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1 Luminosity advanced perturbative calculations and experimental pre-
cision requirements. The effort done during the activity
of the working group to perform tuned comparisons be-
tween the predictions of the most accurate programs is
described in detail. New calculations, leading to an up-
date of the theoretical error associated to the prediction
of the luminosity cross section, are also presented. The
aim of the Section is to provide a self-contained and up-
to-date description of the progress occurred during the
last few years towards high-precision luminosity monitor-

The present Section addresses the most important exper-
imental and theoretical issues involved in the precision
determination of the luminosity at meson factories. The
luminosity is the key ingredient underlying all the mea-
surements and studies of the physics processes discussed
in the other Sections. Particular emphasis is put on the
theoretical accuracy inherent to the event generators used
in the experimental analysis, in comparison with the most
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ing at flavour factories, as well as of the still open issues
necessary for future advances.

The structure of the Section is as follows. After an in-
troduction on the motivation for precision luminosity mea-
surements at meson factories (Section 1.1), the leading-
order (LO) cross sections of the two QED processes of
major interest, i.e. Bhabha scattering and photon pair
production, are presented in Section 1.2, together with
the formulae for the next-to-leading-order (NLO) pho-
tonic corrections to the above processes. The remarkable
progress on the calculation of next-to-next-leading-order
(NNLO) QED corrections to the Bhabha cross section,
as occurred in the last few years, is reviewed in Section
1.3. In particular, this Section presents new exact results
on lepton and hadron pair corrections, taking into ac-
count realistic event selection criteria. Section 1.4 is de-
voted to the description of the theoretical methods used
in the Monte Carlo (MC) generators for the simulation
of multiple photon radiation. The matching of such con-
tributions with NLO corrections is also described in Sec-
tion 1.4. The main features of the MC programs used by
the experimental collaborations are summarized in Sec-
tion 1.5. Numerical results for the radiative corrections
implemented into the MC generators are shown in Section
1.6 for both the Bhabha process and two-photon produc-
tion. The tuned comparisons between the predictions of
the most precise generators are presented and discussed
in detail in Section 1.7, considering the Bhabha process
at different centre-of-mass (c.m.) energies and with realis-
tic experimental cuts. The theoretical accuracy presently
reached by the luminosity tools is addressed in Section
1.8, where the most important sources of uncertainty are
discussed quantitatively. The estimate of the total error
affecting the calculation of the Bhabha cross section is
given, as main conclusion of the present work, in Section
1.9, updating and making more robust results available in
the literature. Some still open issues are drawn in Section
1.9 as well.

1.1 Motivation

The luminosity of a collider is the normalization constant
between the event rate and the cross section of a given
process. For an accurate measurement of the cross section
of an electron-positron (ete™) annihilation process, the
precise knowledge of the collider luminosity is mandatory.
The luminosity depends on three factors: beam-beam
crossing frequency, beam currents and the beam overlap
area in the crossing region. However, the last quantity is
difficult to determine accurately from the collider optics.
Thus, experiments prefer to determine the luminosity by
the counting rate of well selected events whose cross sec-
tion is known with good accuracy, using the formula [1]

/Edt:%, (1)

where N is the number of events of the chosen reference
process, € the experimental selection efficiency and o the

theoretical cross section of the reference process. There-
fore, the total luminosity error will be given by the sum in
quadrature of the fractional experimental and theoretical
uncertainties.

Since the advent of low luminosity ete™ colliders, a
great effort was devoted to obtain good precision in the
cross section of electromagnetic processes, extending the
pioneering work of the earlier days [2]. At the eTe™ col-
liders, operating in the c.m. energy range 1 GeV < /s <
3 GeV, such as ACO at Orsay, VEPP-II at Novosibirsk
and Adone at Frascati, the luminosity measurement was
based on Bhabha scattering [3,4] with final-state elec-
trons and positrons detected at small angles, or single and
double bremsstrahlung processes [5], thanks to their high
statistics. The electromagnetic cross sections scale as 1/s,
while elastic eTe™ scattering has a steep dependence on
the polar angle, ~ 1/63, thus providing high rate for small
values of 6.

Also at high-energy accelerators running in the ’90s
around the Z pole to perform precision tests of the Stan-
dard Model (SM), as LEP at CERN and SLC at Stan-
ford, the experiments used small-angle Bhabha scatter-
ing events as a luminosity monitoring process. Indeed,
for the very forward angular acceptances considered by
LEP/SLC collaborations, the Bhabha process is domi-
nated by the electromagnetic interaction and, therefore,
calculable, at least in principle, with very high accuracy.
At the end of LEP and SLC operation, a total (experimen-
tal plus theoretical) precision of one per mille (or better)
was achieved [6,7,8,9,10,11,12], thanks to the work of dif-
ferent theoretical groups and the excellent performance of
precision luminometers.

At current low- and intermediate-energy high-lumino-
sity meson factories, the small polar angle region is dif-
ficult to access for the presence of the low-beta inser-
tions close to the beam crossing region, while wide-angle
Bhabha scattering produces a large counting rate and can
be exploited for a precise measurement of the luminosity.

Therefore, also in this latter case of e* scattered at
large angles, e.g. larger than 55° for the KLOE experi-
ment [1] running at DA®NE, in Frascati and larger than
40° for the CLEO-c experiment [13] running at CESR,
Cornell, the main advantages of Bhabha scattering are
preserved:

1. large statistics. For example at DA®NE, a statistical

error 0L/L ~ 0.3% is reached in about two hours of

data taking, even at the lowest luminosities;

high accuracy for the calculated cross section;

3. clean event topology of the signal and small amount of
background.

o

In Eq. (1) the cross section is usually evaluated by
inserting event generators, which include radiative correc-
tions at a high level of precision, into the MC code sim-
ulating the detector response. The code has to be devel-
oped to reproduce the detector performance (geometrical
acceptance, reconstruction efficiency and resolution of the
measured quantities) to a high level of confidence.
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Fig. 1. Comparison between large-angle Bhabha KLOE data (points) and MC (histogram) distributions for the e* polar angle
0 (left) and for the acollinearity, ¢ = |0+ + 0.— — 180°| (right), where the flight direction of the e* is given by the position of
clusters in the calorimeter. In each case, MC and data histograms are normalized to unity. From [1].

In most cases the major sources of the systematic er-
rors of the luminosity measurement are differences of effi-
ciencies and resolutions between data and MC.

In the case of KLOE the largest experimental error of
the luminosity measurement is due to a different polar an-
gle resolution between data and MC which is observed at
the edges of the accepted interval for Bhabha scattering
events. Figure 1 shows a comparison between large angle
Bhabha KLOE data and MC, at left for the polar angle
and at right for the acollinearity ¢ = |0+ + 0, — 180°|.
One observes a very good agreement between data and
MC, but also the differences (of about 0.3 %) at the sharp
interval edges. The analysis cut, ( < 9°, applied to the
acollinearity distribution is very far from the bulk of the
distribution and does not introduce noteworthy system-
atic errors. Also in the CLEO-c luminosity measurement
with Bhabha scattering events, the detector modeling is
the main source of experimental error. In particular, un-
certainties include those due to finding and reconstruc-
tion of the electron shower, in part due to the nature of
the electron shower, as well as the steep e polar angle
distribution.

The luminosity measured with Bhabha scattering events
is often checked by using other QED processes, such as
ete™ — ptpu= or efe™ — vv. In KLOE, the luminosity
measured with eTe™ — ~v events differs by 0.3% with
respect to Bhabha events. In CLEO-c, ete™ — ptpu~
events are also used and the luminosity determined from
vy (uTp™) is found to be 2.1% (0.6%) larger than that
from Bhabha events. Figure 2 shows the CLEO-c data for
the polar angle distributions of all three processes, com-
pared with the corresponding MC predictions. The three
QED processes are also used by the BaBar experiment at
the PEP-II collider, Stanford, yielding a luminosity de-

termination with an error of about 1% [14]. Large-angle
Bhabha scattering is the normalization process adopted by
the CMD-2 and SND collaborations at VEPP-2M, Novosi-
birsk, while both BES at BEPC, Beijing and BELLE at
KEKB, Tsukuba measure luminosity using the processes
ete”™ — eTe™ and ete™ — v with the final-state par-
ticles detected at wide polar angles and an experimental
accuracy of a few per cent. However, the BES-III aims at
reaching a few per mille error in the luminosity measure-
ment in the near future [15].

The need of precision, namely better than 1%, and pos-
sibly redundant measurements of the collider luminosity is
of utmost importance to perform accurate measurements
of the eTe™ — hadrons cross sections, which are the key
ingredient for evaluating the hadronic contribution to the
running of the electromagnetic coupling constant « and
the muon anomaly g — 2.

1.2 LO cross sections and NLO corrections

As remarked in Section 1.1, the processes of interest for
luminosity measurement at meson factories are Bhabha
scattering and electron-positron annihilation into two pho-
tons and muon pairs. Here we present the LO formulae
of the cross section of the processes ete™ — ete™ and
ete™ — v, as well as the QED corrections to their cross
sections in the NLO approximation of the perturbation
theory. The reaction ete™ — ptpu~ is discussed in Sec-
tion 2.
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Fig. 2. Distributions of CLEO-c /s = 3.774 GeV data (cir-
cles) and MC simulations (histogram) for the polar angle of
the positive lepton (upper two plots) in eTe™ and p 1~ events,
and the mean value of | cos 64| of the two photons in 7 events.
MC histograms are normalized to the number of data events.
From [13].

