the limit of four space-time
dimensions. The infrared divergences, which induce the
asymptotic dependence of the virtual corrections on the
electron and photon masses, are absorbed into the auxil-
iary amplitude while the technically most nontrivial cal-
culation of the full amplitude is performed in the massless
approximation. The matching of the massive and massless
results is then necessary only for the auxiliary amplitude
and it is straightforward. Thus the two-loop massless re-
sult for the scattering amplitude along with the two-loop
massive electron form factor [?] are sufficient to obtain
the two-loop photonic correction to the differential cross
section in the small electron mass limit.

A method based on a similar principle was subsequently
developed in [?,?]; the authors of [?] confirmed the result
of [?] for the NNLO photonic corrections to the Bhabha
scattering differential cross section.

Electron Loop Corrections

The NNLO electron loop corrections arise from the inter-
ference of two-loop Feynman diagrams with the tree-level
amplitude as well as from the interference of one-loop di-
agrams, as long as one of the diagrams contributing to
each term involves a closed electron loop. This set of cor-
rections presents a single two-loop box topology, and it
is therefore technically less challenging to evaluate with
respect to the photonic correction set. The calculation of
the electron loop corrections was completed a few years
ago [?,?]; the final result retains the full dependence of
the differential cross section on the electron mass me. The
MIs involved in the calculation were identified by means of
the Laporta algorithm and evaluated with the differential
equation method. As expected, after UV renormalization
the differential cross section presented only residual IR
poles which were removed by adding the contribution of
the soft photon emission diagrams. The resulting NNLO
differential cross section could be conveniently written in
terms of 1- and 2-dimensional Harmonic Polylogarithms
(HPLs) of maximum weight three. Expanding the cross
section in the limit s, |t| � m2

e, the ratio of the NNLO
corrections to the Born cross section can be written as in
Eq. (5):

dσ(2,EL)

dσ(Born)
=
α2

π2

3∑
i=0

δ(EL,i)Li
e +O

(
m2

e

s
,
m2

e

t

)
. (6)

Note that the series now starts with a cubic collinear log-
arithm. This logarithm appears, with an opposite sign,
in the corrections due to the production of an electron-
positron pair (the soft-pair production was considered in
[?]). When the two contributions are considered together
in the full NNLO, the cubic collinear logarithms cancel,
and the cross section exhibits again at most a double log-
arithm, as in Eq. (5).

The explicit expression of all the coefficients δ(EL,i), ob-
tained by expanding the results of [?] was confirmed by
two different groups [?,?]. In [?] the small electron mass
expansion was performed within the soft-collinear effec-
tive theory (SCET) framework, while the analysis in [?]
employed the asymptotic expansion of the Master Inte-
grals.

Heavy-Flavor and hadronic Corrections

Finally, we consider the corrections originating from two-
loop Feynman diagrams involving a heavy flavor fermion
loop4. Since this set of corrections involves one more mass
scale with respect to the corrections analyzed in the previ-
ous sections, a direct diagrammatic calculation is in prin-
ciple a more challenging task. Recently, in [?] the authors
applied their technique based on SCET to Bhabha scat-
tering and obtained the heavy flavor NNLO corrections in
the limit in which s, |t|, |u| � m2

f � m2
e, where m2

f is the
mass of the heavy fermion running in the loop. Their re-
sult was very soon confirmed in [?] by means of a method
based on the asymptotic expansion of Mellin Barnes rep-
resentation of the Master Integrals involved in the calcu-
lation. However, the results obtained in the approxima-
tion s, |t|, |u| � m2

f � m2
e cannot be applied to the case

in which the
√
s < mf (as in the case of a tau loop at√

s ∼ 1 GeV), and they apply only to a relatively nar-
row angular region perpendicular to the beam direction
when

√
s is not very much larger than mf (as in the case

of top-quark loops at ILC). It was therefore necessary to
calculate the heavy flavor corrections to Bhabha scatter-
ing assuming only that the electron mass is much smaller
than the other scales in the process, but retaining the full
dependence on the heavy mass, s, |t|, |u|,m2

f � m2
e.