1.2.1 LO cross sections
For the Bhabha scattering process

e (p)+et(py) — e (p) + et (p)) (2)

at the Born level with simple one-photon exchange (see
Fig. 3) the differential cross section reads

do.(]JBhabha o (342 2 m2
_— = — O < 3
da_ 4s \1—¢c + s )7 (3)

where

s=(p-+py)’,  c=cosb_. (4)
The angle 6_ is defined between the initial and final elec-
tron three-momenta, df2_ = d¢_dcosf_, and ¢_ is the
azimuthal angle of the outgoing electron. The small mass
correction terms suppressed by the ratio m?/s are neg-
ligible for the energy range and the angular acceptances
which are of interest here.

et et

Fig. 3. LO Feynman diagrams for the Bhabha process in QED,

corresponding to s-channel annihilation and ¢-channel scatter-
ing.

At meson factories the Bhabha scattering cross sec-
tion is largely dominated by t-channel photon exchange,
followed by s-t interference and s-channel annihilation.
Furthermore, Z-boson exchange contributions and other
electroweak effects are suppressed at least by a factor
s/M2%. In particular, for large-angle Bhabha scattering
with a c.m. energy /s = 1 GeV the Z boson contribu-
tion amounts to about —1 x 1075. For /s = 3 GeV it
amounts to —1 x 107* and —1 x 1073 for /s = 10 GeV.
So only at B-factories the electroweak effects should be
taken into account at the tree level, when aiming at a per
mille precision level.

The LO differential cross section of the two-photon
annihilation channel (see Fig. 4)

(5)

can be obtained by a crossing relation from the Compton
scattering cross section computed by Brown and Feyn-
man [16]. It reads as follows

e (py)+e (p-) = (@) +(g2)

d Yy 2 1 2 2
90 — 057 + cé +0 Me ,
dsy s \1—¢f s
where df2; denotes the differential solid angle of the first
photon. It is assumed that both final photons are regis-
tered in a detector, and that their polar angles with re-

spect to the initial beam directions are not small (6 5 >
me/E, where E is the beam energy).

(6)

1.2.2 NLO corrections

The complete set of NLO radiative corrections, emerging
at O(«) of the perturbation theory, to Bhabha scatter-
ing and two-photon annihilation can be split into gauge-
invariant subsets: QED corrections, due to emission of
real photons off the charged leptons and exchange of vir-
tual photons between them, and purely weak contribu-
tions arising from the electroweak sector of the SM.

The complete O(a) QED corrections to Bhabha scat-
tering are known since a long time [17,18]. The first com-
plete NLO prediction in the electroweak SM was per-
formed in [19], followed by [20] and several others. At the
NNLO, the leading virtual weak corrections from the top
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Fig. 4. LO Feynman diagrams for the process e™e™ — 7.

quark were derived first in [21] and are available in the
fitting programs ZFITTER [22,23] and TOPAZO0 [24,25,

| extensively used by the experimentalists for the ex-
traction of the electroweak parameters at LEP/SLC. The
weak NNLO corrections in the Standard Model are also
known for the p-parameter [27,28,29,30,31, ,34,35,

,37,38,39,40,41,42,43] and the weak mixing angle [14,

,46,47,48,49], as well as corrections from Sudakov log-
arithms [50,51,52,53,54,55,56,57]. Both NLO and NNLO
weak effects are negligible at low energies and are not im-
plemented yet in numerical packages for Bhabha scatter-
ing at meson factories. In pure QED, the situation is con-
siderably different due to a remarkable progress made on
NNLO corrections in recent years, as emphasized and dis-
cussed in detail in Section 1.3.

As usual, the photonic corrections can be split into two
parts according to their kinematics. The first part pre-
serves the Born-like kinematics and contains the effects
due to one-loop amplitudes (virtual corrections) and sin-
gle soft-photon emission. Examples of Feynman diagrams
giving rise to such corrections are represented in Fig. 5.
The energy of a soft photon is assumed not to exceed an
energy AF, where FE is the beam energy and the auxiliary
parameter A < 1 should be chosen in such a way that the
validity of soft-photon approximation is guaranteed. The
second contribution is due to hard photon emission, i.e. to
single bremsstrahlung with photon energy above AFE and
corresponds to the radiative process eTe™ — eTe 7.

Following [58,59], the soft plus virtual (SV) correction
can be cast into the form

)

dopyels,  dophabha 20 3
= 1+ (L —1) 2lnA+ 2
d0_ d0_ {+7r( ){n +2}

Ba 0 o abha
— —In(ctg;) In A+ ;K?{} bh } (7)

where the factor KEB*Pha is given by

0 0
KBhabha — 1 _ 9T ,j, (sin? 5) + 2Lia(cos? 5)
TR i (2¢* — 3¢ — 15¢) 4+ 2(2¢* — 3¢® + 9¢?
(3+c2)2 |3

43¢ + 21) In*(sin g) —4(c* + % = 2¢) In®(cos g)

6
—4(c® 4 4c* + 5¢ + 6) ln2(tg§) +2(c® = 3c* + 7c

S g

Fig. 5. Examples of Feynman diagrams for real and virtual
NLO QED initial-state corrections to the s-channel contribu-
tion to the Bhabha process.

6 6
—5) In(cos 5) +2(3¢% +9¢2 + 5¢ + 31) In(sin 2)] , (8)

and depends on the scattering angle, because of the con-
tribution due to initial-final-state interference and box di-
agrams (see Fig. 6). It is worth noticing that the SV cor-
rection contains a leading logarithmic (LL) part enhanced
by the collinear logarithm L = In(s/m?). Among the vir-
tual corrections there is also a numerically important ef-
fect due to vacuum polarization in the photon propagator.
Its contribution is omitted in Eq. (8) but can taken into
account in the standard way by insertion of the resummed
vacuum polarization operators in the photon propagators
of the Born-level Bhabha amplitudes.

The differential cross section of the single hard bremss-
trahlung process

et (pr) +e (p-) = et () +e (1) + (k)

for scattering angles being large compared with m./FE
reads

3
«
da}?zﬁr&clibha = In2s Reé’deeé'ya (9)
a*p!, dp_d%k
Loy = ——— 75— 0B (py +p- —p\y —p. — k),
+ —_
wT m2 s t 2
Reer = ——=(-+-+1
T4 ()2 (t s
m?2 S t 2 m2 (s t 2
- =% <+1+ ) —;<1++1>
(X ) t1 S X+ t S1
2 2
mg S1 tl
— —+—+1
X (h T ) ’
where
S S t t U U
W= + 7 1/ N - N 7 + ’ - ’
X+X—  X3X— XX+ X=X—  XEX— X=X+
T— 551(8% + 82) + tt1 (2 + 12) + uuy (u® + u?)
sslttl ’
and the invariants are defined as
/ / / /
s1=2p_pl, t=—-2p_p_, b= —2pyp,
w=—2p_p,, wr=-2pp., x+=kpt, Xy=Fkpl.

NLO QED radiative corrections to the two-photon an-
nihilation channel were obtained in [60,61,62,63], while
weak corrections were computed in [64].
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T Tl

Fig. 6. Feynman diagrams for NLO QED box corrections to
the s-channel contribution to the Bhabha process.

In the one-loop approximation the part of the differ-
ential cross section with the Born-like kinematics reads

d07315+v do]” «a 3
= 1+ —({(L-1)(2InA+ =
a0, a0, J%[( )( " +2)
+Kg‘7,]},
2 1—¢2 314+ 11—
K’Y'Y :Tr— 1 1 - 1
sV 3+2(1+c§) o1 )M
1—c 114+ 2l—0c
1 = 1 -
+< +1+c1+21—01) n— + (1 — q)]»
c1 = cos b, 0, =qip_ . (10)

In addition, the three-photon production process

et (py) + e (p=) — (@) + v(e) + (g3)

must be included. Its cross section is given by

3
doeteT =3 = 870:253”” dry, (11)
Ry —s BHOG) o T xd4x | (04)°+ ()
T xaxexixg [ x1x2(x5)? X1X5X3
+ (cyclic permutations),
3 3 3
dl3, = %5(4)@4 +p- —q1—q —q3),
414243

Xi = 4iPp—, X;:qip+7 1215273

The process has to be treated as a radiative correction
to the two-photon production. The energy of the third
photon should exceed the soft-photon energy threshold
AE. In practice, the tree photon contribution, as well as
the radiative Bhabha process eTe™ — eTe™+, should be
simulated with the help of a MC event generator in order
to take into account the proper experimental criteria of a
given event selection.

In addition to the corrections discussed above, also
the effect of vacuum polarization, due to the insertion of
fermion loops inside the photon propagators, must be in-
cluded in the precise calculation of the Bhabha scattering
cross section. Its theoretical treatment, which faces the
non-trivial problem of the non-perturbative contribution
due to light quarks, is addressed in detail in Section 4.
However, numerical results for such a correction are pre-
sented in Section 1.6 and Section 1.8.

100000
LOefe” ——
10000 NLO ete™ ----- ]
NTHC R —
= 1000 F R .
G
5 100 F
10
-4
< of
)

Vs (GeV)

Fig. 7. Cross sections of the processes e

+ +

e e~ and
e"e” — v in the LO and NLO approximations, as a function
of the c.m. energy at meson factories (upper panel). In the
lower panel, the relative contribution due to the NLO QED

corrections (in per cent) to the two processes is shown.

— €
+

In Fig. 7 the cross sections of the Bhabha and two-
photon production processes in the LO and NLO approx-
imations are shown as a function of the c.m. energy be-
tween /s ~ 2m, and /s ~ 10 GeV (upper panel). The
results were obtained imposing the following cuts for the
Bhabha process:

IR — 450 IAX — 135°
EMN _ 035 &pax = 10° (12)
min,max

where 6, are the angular acceptance cuts, F*M
are the minimum energy thresholds for the detection of
the final-state electron/positron and &max is the maxi-
mum ete” acollinearity. For the photon pair production
processes we used correspondingly:

pIIn = 45° pImAxX — 1350
EMIN — 0305 &max = 10° (13)
min,max

where, as in Eq. (12), 05 are the angular accep-
tance cuts, EI™™ is the minimum energy threshold for
the detection of at least two photons and &max is the
maximum acollinearity between the most energetic and
next-to-most energetic photon.

The cross sections display the typical 1/s QED be-
haviour. The relative effect of NLO corrections is shown
in the lower panel. It can be seen that the NLO corrections
are largely negative and increase with increasing c.m. en-
ergies, because of the growing importance of the collinear
logarithm L = In(s/m?). The corrections to efe™ — v
are about one half of those to Bhabha scattering, because
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of the absence of final-state radiation effects in photon
pair production.

1.3 NNLO Corrections to the Bhabha Scattering Cross
Section

Beyond the NLO corrections discussed in the previous Sec-
tion, in recent years a significant effort was devoted to the
calculation of the perturbative corrections to the Bhabha
process at the NNLO in QED.

The calculation of the full NNLO corrections to the
Bhabha scattering cross section requires three types of in-
gredients: i) the two-loop matrix elements for the eTe
ete™ process; i) the one-loop matrix elements for the
ete” — eTe +y process, both in the case in which the
additional photon is soft or hard; iii) the tree-level ma-
trix elements for eTe™ — ete~ vy, with two soft, two
hard or one soft and one hard photons. Also the process
ete e~, with one of the two eTe™ pairs re-
maining undetected, contributes to the Bhabha signature
at NNLO. Depending on the kinematics, other final states
like, e.g., ete~puTpu~ or those with hadrons are also pos-
sible.

The advent of new calculational techniques and a deeper
understanding of the IR structure of unbroken gauge the-
ories, such as QED or QCD, made the calculation of the
complete set of two-loop QED corrections possible. The
history of this calculation will be presented in Section 1.3.1.

Some remarks on the one-loop matrix elements with
three particles in the final state are in order now. The di-
agrams involving the emission of a soft photon are known
and they were included in the calculations of the two-loop
matrix elements, in order to remove the IR soft divergen-
cies. However, although the contributions due to a hard
collinear photon are taken into account in logarithmic ac-
curacy by the MC generators, a full calculation of the di-
agrams involving a hard photon in a general phase-space
configuration is still missing. In Section 1.3.2, we shall
comment on the possible strategies which can be adopted
in order to calculate these corrections .

As a general comment, it must be noticed that the
fixed-order corrections calculated up to NNLO are taken
into account at the LL, and, partially, next-to-leading-
log (NLL) level in the most precise MC generators, which
include, as will be discussed in Section 1.4 and Section
1.5, the logarithmically enhanced contributions of soft and
collinear photons at all orders in perturbation theory.

Concerning the tree level graphs with four particles

T =

— etemet

in the final state, the production of a soft ete™ pair was
considered in the literature by the authors of [66] by fol-
lowing the evaluation of pair production [67,68] within

the calculation of the O(a?L) single-logarithmic accurate
small-angle Bhabha cross section [7], and it is included in
the two-loop calculation (see Section 1.3.1). New results
on lepton and hadron pair corrections which are at present

! As it will be emphasized in Section 1.8 and Section 1.9
the complete calculation of this class of corrections became
available [65] during the completion of the present work.
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approximately included in the available Bhabha codes are
presented in Section 1.3.3.

1.3.1 Virtual corrections for the ete™ — ete™ process

The calculation of the virtual two-loop QED corrections
to the Bhabha scattering differential cross section was car-
ried out in the last 10 years. This calculation was made
possible by an improvement of the techniques employed
in the evaluation of multiloop Feynman diagrams. An es-
sential tool used to manage the calculation is the Laporta
algorithm [69,70,71,72], which allows to reduce a generic
combination of dimensionally-regularized scalar integrals
to a combination of a small set of independent integrals
called the “Master Integrals” (MIs) of the problem under
consideration. The calculation of the MIs is then pursued
by means of a variety of methods. Particularly important
are the differential equations method [73,74,75,76,77,78,
] and the Mellin-Barnes techniques [30,81, ,84,85,
,87,88,89]. Both methods proved to be very useful in
the evaluation of virtual corrections to Bhabha scattering
since they are especially effective in problems with a small
number of different kinematic parameters. They both al-
low one to obtain an analytic expression for the integrals,
which must be written in terms of a suitable functional ba-
sis. A basis which was extensively employed in the calcula-
tion of multiloop Feynman diagrams of the type discussed
here is represented by the Harmonic Polylogarithms [90,
,07,98] and their generalizations. An-
other fundamental achievement which allowed to complete
the calculation of the QED two-loop corrections was an
improved understanding of the IR structure of QED. In
particular, the relation between the collinear logarithms
in which the electron mass m. plays the role of a natural
cut-off and the corresponding poles in the dimensionally
regularized massless theory was extensively investigated
in [ ) ) ) *

The first complete diagrammatic calculation of the two-
loop QED virtual corrections to Bhabha scattering can
be found in [103]. However, this result was obtained in
the fully massless approximation (m. = 0), by employ-
ing dimensional regularization (DR) to regulate both soft
and collinear divergencies. Today, the complete set of two-
loop corrections to Bhabha scattering in pure QED have
been evaluated using m. as a collinear regulator, as re-
quired in order to include these fixed-order calculations in
available Monte Carlo event generators. The Feynman di-
agrams involved in the calculation can be divided in three
gauge-independent sets: i) diagrams without fermion loops
(“photonic” diagrams), i) diagrams involving a closed
electron loop, and i) diagrams involving a closed loop
of hadrons or a fermion heavier than the electron. Some
of the diagrams belonging to the aforementioned sets are
shown in Figs. 8-11. These three sets are discussed in more
detail below.

Photonic Corrections

A large part of the NNLO photonic corrections can be
evaluated in a closed analytic form, retaining the full de-
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pendence on m, [104], by using the Laporta algorithm
for the reduction of the Feynman diagrams to a combina-
tion of MIs, and then the differential equations method for
their analytic evaluation. With this technique it is possi-
ble to calculate, for instance, the NNLO corrections to the
form factors [105,106,107,108]. However, a calculation of
the two-loop photonic boxes retaining the full dependence
on m. seems to be beyond the reach of this method. This
is due to the fact that the number of MIs belonging to
the same topology is, in some cases, large. Therefore, one
must solve analytically large systems of first-order ordi-
nary linear differential equations; this is not possible in
general. Alternatively, in order to calculate the different
MTIs involved, one could use the Mellin-Barnes techniques,
as shown in [86,87,108,109,110,111], or a combination of
both methods. The calculation is very complicated and a
full result is not available yet?. However, the full depen-
dence on m, is not phenomenologically relevant. In fact,
the physical problem exhibits a well defined mass hierar-
chy. The mass of the electron is always very small com-
pared to the other kinematic invariants and can be safely
neglected everywhere, with the exception of the terms in
which it acts as a collinear regulator. The ratio of the pho-
tonic NNLO corrections to the Born cross section is the
following

do(2:P1) a2 3 , , m2 m2
> _ (= (PH,i) i e e
dor(Borm) ( ) 23 (Le) +O< st ) (14

U :
=0

where L. = In(s/m?2) and the coefficients ("™ contain
infrared logarithms and are functions of the scattering an-
gle 6. The approximation given by Eq. (14) is sufficient
for a phenomenological description of the process®. The
coefficients of the double and single collinear logarithm
in BEq. (14), 62 and 6" were obtained in [112,

]. However, the precision required for luminosity mea-
surements at eTe” colliders demands the calculation of
the non-logarithmic coefficient, §(*™:°), The latter was ob-
tained in [99,100] by reconstructing the differential cross
section in the s > m?2 # 0 limit from the dimension-
ally regularized massless approximation [103]. The main
idea of the method developed in [99,100] is outlined be-
low. As far as the leading term in the small electron mass
expansion is considered, the difference between the mas-
sive and the dimensionally regularized massless Bhabha
scattering can be viewed as a difference between two reg-
ularization schemes for the infrared divergences. With the
known massless two-loop result at hand, the calculation
of the massive one is reduced to constructing the infrared
matching term which relates the two above mentioned reg-
ularization schemes. To perform the matching an auxiliary

2 For the planar double box diagrams, all the MIs are known
[109] for small m., while the MIs for the non-planar double
box diagrams are not completed.

3 It can be shown that the terms suppressed by a positive
power of m2/s do not play any phenomenological role already
at very low c.m. energies, /s ~ 10 MeV. Moreover, the terms
m?2/t (or mZ/u) become important in the extremely forward
(backward) region, unreachable for the experimental setup.

XL~

Fig. 8. Some of the diagrams belonging to the class of the
“photonic” NNLO corrections to the Bhabha scattering differ-
ential cross section. The additional photons in the final state
are soft.

amplitude is constructed, which has the same structure of
the infrared singularities but it is sufficiently simple to be
evaluated at least at the leading order in the small mass
expansion. A particular form of the auxiliary amplitude
is dictated by the general theory of infrared singularities
in QED and involves the exponent of the one-loop correc-
tion as well as the two-loop corrections to the logarithm
of the electron form factor. The difference between the
full and the auxiliary amplitudes is infrared finite. It can
be evaluated by using dimensional regularization for each
amplitude and then taking the limit of four space-time
dimensions. The infrared divergences, which induce the
asymptotic dependence of the virtual corrections on the
electron and photon masses, are absorbed into the auxil-
iary amplitude while the technically most nontrivial cal-
culation of the full amplitude is performed in the massless
approximation. The matching of the massive and massless
results is then necessary only for the auxiliary amplitude
and it is straightforward. Thus the two-loop massless re-
sult for the scattering amplitude along with the two-loop
massive electron form factor [114] are sufficient to obtain
the two-loop photonic correction to the differential cross
section in the small electron mass limit.