The calculation was carried out in two different ways:
in [?,?] it was done analytically, while in [?,?] it was done
numerically with the dispersion relations.

The technical problem of the diagrammatic calculation
of Feynman integrals with four scales can be simplified
by considering carefully, once more, the structure of the
collinear singularities of the heavy-flavor corrections. The
ratio of the NNLO heavy flavor corrections to the Born
cross section is given by

dσ(2,HF)

dσ(Born)
=
α2

π2

1∑
i=0

δ(HF,i)Li
e +O

(
m2

e

s
,
m2

e

t

)
, (7)

4 Here by “heavy flavor” we mean a muon or a tau-lepton,
as well as an heavy quark, like the top, the b- or the c-quark,
depending on the c.m. energy range that we are considering.
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where now the coefficients δ(i) are functions of the scat-
tering angle θ and, in general, of the mass of the heavy
fermions involved in the virtual corrections. It is possi-
ble to prove that, in a physical gauge, all the collinear
singularities factorize and can be absorbed in the exter-
nal field renormalization [?]. This observation has two
consequences in the case at hand. The first one is that
box diagrams are free of collinear divergencies in a phys-
ical gauge; since the sum of all boxes forms a gauge in-
dependent block, it can be concluded that the sum of
all box diagrams is free of collinear divergencies in any
gauge. The second consequence is that the single collinear
logarithm in Eq. (7) arises from vertex corrections only.
Moreover, if one chooses on-shell UV renormalization con-
ditions, the irreducible two-loop vertex graphs are free
of collinear singularities. Therefore, among all the two-
loop diagrams contributing to the NNLO heavy flavor cor-
rections to Bhabha scattering, only the reducible vertex
corrections are logarithmically divergent in the me → 0
limit5. The latter are easily evaluated even if they depend
on two different masses. By exploiting these two facts,
one can obtain the NNLO heavy-flavor corrections to the
Bhabha scattering differential cross section assuming only
that s, |t|, |u|,m2

f � m2
e. In particular, one can set me = 0

from the start in all the two-loop diagrams with the ex-
ception of the reducible ones. This procedure allows one to
effectively eliminate a mass scale from the two-loop boxes,
so that these graphs can be evaluated with the techniques
already employed in the diagrammatic calculation of the
electron loop corrections6. In the case in which the heavy
flavor fermion is a quark, it is straightforward to mod-
ify the calculation of the two-loop self-energy diagrams to
obtain the mixed QED-QCD corrections to Bhabha scat-
tering [?].

An alternative approach to the calculation of the heavy
flavor corrections to Bhabha scattering, is based on dis-
persion relations.

(Tord, could you please comment on that?).
TR: Yes, here I will write a short text piece.
text .. text .. text.. text

text .. text .. text.. text

2.3.2 Fixed-Order calculation of the Hard Photon Emission
at One Loop

The one-loop matrix element for the process e+e− →
e+e−γ is one of the contributions to the complete set of
NNLO corrections to Bhabha scattering. Its evaluation
requires the non-trivial computation of one-loop tensor
integrals associated to pentagon-diagrams.

According to the standard Passarino-Veltman (PV)
approach [?], one-loop tensor integrals can be expressed
in terms of scalar integrals, called Master Integrals (MI’s),
with trivial numerators that are independent of the loop

5 Additional collinear logarithms arise also from the inter-
ference of one-loop diagrams in which at least one vertex is
present.

6 The necessary MIs can be found in [?,?].

variable, each multiplied by a Lorentz structure depend-
ing only on combinations of the external momenta and
the metric tensor. The achievement of the complete PV-
reduction amounts to solve a non-trivial system of equa-
tions. TR: The next statement is not clear to me. I try to
modify, please check if it is ok with you. Due to its size, it is
reasonable replacing the analytic techniques by numerical
tools. The difficulty encountered with the numerical im-
plementation of PV-reduction, which is in principle trivial,
is indeed due to the subtlety of Gram determinants: nat-
urally arising in the procedure of inverting a system, they
can vanish or be numerically unstable in special configu-
rations of the phase space, thus requiring proper modifica-
tions of the reduction algorithm, in combination with the
strategy not to perform the complete analytical reduction
to simple PV masters [?,?,?,?,?,?,?]. A viable solution for
the complete algebraic reduction of tensor-pentagon (and
tensor-hexagon) integrals has been recently formulated in
[?,?,?] by exploiting the algebra of signed minors [?], and
the cancelation of powers of inverse Gram determinants
in this approach was performed recently in [?,?].