A method based on a similar principle was subsequently
developed in [101,102]; the authors of [102] confirmed the
result of [99,100] for the NNLO photonic corrections to
the Bhabha scattering differential cross section.

Electron Loop Corrections

The NNLO electron loop corrections arise from the inter-
ference of two-loop Feynman diagrams with the tree-level
amplitude as well as from the interference of one-loop dia-
grams, as long as one of the diagrams contributing to each
term involves a closed electron loop. This set of corrections
presents a single two-loop box topology, and it is there-
fore technically less challenging to evaluate with respect
to the photonic correction set. The calculation of the elec-
tron loop corrections was completed a few years ago [115,

, 117, 118]; the final result retains the full dependence of
the differential cross section on the electron mass m.. The
MIs involved in the calculation were identified by means of
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Fig. 9. Some of the diagrams belonging to the class of the
“electron loop” NNLO corrections. The additional photons or
electron-positron pair in the final state are soft.

the Laporta algorithm and evaluated with the differential
equation method. As expected, after UV renormalization
the differential cross section presented only residual IR
poles which were removed by adding the contribution of
the soft photon emission diagrams. The resulting NNLO
differential cross section could be conveniently written in
terms of 1- and 2-dimensional Harmonic Polylogarithms
(HPLs) of maximum weight three. Expanding the cross
section in the limit s, [t| > m?2, the ratio of the NNLO
corrections to the Born cross section can be written as in
Eq. (14):

do(2EL) a2 ) ; m2 m?
(= (BL,i) @ e e
e~ (2) o o+ o (2 5E) L as

Tr —

Note that the series now contains a cubic collinear log-
arithm. This logarithm appears, with an opposite sign,
in the corrections due to the production of an electron-
positron pair (the soft-pair production was considered in
[66]). When the two contributions are considered together
in the full NNLO, the cubic collinear logarithms cancel.
Therefore, the physical cross section includes at most a
double logarithm, as in Eq. (14).

The explicit expression of all the coefficients 8¢
obtained by expanding the results of [115,116,117] was
confirmed by two different groups [102,118]. In [102] the
small electron mass expansion was performed within the
soft-collinear effective theory (SCET) framework, while
the analysis in [118] employed the asymptotic expansion
of the MIs.

EL,i)
Y

Heavy-Flavor and Hadronic Corrections

Finally, we consider the corrections originating from two-
loop Feynman diagrams involving a heavy flavor fermion
loop?. Since this set of corrections involves one more mass
scale with respect to the corrections analyzed in the previ-
ous sections, a direct diagrammatic calculation is in prin-
ciple a more challenging task. Recently, in [102] the au-

4 Here by “heavy flavor” we mean a muon or a 7-lepton,
as well as a heavy quark, like the top, the b- or the c-quark,
depending on the c.m. energy range that we are considering.

thors applied their technique based on SCET to Bhabha
scattering and obtained the heavy flavor NNLO correc-
tions in the limit in which s, [¢], |u] > m} > m?, where

e
mfc is the mass of the heavy fermion running in the loop.
Their result was very soon confirmed in [118] by means of
a method based on the asymptotic expansion of Mellin-
Barnes representation of the MIs involved in the calcula-
tion. However, the results obtained in the approximation
s, ¢, Ju| > mfc > m? cannot be applied to the case in
which /s < my (as in the case of a tau loop at /s ~ 1
GeV), and they apply only to a relatively narrow angular
region perpendicular to the beam direction when /s is
not very much larger than my (as in the case of top-quark
loops at ILC). It was therefore necessary to calculate the
heavy flavor corrections to Bhabha scattering assuming
only that the electron mass is much smaller than the other
scales in the process, but retaining the full dependence on
the heavy mass, s, [t], [u],m} > mZ.

The calculation was carried out in two different ways:
in [119,120] it was done analytically, while in [121,122] it
was done numerically with dispersion relations.

The technical problem of the diagrammatic calculation
of Feynman integrals with four scales can be simplified
by considering carefully, once more, the structure of the
collinear singularities of the heavy-flavor corrections. The
ratio of the NNLO heavy flavor corrections to the Born
cross section is given by

do_(27HF)

1
a2 . ; m2 m?2
_ (& (HF,I) [ e e

do(Born) (77) ;5 (Le) +O< st > » (16)

where now the coefficients 6 are functions of the scat-
tering angle 6 and, in general, of the mass of the heavy
fermions involved in the virtual corrections. It is possi-
ble to prove that, in a physical gauge, all the collinear
singularities factorize and can be absorbed in the exter-
nal field renormalization [123]. This observation has two
consequences in the case at hand. The first one is that
box diagrams are free of collinear divergencies in a phys-
ical gauge; since the sum of all boxes forms a gauge in-
dependent block, it can be concluded that the sum of
all box diagrams is free of collinear divergencies in any
gauge. The second consequence is that the single collinear
logarithm in Eq. (16) arises from vertex corrections only.
Moreover, if one chooses on-shell UV renormalization con-
ditions, the irreducible two-loop vertex graphs are free
of collinear singularities. Therefore, among all the two-
loop diagrams contributing to the NNLO heavy flavor cor-
rections to Bhabha scattering, only the reducible vertex
corrections are logarithmically divergent in the m. — 0
limit®. The latter are easily evaluated even if they de-
pend on two different masses. By exploiting these two
facts, one can obtain the NNLO heavy-flavor corrections
to the Bhabha scattering differential cross section assum-
ing only that s, [t], |u|, m% > m?. In particular, one can set

5 Additional collinear logarithms arise also from the inter-
ference of one-loop diagrams in which at least one vertex is
present.
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Fig. 10. Some of the diagrams belonging to the class of the
“heavy fermion” NNLO corrections. The additional photons in
the final state are soft.

me = 0 from the beginning in all the two-loop diagrams
with the exception of the reducible ones. This procedure
allows one to effectively eliminate one mass scale from the
two-loop boxes, so that these graphs can be evaluated with
the techniques already employed in the diagrammatic cal-
culation of the electron loop corrections®. In the case in
which the heavy flavor fermion is a quark, it is straightfor-
ward to modify the calculation of the two-loop self-energy
diagrams to obtain the mixed QED-QCD corrections to
Bhabha scattering [120].

An alternative approach to the calculation of the heavy
flavor corrections to Bhabha scattering, is based on dis-
persion relations. This method also applies to hadronic
corrections. The hadronic and heavy-fermion corrections
to the Bhabha-scattering cross section can be obtained by
appropriately inserting the renormalized irreducible pho-
ton vacuum-polarization function I7 in the photon prop-
agator:

9pv
@2 +id
(17)
The vacuum polarization II can be represented by a once-
subtracted dispersion integral [2],

1I(q%)

Juv Jpa 2
21id  f£1id (9" 4" ")

2 [e'e]
(@) =-L~ d

™ AM?2 z

Im I7(z) 1
2 —.
G2 —z+16

(18)

The contributions to I may then be determined from a
(properly normalized) production cross section by the op-
tical theorem [127],

Im ITyaq(2) = —% Ryaa(2). (19)

In this way, the hadronic vacuum polarization may be ob-
tained from the experimental data for Rj.q:

o({ete™ — v* — hadrons}; 2)
(4ra?)/(3z)

Rhad (Z) = (20)

6 The necessary MIs can be found in [120,124,125,126].

In the low-energy region the inclusive experimental data
may be used [128,129]. Around a narrow hadronic reso-

. . +eo-
nance with mass M,es and width I'7.¢ one may use the
relation

I +o-
Rres(z) = ?Mrespfese (S(Z - Mrzes)7 (21)
and in the remaining regions the perturbative QCD pre-
diction [130]. Contributions to II arising from leptons and
heavy quarks with mass my, charge Q¢ and color Cy can
be computed directly in perturbation theory:

2 m2
Ry(zimy) = Q3 Cy <1+2”Zf> 1-4=L (22)

As a result of the above formulas, the massless photon
propagator gets replaced by a massive propagator, whose
effective mass z is subsequently integrated over:

Guv Hﬁ/“ dz R(z) < e )
@ +i0 37 Jape 2(¢%2 — 2+ 1) v ¢ +id )’
(23)

For self-energy corrections to Bhabha scattering at one-
loop order, the dispersion relation approach was first em-
ployed in [131]. Two-loop applications of this technique,
prior to Bhabha scattering, are the evaluation of the had-
ronic vertex correction [132] and of two-loop hadronic cor-
rections to the lifetime of the muon [133]. The approach
was also applied to the evaluation of the two-loop form
factors in QED in [134,135,136].

The fermionic and hadronic corrections to Bhabha scat-
tering at one-loop accuracy come only from the self-energy
diagram; see for details Section 4. At two-loop level there
are reducible and irreducible self-energy contributions, ver-
tices and boxes. The reducible corrections are easily treat-
ed. For the evaluation of the irreducible two-loop dia-
grams, it is advantageous that they are one-loop diagrams
with self-energy insertions, because the application of the
dispersion technique as described here is possible.