(please Tord, add any further comment if you
whish to expand this point.)
TR: done, maybe not complete? Please have a
close look!
Generally I find the text a bit long for having no
numerical results ... but why not ...

The computation of the one-loop 5-point amplitude
e+e− → e+e−γ can be alternatively performed by using
generalized-unitarity cutting rules (see [?] for a detailed
compilation of references). In the following, we propose
two ways to achieve the result, respectively via an ana-
lytical and a semi-numerical method. The application of
generalized cutting-rules as an on-shell method of calcula-
tion is based on two fundamental properties of scattering
amplitudes: i) analyticity, according to which any ampli-
tude is determined by its own singularity structure [?];
ii) and unitarity, according to which the residues at the
singularities are determined by products of simpler ampli-
tudes. Turning these properties into a tool for computing
scattering amplitudes is possible because of the underlying
representation of the amplitude in terms of Feynman inte-
grals and their PV-reduction, which grant the existence of
a representation of any one-loop amplitudes as linear com-
bination of MI’s, each multiplied by a rational coefficient.
In the case of e+e− → e+e−γ, pentagon-integrals should
be ultimately may be expressed, though PV-reduction, to
a linear combination of 17 MI’s (including 3 boxes, 8 tri-
angles, 5 bubbles, and 1 tadpole). Since the required MI’s
are analytically known [?,?,?,?,?,?,?], the determination
of their coefficients is what is needed for reconstructing
the amplitude as a whole. To this aim, one may use the
Mathematica program hexagon [?,?]. Also, matching the
generalized cuts of the amplitude against the cuts of the
MI’s provides an efficient way to extract their (rational)
coefficients out of the amplitude itself. In general, the ful-
fillment of multiple-cut conditions requires loop momenta
with complex components. The effect of the cut-conditions
is to freeze some of its components, when not all, accord-
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ing to the number of the cuts. With the quadruple-cut
[?] the loop momentum is completely frozen, yielding the
algebraic determination of the coefficients of n-point func-
tions with n ≥ 4. In cases where fewer than four denom-
inators are cut, like triple-cut [?,?,?], double-cut [?,?,?,?],
and single-cut [?], the loop momentum is not frozen: the
free-components are left over as phase-space integration
variables.
For each multiple-cut, the evaluation of the phase-space
integral would generate, in general, logarithms and a non-
logarithmic term. The coefficient of a given n-point MI
finally appears in the non-logarithmic term of the cor-
responding n-particle cut, where all the internal line are
on-shell (while the logarithms correspond to the cuts of
higher-point MI’s which share that same cut). Therefore
all the coefficients of MI’s can be determined in a top-
down algorithm, starting from the quadruple-cuts for the
extraction of the 4-point coefficients, and following with
the triple-, double-, and single-cuts, for the coefficients of
3-, 2- and 1-point, respectively. The coefficient of an n-
point MI (n ≥ 2) can be also obtained by specializing to
the case at hands the generating formulas given in [?] for
general one-loop amplitudes.

Instead of the analytic evaluation of the multiple-cut
phase-space integrals, it is worth considering the feasibility
of computing the process e+e− → e+e−γ with a seminu-
merical technique by-now known as OPP-reduction [?,?],
based on the decomposition of the numerator of any one-
loop integrand in terms of its denominators [?]. Within
this approach, the coefficients of the MI’s can be found
simply by solving a system of numerical equations, and
avoiding any explicit integration. The OPP-reduction algo-
rithm exploits the polynomial structures of the integrand
when evaluated at values of the loop-momentum fulfill-
ing multiple cut-conditions: i) for each n-point MI, one
considers the n-particle cut obtained by setting all the
propagating lines on-shell; ii) such a cut is associated to
a polynomial in terms of the free components of the loop-
momentum, which corresponds to the numerator of the
integrand evaluated at the solution of the on-shell con-
ditions; iii) the constant-term of that polynomial is the
coefficient of the MI.
Hence, the difficult task of evaluating one-loop Feynman
integrals is reduced to the much simpler problem of poly-
nomial fitting, recently optimized by using a projection-
technique based on the Discrete Fourier Transform [?].