The kernel function for the irreducible two-loop vertex
was derived in [132] and verified in e.g. [122] and the three
kernel functions for the two-loop box functions were first
obtained in [137,121,122] and verified in [138]. A complete
collection of all the relevant formulae may be found in
[122], and the corresponding Fortran code bhbhnnlohf is
publicly available at the web page [139]
www-zeuthen.desy.de/theory/research/bhabha/.

In [122], the dependence of the various heavy-fermion
NNLO corrections on In(s/m3%) for s,|t],|u| > m} was
studied. The irreducible vertex behaves (before a combi-
nation with real pair emission terms) like In®(s/ m?) [132],
while the sum of the various infrared divergent diagrams
as a whole behaves like In(s/m%) In(s/mZ). This is in ac-
cordance with Eq. (16), but the limit plays no effective
role at the energies studied here.

As a result of efforts of recent years we have now for all
the non-photonic virtual two-loop contributions at least
two completely independent calculations. The net result,
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Fig. 11. Some of the diagrams belonging to the class of the
corrections. The additional photons in the final

“hadronic”
state are soft.
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Fig. 12. Two-loop photonic and non-photonic corrections to

Bhabha scattering at /s = 1.02 GeV, normalized to the QED

tree-level cross section, as a function of the electron polar angle.

No cuts. The parameterizations of Rpqq due to [140] and [128,
,130] are very close to each other.

as a ratio of the NNLO corrections to the Born cross sec-
tion in per mille, is shown in Fig. 12 for KLOE and in
Fig. 13 for BaBar/Belle”. While the non-photonic correc-
tions stay at 1 per mille or less for KLOE, they reach a
few per mille at the BaBar/Belle energy range. The NNLO
photonic corrections are the dominant contributions and
amount to some per mille, both at ® and B factories.
However, as already emphasized, the bulk of both pho-
tonic and non-photonic corrections is incorporated into
the generators used by the experimental collaborations.
Hence, the consistent comparison between the results of
NNLO calculations and the MC predictions at the same
perturbative level allows to assess the theoretical accuracy
of the luminosity tools, as will be discussed quantitatively
in Section 1.8.

7 The pure self-energy corrections deserve a special discus-
sion and are thus omitted in the plots.
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Fig. 13. Two-loop photonic and non-photonic corrections to
Bhabha scattering at /s = 10.56 GeV, normalized to the QED
tree-level cross section, as a function of the electron polar angle.
No cuts. The parameterizations of Rpqeq is due to [140].

1.3.2 Fixed-Order Calculation of the Hard Photon Emission
at One Loop

The one-loop matrix element for the process eTe™ —
ete™ v is one of the contributions to the complete set of
NNLO corrections to Bhabha scattering. Its evaluation
requires the non-trivial computation of one-loop tensor
integrals associated to pentagon-diagrams.

According to the standard Passarino-Veltman (PV)
approach [141], one-loop tensor integrals can be expressed
in terms of MIs with trivial numerators that are indepen-
dent of the loop variable, each multiplied by a Lorentz
structure depending only on combinations of the external
momenta and the metric tensor. The achievement of the
complete PV-reduction amounts to solve a non-trivial sys-
tem of equations. Due to its size, it is reasonable replacing
the analytic techniques by numerical tools. It is difficult
to implement the PV-reduction numerically, since it gives
rise to Gram determinants. The latter naturally arise in
the procedure of inverting a system and they can vanish
at special phase space points. This fact requires a proper
modification of the reduction algorithm [142,143, 144,

, 147, 148]. A viable solution for the complete algebralc
reduction of tensor-pentagon (and tensor-hexagon) inte-
grals was formulated in [149,150,151], by exploiting the
algebra of signed minors [152]. In this approach the can-
celation of powers of inverse Gram determinants was per-
formed recently in [153,154].

The computation of the one-loop five-point amplitude
ete™ — eTe v can be alternatively performed by using
generalized-unitarity cutting rules (see [155] for a detailed
compilation of references). In the following we propose
two ways to achieve the result, via an analytical and via
a semi-numerical method. The application of generalized
cutting-rules as an on-shell method of calculation is based
on two fundamental properties of scattering amplitudes:
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i) analyticity, according to which any amplitude is deter-
mined by its singularity structure [156, 157,158,127, 159];
i1) and unitarity, according to which the residues at the
singularities are determined by products of simpler ampli-
tudes. Turning these properties into a tool for computing
scattering amplitudes is possible because of the underlying
representation of the amplitude in terms of Feynman inte-
grals and their PV-reduction, which grants the existence of
a representation of any one-loop amplitudes as linear com-
bination of MIs, each multiplied by a rational coefficient.
In the case of eTe™ — eTe™ v, pentagon-integrals may be
expressed, through PV-reduction, by a linear combination
of 17 MIs (including 3 boxes, 8 triangles, 5 bubbles, and
1 tadpole). Since the required MIs are analytically known
[160,161,162,150,144,163,164], the determination of their
coeflicients is needed for reconstructing the amplitude as a
whole. To this aim, one may use the Mathematica program
hexagon [153,154]. Also matching the generalized cuts of
the amplitude with the cuts of the MIs provides an effi-
cient way to extract their (rational) coefficients out of the
amplitude itself. In general the fulfillment of multiple-cut
conditions requires loop momenta with complex compo-
nents. The effect of the cut conditions is to freeze some
of its components, when not all, according to the number
of the cuts. With the quadruple-cut [165] the loop mo-
mentum is completely frozen, yielding the algebraic de-
termination of the coefficients of n-point functions with
n > 4. In cases where fewer than four denominators are
cut, like triple-cut [166,167,168], double-cut [169, 170,171,

,173,167], and single-cut [174], the loop momentum is
not frozen: the free-components are left over as phase-
space integration variables.

For each multiple-cut, the evaluation of the phase-
space integral would generate, in general, logarithms and
a non-logarithmic term. The coefficient of a given n-point
MI finally appears in the non-logarithmic term of the cor-
responding n-particle cut, where all the internal lines are
on-shell (while the logarithms correspond to the cuts of
higher-point MIs which share that same cut). Therefore
all the coefficients of MIs can be determined in a top-
down algorithm, starting from the quadruple-cuts for the
extraction of the 4-point coefficients, and following with
the triple-, double-, and single-cuts, for the coefficients of
3-, 2- and 1-point, respectively. The coefficient of an n-
point MI (n > 2) can be also obtained by specializing to
the case at hands the generating formulas given in [175]
for general one-loop amplitudes.

Instead of the analytic evaluation of the multiple-cut
phase-space integrals, it is worth considering the feasi-
bility of computing the process ete™ — eTe™y with a
seminumerical technique by now known as OPP-reduction
[176,177], based on the decomposition of the numerator
of any one-loop integrand in terms of its denominators

,181]. Within this approach the coefficients
of the MIS can be found simply by solving a system of nu-
merical equations, avoiding any explicit integration. The
OPP-reduction algorithm exploits the polynomial struc-
tures of the integrand when evaluated at values of the
loop-momentum fulfilling multiple cut-conditions: 4) for
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each n-point MI, one considers the n-particle cut obtained
by setting all the propagating lines on-shell; ii) such a cut
is associated to a polynomial in terms of the free com-
ponents of the loop-momentum, which corresponds to the
numerator of the integrand evaluated at the solution of the
on-shell conditions; i) the constant-term of that polyno-
mial s the coefficient of the MI.
Hence the difficult task of evaluating one-loop Feynman
integrals is reduced to the much simpler problem of poly-
nomial fitting, recently optimized by using a projection
technique based on the Discrete Fourier Transform [132].
In general the result of a dimensional-regulated ampli-
tude in the 4-dimensional limit, being D (= 4—2¢) the reg-
ulating parameter, is expected to contain (poly)logarithms,
often referred to as the cut-constructible term, and a pure
rational term. In a later paper [183], which completed
the OPP-method, the rising of the rational term was at-
tributed to two potential sources (of UV-divergent inte-
grals): one, defined Ry, due to the D-dimensional comple-
tion of the 4-dimensional contribution of the numerator;
a second one, called Ry, due to the (—2¢)-dimensional al-
gebra of Dirac-matrices. Therefore in the OPP-approach
the calculation of the one-loop amplitude ete™ — eTe vy
can proceed through two computational stages:

1. the coefficients of the MIs that are responsible both
for the cut-constructible and for the R;-rational terms
can be determined by applying the OPP-reduction dis-
cussed above [176,177,182];

2. the Rs-rational term can be computed by using addi-
tional tree-level-like diagrammatic rules, very much re-
sembling the computation of the counter terms needed
for the renormalization of UV-divergencies [183].

The numerical influence of the radiative loop diagrams,
including the pentagon diagrams, is expected not to be
particularly large. However, the calculation of such correc-
tions would greatly help to assess the physical precision of
existing luminosity programs.

1.3.3 Pair Corrections

As was mentioned in the paragraph on virtual heavy fla-
vor and hadronic corrections of Section 1.3.1, these virtual
corrections have to be combined with real corrections in
order to get physically sensible results. The virtual NNLO
electron, muon, tau and pion corrections have to be com-
bined with the emission of real electron, muon, tau and
pion pairs, respectively. The real pair production cross
sections are finite, but cut dependent. We consider here
the pion pair production as it is the dominant part of the
hadronic corrections and can serve as an estimate of the
role of the whole set of hadronic corrections. The descrip-
tion of all relevant hadronic contributions is much more
involved task and will not be covered in this review. As
was first explicitly shown for Bhabha scattering in [60]
for electron pairs, and also discussed in [122], there ap-
pear exact cancellations of terms of the order In®(s/m?)
or ln3(s/m?), so that the leading terms are at most of

order 1n2(s/m§),ln2(s/m§).
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Table 1. The NNLO lepton and pion pair corrections to the
Bhabha scattering Born cross section op: virtual corrections
o, , soft and hard real photon emissions os, on, and pair emis-
sion contributions opeirs. Total pair correction cross sections
obtainable from the sum osty+n + Opairs. All cross sections in
nanobarns according to the cuts given in the text.

Electron pair corrections

OB Oh Oy+s Oy+s+h Opairs
KLOE 529.469 9.502 -11.567 -2.065 0.271
BaBar 6.744 0.246 -0.271 -0.025 0.017
Muon pair corrections
OB Oh Oy+s Oy+s+h Opairs
KLOE 529.469 1.494 -1.736 -0.241 -
BaBar 6.744 0.091 -0.095 -0.004 0.0005
Tau pair corrections
OB Oh Oy+s Oy4s+h Opairs
KLOE 529.469 0.020 -0.023 -0.003 -
BaBar 6.744 0.016 -0.017 -0.0007 <1077
Pion pair corrections
OB Oh Ovy+s Oy+s+h Opairs
KLOE 529.469 1.174 -1.360 -0.186 -
BaBar 6.744 0.062 -0.065 -0.003 0.00003

In Table 1 we show NNLO lepton and pion pair con-
tributions with typical kinematical cuts for the KLOE
and BaBar experiments. Besides contributions from un-
resolved pair emissions opqirs, we also add unresolved real
hard photon emission contributions . The corrections
Opairs from fermions have been calculated with the For-
tran package HELAC-PHEGAS [184, 185,186, 187], the real
pion corrections with EKHARA [188,189], the NNLO hard
photonic corrections oy, with a program [190] based on the
generator BHAGEN-1PH [191]. The latter depend, tech-
nically, on the soft photon cut-off E‘;ﬁn = w. After adding
up with 0,45, the sum of the two o445 is independent
of that; in fact we use here w/Epeam = 1074, The o, is
determined with an updated version of the Fortran pack-
age bhbhnnlohf [122,139] in order to cover also pion pair
corrections. The cuts applied in Table 1 for the KLOE
experiment are

— /s =1.02 GeV
— Fnin = 0.4 GeV
— 55° < f4 < 125°

- frnax =9° 5
and for the BaBaR experiment
— /s =10.56 GeV

— |cos(6+)] < 0.7 and
|cos(64)] < 0.65 or |cos(f_)| < 0.65
— |p+|/Ebeam > 0.75 and |p_|/FEpeam > 0.5 or
|p—|/Ebeam > 0.75 and |p+|/Epeam > 0.5
- g?ndax =30°.
Here E., is the energy threshold for the final-state elec-
tron/positron, 1 are the electron/positron polar angles
and &4 i the maximum allowed polar angle acollinear-
ity:

€=10, +0_ —180°|, (24)

and &34

max

linearity:

is the maximum allowed three dimensional acol-

[e]
arccos( P+ P ) X 180
(Ip—[lp+| ™
ForeTe™ — eTe " u™ ™, cuts are applied only to the ete™
pair. In the case of ete™ — ete~ete, all possible eTeT
combinations are checked and if at least one pair fulfils
the cuts the event is accepted.
At KLOE the electron pair corrections contribute about
3 x 1073 and at BaBar about 1 x 1073, while all the other
contributions of pair production are even smaller. Like in
small-angle Bhabha scattering at LEP/SLC the pair cor-
rections [192] are largely dominated by the electron pair
contribution.

¢4 = — 180°

. (25)

1.4 Multiple photon effects and matching with NLO
corrections

1.4.1 Universal methods for leading logarithmic corrections

From inspection of Eq. (7) and Eq.(10) for the SV NLO
QED corrections to the cross section of the Bhabha scat-
tering and eTe™ — 47 process, it can be seen that large
logarithms L = In(s/m?), due to collinear photon emis-
sion, are present. Similar large logarithmic terms arise af-
ter integration of the hard photon contributions from the
kinematical domains of photon emission at small angles
with respect to charged particles. For the energy range
of meson factories the logarithm is large numerically, i.e.
L ~ 15 at the ®-factories and L ~ 20 at the B-factories,
and the corresponding terms give the bulk of the total ra-
diative correction. These contributions represent also the
dominant part of the NNLO effects discussed in Section
1.3. Therefore the logarithmically enhanced contributions
due to emission of soft and collinear photons must be
taken into account at all orders in perturbation theory,
to achieve the required theoretical accuracy.

The methods for the calculation of higher-order (HO)
QED corrections on the basis of the generators employed
nowadays at flavour factories were already widely and suc-
cessfully used in the 90s at LEP/SLC for electroweak tests
of the SM. They were adopted for the calculation of both
the small-angle Bhabha scattering cross section (neces-
sary for the high-precision luminosity measurement) and
Z-boson observables. Hence, the theory accounting for the
control of HO QED corrections at meson factories can
be considered particularly robust, having passed the very
stringent tests of LEP/SLC era.

The most popular and standard methods to keep un-
der control multiple photon effects are the QED Structure
Function (SF) approach [193,194,195,196] and Yennie-
Frautschi-Suura (YFS) exponentiation [197]. The former
is used in all the versions of the generator BabaYaga [198,

,200] and MCGPJ [201] (albeit according to differ-
ent realizations), while the latter is the theoretical recipe
adopted in BHWIDE [202]. Actually, analytical QED SF's
D(z,Q?), valid in the strictly collinear approximation,
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are implemented in MCGPJ, whereas BabaYaga is based
on a MC Parton Shower (PS) algorithm to reconstruct
D(z, Q%) numerically.

The Structure Function approach

Let us consider the annihilation process e"e™ — X,
where X is some given final state and o¢(s) its LO cross
section. Initial-state (IS) QED radiative corrections can
be described according to the following picture. Before
arriving at the annihilation point, the incoming electron
(positron) of four-momentum p_ 4 radiates real and vir-
tual photons. These photons, due to the dynamical fea-
tures of QED, are mainly radiated along the direction of
motion of the radiating particles, and their effect is mainly
to reduce the original four-momentum of the incoming
electron (positron) to y(2)p—(4). After this pre-emission,
the hard scattering process e~ (z1p_)et (xap,) — X takes
place, at a reduced squared c.m. energy § = x1x2s. The
resulting cross section, corrected for IS QED radiation,
can be represented as follows [193,194,195]

1
a(s):/ dxydzoD(xy, 8)D (2, 8)og(z1228)O(cuts),
0

(26)
where D(z,s) is the electron SF, representing the prob-
ability that an incoming electron (positron) radiates a
collinear photon, retaining a fraction x of its original mo-
mentum at the energy scale Q2 = s, and ©O(cuts) stands
for a rejection algorithm taking care of experimental cuts.
When considering photonic radiation only the non-singlet
part of the SF is of interest. If the running of the QED
coupling constant is neglected, the non-singlet part of the
SF is the solution of the following Renormalization Group
(RG) equation, analogous to the Dokshitzer-Gribov-Lipa-
tov-Altarelli-Parisi (DGLAP) equation of QCD [203,204,

]:
S%D(x,s) - 2‘;/1 %a(z)p (%s) (27)

where P, (z) is the regularized Altarelli-Parisi (AP) split-
ting function electron — electron + photon, given by

Po(2) = P(z) — 6(1 — z)/o deP(z),

22
P(z) = 11+_ . (28)

Equation (27) can be also transformed into an integral

equation, subject to the boundary condition D(z, m?) =

0(1 —x):
D(x,s)=5(1—x)+;/;‘g/:dja(z)p (;Q?).
e (29)

Equation (29) can be solved exactly by means of nu-
merical methods, such as the inverse Mellin transform
method. However, this derivation of D(z,s) turns out be

problematic in view of phenomenological applications. There-
fore, approximate (but very accurate) analytical represen-
tations of the solution of the evolution equation are of ma-
jor interest for practical purposes. This type of solution
was the one typically adopted in the context of LEP/SLC
phenomenology. A first analytical solution can be obtained
in the soft photon approximation, i.e. in the limit x ~ 1.
This solution, also known as Gribov-Lipatov (GL) approx-
imation, exponentiates at all perturbative orders the large
logarithmic contributions of infrared and collinear origin,
but it does not take into account hard-photon (collinear)
effects. This drawback can be overcome by solving the
evolution equation iteratively. At the n-th step of the it-
eration, one obtains the O(a™) contribution to the SF for
any value of x. By combining the GL solution with the
iterative one, in which the soft-photon part has been elim-
inated in order to avoid double counting, one can build a
hybrid solution of the evolution equation. It exploits all
the positive features of the two kinds of solutions and is
not affected by the limitations intrinsic to each of them.
Two classes of hybrid solutions, namely the additive and
factorized ones, are known in the literature and both were
adopted for applications to LEP/SLC precision physics.
A typical additive solution, where the GL approximation
D¢r(x,s) is supplemented by finite-order terms present
in the iterative solution, is given by [200]

3
Da(z,s) = dy(x,s),
=0
dg))(x73) _ exp [%ﬁ (% B ’YE)] lﬁ(l _ x)%ﬁ—17

r(1+3p8) 2
dy(z, ) = —iﬂ(lﬂ%‘)?
df) (w,8) = %52 [(142)(—4In(l —2)+3Inzx)

Inx
4 —_5_
1—x 4’

A (2, s) = 31@@‘ {(1 + ) [18¢(2) — 6Liy(x)

1 3
—12In*(1 — 2)] + T {—2(1 + 82 + 32 Inx
—x

1
—1—5(1 + 72 %z —12(1 + 2?) InzIn(1 — z)

—6(x +5)(1 —z)In(1 — z)

—3(39 — 247 — 15x2)] } : (30)

where I' is the Euler gamma-function, vg =~ 0.5772 the
Euler-Mascheroni constant, ¢ the Riemann (-function and
0 is the large collinear factor

8= 2?0‘ [111 (W‘;) - 1} : (31)

Explicit examples of factorized solutions, which are
obtained by multiplying the GL solution by finite-order
terms, in such a way that, order by order, the iterative
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contributions are exactly recovered, can be found in [207].
For the calculation of HO corrections with a per mille ac-
curacy analytical SFs in additive and factorized form con-
taining up to O(a?) finite-order terms are sufficient and
in excellent agreement. They also agree with the accuracy
much better than 0.1 with the exact numerical solution of
the QED evolution equation. Explicit solutions up to the
fifth order in a were calculated in [208,209].