In general the result of a dimensional-regulated ampli-
tude in the 4-dimensional limit, being D (= 4−2ε) the reg-
ulating parameter, is expected to contain (poly)logarithms,
often referred to as the cut-constructible term, and a pure
rational term. In a remarkable over-emphasized? paper [?]
which completed the OPP-method, the rising of the ra-
tional term was attributed to two potential sources (of
UV-divergent integrals): one, defined R1, due to the D-
dimensional completion of the 4-dimensional contribution
of the numerator; a second one, called R2, due to the
(−2ε)-dimensional algebra of Dirac-matrices. Therefore within
the OPP-approach the calculation of the one-loop ampli-

tude e+e− → e+e−γ can proceed through two computa-
tional stages:

1. the coefficients of the MI’s that are responsible both for
the cut-constructible and for the R1-rational terms can
be determined by applying the OPP-reduction discussed
above [?,?,?];

2. the R2-rational term can be computed by using addi-
tional tree-level-like diagrammatic rules, very much re-
sembling the computation of the counter terms needed
for the renormalization of UV-divergencies [?].

The numerical influence of the radiative loop diagrams,
including the pentagon diagrams, is expected to be not
large and not being logarithmically enhanced (??). Never-
theless, we expect some predictions for them in the near
future.

2.3.3 Four Particles in the Final State

Here, as a minimum, some comment close to what Guido
wrote in his emails.
Maybe something more?
Volunteers?

2.4 Multiple photon effects and matching with NLO
corrections

by myself with BabaYaga authors (for the QED Parton
Shower and matching recipe as in BabaYaga@NLO) + A.
Arbuzov and L. Trentadue for QED Structure Functions
and theory underlying MCGPJ. I will prepare a more de-
tailed text, including also YFS exponentiation as in BH-
WIDE, and I will circulate it for corrections/improvements.
Hope S. Jadach, B. Ward and W. Placzek will review the
part on YFS.... They told me to be very busy but will-
ing to contribute with some text and in the review of the
numerical results involving BHWIDE.

2.4.1 Universal methods for leading logarithmic corrections

I think it will be important to emphasize that the methods
on the grounds of the generators today employed at flavour
factories have been already used, widely and successfully,
in the 90s at LEP for electroweak tests of the SM, espe-
cially for high-precision predictions to luminosity through
small-angle Bhabha scattering and Z0 physics. Give ref-
erences to original papers and some relevant examples of
precision codes used by LEP collaborations. This should
make clear that the theory we are using today at low en-
ergies is particularly robust, having passed the stringent
tests of very accurate LEP data.

Mostly popular and standard approach: QED electron
Structure Function D(x,Q2). It can be obtained by solv-
ing the Altarelli-Parisi equation in the non-singlet approx-
imation
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– either analytically, in the strictly collinear approxima-
tion (as implemented in MCGPJ). Just a question:
what is the Q2 scale in MCGPJ? I guess Q2 = s, to
check.

– or numerically, through a Parton Shower MC algo-
rithm, including photon p⊥ (as implemented in BabaYaga).
Here Q2 = st/u, to resum the leading terms due to
initial-final-state interference, which is the correct choice
for non-resonant processes.

Alternative method: Yennie-Frautschi-Suura exponen-
tiation (as in BHWIDE).

2.4.2 Matching higher-order and NLO corrections

Common solution for most precise generators: BHWIDE,
BabaYaga@NLO and MCGPJ, albeit different in the im-
plementation aspects.