The RG method described above was applied in [210]
for the treatment of LL. QED radiative corrections to var-
ious processes of interest for physics at meson factories.
Such a formulation was later implemented in the genera-
tor MCGPJ. For example, according to [210], the Bhabha
scattering cross section, accounting for LL terms in all or-

ders, O(a™L™), n = 1,2,..., of perturbation theory, is
given by
Eilzbhd = Z / le/ dZQD Zl)DbeJr (ZQ)
a,b,c,d=e* v
Yyt pe 0 /ldy2 frg Y2
xdo@ (2, 2 D" (= =D (2=
0 ( 1 2) o Y] e C(Yl) 7a }/2 e+d(Y2)
2
+O<a : m) (32)
s
where dog®—¢4(z,, z3) is the differential LO cross section of

the process ab — cd with energy fractions of the incoming
particles being scaled by factors z; and zo with respect to
the initial electron and positron, respectively. In the nota-
tion of [210], the electron SF D5¥(z) is distinguished from

the electron fragmentation function D"#(z) to point out
the role played by IS radiation (described by D5%(z)) with
respect to the one due to final-state radiation (described

by D™ (2)). However, because of their probabilistic mean-
ing, the electron structure and fragmentation functions
coincide. In Eq. (32) the quantities Y7 o are the energy
fractions of particles ¢ and d with respect to the beam
energy. Explicit expressions for Y; o = Yj 2(21, 22,cos6)
and other details on the kinematics can be found in [210].
The lower limits of the integrals, Z; o and ¥ 2, should be
defined according to the experimental conditions of par-
ticle detection and kinematical constraints. For the case
of the eTe™ — ~~ process, one has to change the mas-
ter formula (32) by picking up the two-photon final state.
Formally it can be done just by choosing the proper frag-
mentation functions, Dfrg and Dfrg

The photonic part of the non-smglet electron structure
(fragmentation) function in O(a™L"™) considered in [210]
reads as follows

DY) =01-2)+ 3 (gt -1) 1 [P0

1e(2) = 5o (L= DPye(2) + O(a”L?)
er(2) = 5-LPoe(2) + 0(o°L?)
PO, [1_Z]+
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= lim {5(1 —2)(2InA+ g) LO(1—z— A)lltzj }
PO / TrevweY (). )
Pe’Y(Z):ZQ+(1_Z)27 P’Ye('z):#_Z)2

Starting from the second order in « there appear also non-
singlet and singlet eTe™ pair contributions to the struc-
ture function:

_ 2
DNSete () = 1 (ﬁL) PO (2) + 0(a’L?),

3 \ 27
S,ete” _ l g 2 373
DE(2) = 5 (5L) R(2)+0(*L?),
]_ —
R(2) = Poy @ Pye(2) = ——— (4 + Tz + 422)
+2(1+2)Inz. (34)

Note that radiation of a real pair, i.e. appearance of addi-
tional electrons and positrons in the final state, require the
application of nontrivial conditions of experimental par-
ticle registration. Unambiguously, that can be done only
within a MC event generator based on four-particle matrix
elements, as already discussed in Section 1.3.

In the same way as in QCD, the LL cross sections de-
pend on the choice of the factorization scale Q2 in the
argument of the large logarithm L = In(Q?/m?), which is
not fixed a priori by the theory. However, the scale should
be taken of the order of the characteristic energy trans-
fer in the process under consideration. Typical choices
are Q? = 5, Q?> = —t, and Q? = st/u. The first one is
good for annihilation channels, like eTe™ — pTp~, the
second one is optimal for small-angle Bhabha scattering,
where the ¢-channel exchange dominates, see [211]. The
last choice allows to exponentiate the leading contribu-
tion due to initial-final state interference [212] and is par-
ticularly suited for large-angle Bhabha scattering in QED.
The option Q? = st/u is adopted in all the versions of the
generator BabaYaga. Reduction of the scale dependence
can be achieved by taking into account next-to-leading
corrections in O(a™L™"1), next-to-next-to-leading ones in
O(a™L"2?) etc.

The Parton Shower algorithm

The PS algorithm is a method for providing a MC iter-
ative solution of the evolution equation, at the same time
generating the four-momenta of the electron and photon
at a given step of the iteration. It was developed within
the context of QCD and later applied in QED too.

In order to implement the algorithm, it is first nec-
essary to assume the existence of an upper limit for the
energy fraction x, in such a way that the AP splitting
function is regularized as follows

Po(2) = 0(zs — 2)P(2) — 5(1 — 2) /0 " P@). (35)
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Of course, in the limit zy — 1 Eq. (35) recovers the usual
definition of the AP splitting function given in Eq. (28).
By inserting the modified AP vertex into Eq. (27), one
obtains

0 a [Trdz x
S%D(x,s) = %/I 7P(Z)D (;,5)

_%D(az,s) /:+ dzP(2). (36)

Separating the variables and introducing the Sudakov form
factor

a [*tds [Tt
II(s1,82) = exp {277/ ?/ dzP(z)} , (37)
S2 0

which is the probability that the electron evolves from
virtuality —ss to —s; without emitting photons of energy
fraction larger than 1 —z; =€ (e < 1), Eq. (36) can be
recast into integral form as follows

D(x,s) = II(s,m?)D(x,m?)

€

S d/ T4 d
+ —fﬂ(s,s’)/ —ZP(Z)D (f,s’) .

The formal iterative solution of Eq. (38) can be repre-
sented by the following infinite series

D(z,s) = i ﬁ {/il (Ziﬂ(si,hsi)

n=0i=1
dZi 2 X 2
P(z;) p H(sp,mZ)D | ————,m: | .
-.-Z

z/(z12i1) Zi

o [Tt

X
2

(39)

The particular form of Eq. (39) allows to exploit a MC
method for building the solution iteratively. The steps of
the algorithm are as follows:

1 - set Q% = m?2, and fix x = 1 according to the boundary
condition D(x,m?) = §(1 — z);

2 — generate a random number £ in the interval [0, 1];

3 — if £ < II(s,Q?) stop the evolution; otherwise

4 — compute Q'* as solution of the equation & = IT(Q"?, Q?);

5 — generate a random number z according to the proba-
bility density P(z) in the interval [0, z4];

6 — substitute z — zz and Q% — Q'?; go to 2.

The x distribution of the electron SF as obtained by
means of the PS algorithm and a numerical solution (based
on the inverse Mellin transform method) of the QED evo-
lution equation is shown in Fig. 14. Perfect agreement is
seen. Once D(zx,s) has been reconstructed by the algo-
rithm, the master formula of Eq. (26) can be used for
the calculation of LL corrections to the cross section of
interest. This cross section must be independent of the
soft-hard photon separator €, in the limit of small € val-
ues. This can be clearly seen in Fig. 15, where the QED

experimental data

104

number of events

Fig. 14. Comparison for the z distribution of the electron SF
as obtained by means of a numerical solution of the QED evo-
lution equation (solid line) and the PS algorithm (histogram).
From [198].
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Fig. 15. QED corrected Bhabha cross section at DA®NE as

a function of the infrared regulator € of the PS approach, ac-

cording to the setup of Eq. (12). The error bars correspond to
1o MC errors. From [200].
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corrected Bhabha cross section as a function of the fic-
titious parameter ¢ is shown for DA®NE energies with
the cuts of Eq. (12), but for an angular acceptance 61
of 55° + 125°. The cross section reaches a plateau for e
smaller than 1074

The main advantage of the PS algorithm with respect
to the analytical solutions of the electron evolution is the
possibility of going beyond the strictly collinear approxi-
mation and generating transverse momentum p, of elec-
trons and photons at each branching. In fact, the kine-
matics of the branching process e(p) — €'(p’) + v(q) can
be written as

p=(E,0,p.)
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p = (zE,p1,p.)
Once the variables p?, p’ % and z are generated by the PS
algorithm, the on-shell condition ¢? = 0, together with the
longitudinal momentum conservation, allows to obtain an
expression for the p, variable:

Pl = (1= 2)(zp” —p?), (41)
at first order in p?/E? < 1, p? /E? < 1.