Here I propose that, rather giving too many th. de-
tails and too lengthy formulae, it will be important to
stress that i) it is possible to match NLO and multiple
photon corrections consistently, avoiding double counting
of LL contributions ii) the convolution of NLO correc-
tions with h.o. effects allows to include, even if approx-
imately, the dominant part of NNLO corrections, given
by infrared-enhanced α2L, L collinear log, contributions.
This can greatly help and make more clear the discussion
on the generators’ accuracy in the last section iii) that
BabaYaga@NLO and BHWIDE implement a fully factor-
ized matching recipe, while MCGPJ include some terms
in additive form. This can give rise to some (small) dif-
ferences, which can show up in the presence of particu-
larly severe cuts (and seen in the comparisons done by A.
Sibidanov, see below).

Do you agree on this scheme?

2.5 Monte Carlo generators

by myself. I will circulate the draft asking to MCs’ authors
for corrections.

MC programs used in early measurements of luminos-
ity at flavour factories (and sometimes still used in re-
cent experimental publications) include generators such as
Bagenf, BabaYaga v3.5 and BKQED. However, the above
generators either are based on a fixed NLO calculation
(such as Bagenf and BKQED) or include corrections to
all orders in perturbation theory, but in the leading log
approximation only (as for BabaYaga v 3.5). Therefore,
the precision of these codes can be estimated to lye in
the range 0.5-1%, depending on the adopted experimental
cuts.

The increasing precision reached on the experimental
side during the last few years led to the development of
new, dedicated precision tools, such as BabaYaga@NLO
and MCGPJ, and the adoption of already well-tested codes,
such as BHWIDE, the latter extensively used at high-
energy LEP/SLC colliders for simulation of the large-angle
Bhabha process. All these three codes include NLO correc-
tions in combination with multiple photon contributions

Generator Processes Theory Accuracy

Bagenf e+e− O(α) 0.5%

BabaYagav3.5 e+e−, γγ, µ+µ− Parton Shower 0.5÷ 1%

BabaYaga@NLO e+e−, γγ, µ+µ− O(α) + PS ∼ 0.1%

BKQED e+e−, γγ, µ+µ− O(α) 1%

MCGPJ e+e−, µ+µ−... O(α) + SF < 0.2%

BHWIDE e+e− O(α) YFS ∼ 0.5%(LEP1)

Table 1. MC generators used for luminosity monitoring.

and have therefore, as it will be further emphasized in the
following, a precision tag of 0.1%.

The basic theoretical features of the different genera-
tors are summarized in the following (include web address,
if available).

1. Bagenf/BKQED –
2. BabaYaga v3.5 – It is a MC generator developed by

Pavia group at the starting of DAΦNE operation [?]
using a QED Parton Shower (PS) approach for the
treatment of leading log QED corrections to luminos-
ity processes and later improved according to Ref. [?]
to account for the interference of radiation emitted
by different charged legs in the generation of the mo-
menta of the final-state particles. The main drawback
of BabaYaga v3.5 is the absence of O(α) non-log con-
tributions, resulting in a theoretical precision of 0.5%
for large-angle Bhabha scattering and of about 1% for
γγ and µ+µ− final states [?].

3. BabaYaga@NLO – It is the presently released version
of BabaYaga, based on the matching of exact O(α)
corrections with QED PS, as described in detail in
Ref. [?]. The accuracy of the current version is esti-
mated to be at 0.1% level, as detailed in the follow-
ing, for large-angle Bhabha scattering, two-photon and
µ+µ− 7 production.

4. MCGPJ – It is the generator developed by a Dubna-
Novosibirsk collaboration [?] and used at VEPP col-
lider. This program includes exact O(α) corrections
supplemented with higher-order leading logarithmic con-
tributions related to the emission of collinear photon
jets and taken into account through collinear QED
Structure Functions (SF) [?]. The theoretical precision
is estimated to be better than 0.2%.

5. BHWIDE – It is a MC code realized in Krakow-Knoxwille
at the time of LEP operation and described in Ref. [?].
In this generator, exact O(α) corrections are matched
with the resummation of soft and collinear logarithms
through the Yennie-Frautschi-Suura (YFS) exponenti-
ation approach. According to the authors, the precision
is estimated about 0.5% for LEP1. This accuracy esti-
mate was derived through detailed comparisons of the

7 At present, finite mass effects in the virtual corrections to
e+e− → µ+µ−, which should be taken into for precision simu-
lations at the Φ-factories, are not included in BabaYaga@NLO.
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BHWIDE predictions with those of other LEP tools
in the presence of pure weak corrections. However,
since the latter are phenomenologically unimportant at
e+e− accelerators of moderately high energies and the
QED theoretical ingredients of BHWIDE are very sim-
ilar to the formulation of both BabaYaga@NLO and
MCGPJ, one can argue that BHWIDE accuracy for
physics at flavour factories is at the level of 0.1%.

2.6 Numerical results

Before showing the results and presenting arguments which
enable to settle the technical and theoretical accuracy of
generators, it is worth discussing the impact of the var-
ious sources of radiative corrections implemented in the
programs used in the experimental analyses. This allows
to understand which corrections are strictly necessary to
achieve a precision at the per mille level, for both the cal-
culation of integrated cross section and simulation of more
exclusive distributions.

2.6.1 Cross sections

From Tab. 2, it can be seen that O(α) corrections decrease
the Bhabha cross section of about 15% at the Φ–factories
and of about 20–25% at the B–factories. Within the full
set of O(α) corrections, non–log terms are of the order of
0.5%, almost independently of the centre-of-mass (c.m.)
energy, as expected, and with a mild dependence on the
angular acceptance cuts, as due to box/interference contri-
butions. The effect of higher–order corrections due to mul-
tiple photon emission is about 0.5-1% at the Φ–factories
and reaches 1–2% at the B–factories. The contribution
of (approximate) O(α2L) corrections is not exceeding the
0.1% level, while the vacuum polarization increases the
cross section of about 2% around 1 GeV and of about 5–
6% around 10 GeV. Concerning the latter correction, the
non–perturbative hadronic contribution to the running of
α is included in BabaYaga@NLO both in the lowest–order
and one–loop diagrams through the HADR5N routine [?],
that returns a data driven error, thus affecting the ac-
curacy of the theoretical calculation. Analogous results
about the size of radiative corrections have been obtained
recently [?] for the process e+e− → γγ, also of interest for
precision luminosity studies at flavour factories. Specify
effects for τ -charm !

We can include a similar table for γγ production. What
do you think?

2.6.2 Distributions

We can include similar plots for γγ production. What do
you think?

As a whole, these results indicate that both exact O(α)
and higher–order corrections (including vacuum polariza-
tion) are necessary for 0.1% theoretical precision, for both
cross sections and distributions.

√
s(GeV) 1.02 4. 10.

δα −17.16 −17.34 −24.35

δnon−log
α −0.66 −0.68 −0.70
δHO 0.93 1.25 1.76
δα2L 0.09 0.09 0.11
δVP 2.43 4.46 6.03

Table 2. Relative size of different sources of correction (in
per cent) to the large-angle Bhabha cross section for typical
selection cuts at Φ, τ -charm and B factories.
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angular acceptance BabaYaga@NLO BHWIDE δ(%)

20◦ − 160◦ 6086.6(1) 6086.3(2) 0.005

55◦ − 125◦ 455.85(1) 455.73(1) 0.030

Table 3. Cross section predictions [nb] of BabaYaga@NLO
and BHWIDE for the Bhabha cross section corresponding to
two different angular acceptances, for KLOE experiment at
DAΦNE, and their relative differences

2.7 Tuned comparisons

The typical procedure followed in the literature for es-
tablishing the technical precision of a given generator is
to perform tuned comparisons between independent pre-
dictions, using the same set of input parameters and ex-
perimental cuts. This strategy was initiated during the
CERN workshops for precision physics at LEP and is still
in use nowadays when considering processes of interest for
physics at hadron colliders, such as single W and Z pro-
duction, demanding particularly accurate theoretical for-
mulations. The tuning procedure is a key step in the val-
idation of generators, because it allows to check that the
different details entering the complex structure of gener-
ators themselves, e.g. implementation of radiative correc-
tions, event selection routines, MC integration and event
generation, are under control and to fix possible bugs.

The tuned comparisons discussed in the following have
been obtained

– taking into account realistic event selection cuts. We
will include the cuts used to produce numerical results

– switching off the vacuum polarization correction to the
Bhabha scattering cross section. Actually, the genera-
tors implement the non-perturbative hadronic contri-
bution to the running of α according to different pa-
rameterizations, which differently affect the cross sec-
tion prediction. Hence, this simplification is introduced
to avoid possible bias in the interpretation of the re-
sults and allows to disentagle the effect of pure QED
corrections.

2.7.1 Φ-factories

– DAΦNE: here I included the results prepared by BabaYaga
group for the comparisons between BabaYaga@NLO and
BHWIDE, using cuts of KLOE selection.

– VEPP-2M: here I put the new results by G Fedotovich
and A Sibidanov for CMD-2. The BabaYaga@NLO,
BHWIDE and MCGPJ Bhabha results for the inte-
grated cross section with cuts agree within 0.1%. Dif-
ferences of a few per mille show up for very small
acollinearity cut, as shown in the figures. I’ll ask pre-
cise numbers to be given in a Table.
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2.7.2 τ -charm factories

Here we have nothing concret, at present...We received an
email past week from Ronggang PING of BES, who is mak-
ing comparisons at

√
s = 3.686 GeV, but he sees too large

differences between BabaYaga v3.5 and BabaYaga@NLO-
BHWIDE (that agree!). I’m confident we will solve the
issue, and it would be nice to put the results of his inspec-
tion here.



Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle 11

, rad!"
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

, %
M

CG
PJ

#)/
M

CG
PJ

#-
Ba

ba
Y

ag
a@

N
LO

#(

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 11. Relative differences between BabaYaga@NLO and
MCGPJ Bhabha cross sections as a function of the acollinearity
cut, for CMD-2 experiment at VEPP-2M

angular range (c.m.s.) BabaYaga@NLO BHWIDE δ(%)

15◦ ÷ 165◦ 119.5(1) 119.53(8) 0.025

30◦ ÷ 150◦ 24.17(2) 24.22(2) 0.086

40◦ ÷ 140◦ 11.67(3) 11.660(8) 0.086

50◦ ÷ 130◦ 6.31(3) 6.289(4) 0.332

60◦ ÷ 120◦ 1.928(2) 1.931(3) 0.141

70◦ ÷ 110◦ 3.554(6) 3.549(3) 0.155

80◦ ÷ 100◦ 0.824(2) 0.822(1) 0.243

Table 4. Cross section predictions [nb] of BabaYaga@NLO
and BHWIDE for the Bhabha cross section as a function of
the angular selection cuts, for Babar experiment at PEP-II,
and their relative differences

2.7.3 B-factories

PEP-II: here I put the Baba results presented by Andreas
Hafner and Achim at previous meetings, and present in the
PhD thesis of Andreas. I don’t have anything for Belle...
Simon, should we do to try something?

The main tuned conclusions are

– The cross sections predictions of BabaYaga@NLO, BH-
WIDE and MCGPJ generally agree within 0.1%. If
larger differences show up (for particularly severe cuts).
they can be understood in terms of the slightly dif-
ferent implementation of sub-leading O(α2) contribu-
tions.

– Also distributions agree well, with relative differences
at a few mille level. Larger discrepancies are only seen
in sparse populated phase-space regions correspond-
ing to very hard photon emission and which does not
influence the luminosity measurement

2.8 Theoretical accuracy

I’l write it, in collaboration with two-loop people. Here we
can put plots of the effects presently neglected in generators
and a summary table about th. precision
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Fig. 12. Electron energy distributions according to BHWIDE,
BabaYaga@NLO and BabaYaga v3.5 for Babar experiment at
PEP-II, and relative differences of the codes’ predictions.
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Fig. 13. The same as Fig. 5 for the electron scattering angle
distribution

2.9 Total luminosity error

Do you agree on a (also short) section like this? I.e. where
do we are and can we realistically arrive in the total lumi-
nosity budget

3 Scan

scan

4 Radiative return

radiative return

5 Vacuum polarization

vacuum polarization
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6 Tau physics

tau physics

7 Summary

summary
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