However, some not correct behaviour of the exclusive
photon kinematics reconstruction is related to this PS pic-
ture, due to the approximations inherent to Eq. (41). First
of all, since within the PS algorithm the generation of p'?
and z are independent, it can happen that in some branch-
ing the p? as given by Eq. (41) is negative. In order to
avoid this problem, the introduction of any kinematical
cut on p? or z generation (or the regeneration of the whole
event) would mean a not correct reconstruction of the SF z
distribution, which is important for a precise cross section
calculation. Furthermore, in the PS scheme, each fermion
produces its photon cascade independently of the other
ones, missing the effects due to the interference of radi-
ation coming from different charged particles. As far as
inclusive cross sections (i.e., no cuts are imposed on the
generated photons) are considered, these effects are largely
integrated out but they become important when more ex-
clusive variables distributions are looked at, as shown in
[213]

Concerning the first problem, it can be overcome choos-
ing a generation of p; of the photons different from Eq.
(41). For example, one can choose to extract the pho-
ton cos 1, according to the universal leading poles 1/p - k
present in the matrix element for photon emission. Namely,
one can generate cos v, as

1

1—Bcosdy (42)

cos v, o

where [ is the speed of the emitting particle. In this way,
photon energy and angle are generated independently, dif-
ferent from Eq. (41). The nice feature of this prescription
is that p? = E% sin? ¥, is always well defined and the z
distribution reproduces exactly the SF, because any fur-
ther kinematical cuts must be imposed to avoid unphysical
events. At this stage, the PS is used only to generate the
energies and multiplicity of the photons. The problem of
including the radiation interference is still unsolved, be-
cause the variables of photons emitted by a fermion are
still uncorrelated with those of the other charged particles.
The issue of including photon interference can be success-
fully worked out looking at the YFS formula [197]:
T dk
dO'n ~ dUO nl H 27'(' 32k0 Z 177] p kl ( kl)

(43)
It gives the differential cross section do,, for the emission
of n photons, whose momenta are k1, - - -, k,,, from a kernel
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process described by doy and involving IV fermions, whose
momenta are p1,---,py. In Eq. (43) n; is a charge factor,
which is +1 for incoming e~ or outgoing et and —1 for
incoming e or outgoing e~. Note that Eq. (43) is valid
in the soft limit (k; — 0). The important point is that it
also accounts for coherence effects. From the YFS formula
it is straightforward to read out the angular spectrum of
the [*" photon:

Z 772"7]

3,j=1

1— /BZ/BJ COS ’l%‘j
— ﬁl COS 19“)(1 — ﬂj COS 79]‘1)
(44)
It is worth noticing that in the LL prescription, the
same quantity writes as

cos ) ox —

1

COS 19[ X Z m, (45)
i=1 ¢ ¢

whose terms are of course contained in Eq. (44).

In order to consider also coherence effects in the an-
gular distribution of the photons, one can generate cos .,
according to Eq. (44), rather than to Eq. (45). This recipe
[213] is adopted in BabaYaga v3.5 and BabaYaga@NLO.

Yennie-Frautschi-Suura exponentiation

The YFS exponentiation procedure, implemented in
the code BHWIDE; is a technique for summing up all the
infrared (IR) singularities present in any process accompa-
nied by photonic radiation [197]. It is inherently exclusive,
i.e. all the summations of the IR singular contributions are
done before any phase-space integration over the virtual
or real photon four-momenta are performed. The method
was mainly developed by S. Jadach, B.F.L. Ward and col-
laborators to realize precision MC tools. In the following,
the general ideas underlying the procedure are summa-
rized.

Let us consider the scattering process e* (p1)e™ (p2) —
bil (Q1) e fn(qn)a where fi (ql) e fn(QTL) represents a given
arbitrary final state, and let My be its tree-level matrix
element. By using standard Feynman-diagram techniques,
it is possible to show that the same process, when accom-
panied by [ additional real photons radiated by the IS
particles, and under the assumption that the [ additional
photons are soft, i.e. their energy is much smaller that
any energy scale involved in the process, can be described
by the factorized matrix element built up by the LO one,
M, times the product of [ eikonal currents, namely

M ﬁMol_i[ [e <€i(’fz‘) P2 ei(ki) 'Pl)} R

ki - p2 ki - p1

where e is the electron charge, k; are the momenta of
the photons and ¢;(k;) their polarization vectors. Tak-
ing the square of the matrix element in Eq. (46) and
multiplying by the proper flux factor and the Lorentz-
invariant phase space volume, the cross section for the
process e (p1)e” (p2) — fi(q1) -+ fu(gn) + lreal photons
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can be written as

l
1 1
0 — - | I s A
do,’ = daol! 11 [k‘idkidcos ﬁldg012(27r)3

T (Ei/(f.)@m _ cilki) 'pl)Q] . (47)

= ki - p1

By summing over the number of final-state photons, one
obtains the cross section for the original process accom-
panied by an arbitrary number of real photons, namely

Z dofql)
1=0
1
= dogexp {kdkd cosVdp——

2(2m)3
5 (k) - pa k) p\>
oo (-] o

k- p1

def’o) =

Equation (48), being limited to real radiation only, is IR
divergent once the phase space integrations are performed
down to zero photon energy. This problem, as well known,
finds its solution in the matching between real and virtual
photonic radiation. Equation (48) already shows the key
feature of exclusive exponentiation, i.e. summing up all the
perturbative contributions before performing any phase
space integration.

In order to get meaningful radiative corrections, be-
sides IS real photon corrections it is necessary to consider
also IS virtual photon corrections, i.e. the corrections due
to additional internal photon lines connecting the IS elec-
tron and positron. For a vertex-type amplitude, the result
can be written as

e2 /d4k 1 o(py)y* —(h +F)+ m

(2m)4 k2 +ie 201 - k+ k2 +ie
+£E)+m

XF%W#“(M% (49)

My, = —i

where I' stands for the Dirac structure of the LO process,
in such a way that My = ©(p1)l"u(p2). The soft-photon
part of the amplitude can be extracted by taking k* ~ 0 in
all the numerators. In this approximation, the amplitude
of Eq. (49) becomes

MVl = MO X Va
_ 2ia 4 4p; - p2
-~ (2m)3 / (2p1 -k + k2 +ie)(2p2 - k + k2 + ie)
1
xm. (50)

It can be seen that, as in the real case, the IR virtual
correction factorizes off the LO matrix element so that it
is universal, i.e. independent of the details of the process
under consideration, and divergent in the IR portion of
the phase space.

The correction given by n soft virtual photons can be
seen to factorize with an additional 1/n! factor, namely
1 n
My, = Mo x EV , (51)

so that by summing over all the additional soft virtual
photons one obtains

My = My x exp[V]. (52)

As already noticed both the real and virtual factors are
IR divergent. In order to obtain meaningful expressions
one has to adopt some regularization procedure. One pos-
sibility is to give the photon a (small) mass A and modify
Egs. (47) and (50) accordingly. Once all the expressions
are properly regularized, one can write down the YFS
master formula, which takes into account real and virtual
photonic corrections to the LO process. In virtue of the
factorization properties discussed above, the master for-
mula can be obtained from Eq. (48) with the substitution
dog — dog|exp(V)[?, i.e.

1
2
do = doo|exp(V)[? exp [kdk:dcos19(1(,02(27T)3

Yo (s(k) > e(k) p” '

- k- pa k- p1

(53)

As a last step it is possible to perform analytically the
IR cancellation between virtual and very soft real pho-
tons. Actually, since very soft real photons do not affect
the kinematics of the process, the real photon exponent
can be split into a contribution coming from photons with
energy less than a cutoff k,,;, plus a contribution from
photons with energy above it. The first contribution can
be integrated over all its phase space and then combined
with the virtual exponent. After this step it is possible to
remove the regularizing photon mass by taking the limit
A — 0, so that Eq. (53) becomes

1
do = dogexp(Y)exp [kdk:d@(k — kpmin) cos ﬁdapm
T

2

o (elk) -p2 (k) 'p1>
— , 54
z;e ( k- p2 k-p; (54)

where Y is given by
1
k) pe e(k)-pi\”

e2 (E( - . 55
Z k- p2 k-p1 (55)

S

The explicit form of Y can be derived by performing all
the details of the calculation, and reads

min

Y:ﬂln +5YF57
1 a7 1
Svrs = 70+ (3 - 2) . (56)
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1.4.2 Matching NLO and higher-order corrections

As it will be shown numerically in Section 1.6, NLO cor-
rections must be combined with multiple photon emission
effects to achieve a theoretical accuracy at the per mille
level. This combination, technically known as matching, is
on the grounds of the most precise generators used for lu-
minosity monitoring, i.e. BabaYaga@NLO, BHWIDE and
MCGPJ. Although the matching is implemented accord-
ing to different theoretical details, some general aspects
are common to all the recipes and must be emphasized:

1. it is possible to match NLO and HO corrections consis-
tently, avoiding double counting of LL contributions at
order a and preserving the advantages of resummation
of soft and collinear effects beyond O(«);

2. the convolution of NLO corrections with HO terms
allows to include the dominant part of NNLO correc-
tions, given by infrared-enhanced o L sub-leading con-
tributions. This was argued and demonstrated analyt-
ically and numerically in [8] through comparison with
the available O(a?) corrections to s-channel processes
and t¢-channel Bhabha scattering. Such an aspect of
the matching procedure is crucial to settle the theo-
retical accuracy of the generators by means of explicit
comparisons with the exact NNLO perturbative cor-
rections discussed in Section 1.3, and will be addressed
in Section 1.8

3. BabaYaga@NLO and BHWIDE implement a fully fac-
torized matching recipe, while MCGPJ includes some
terms in additive form, as will be visible in the formu-
lae to be reported.

In the following we summarize the basic features of the
matching procedure as implemented in the codes MCGPJ,
BabaYaga@NLO and BHWIDE.

The matching approach realized in the MC event gen-
erator MCGPJ was developed in |
scattering with complete O(a)) and HO LL photonic cor-
rections is represented in the following way:

/dzl /d22 DNS7(2)DNS7(2y)

d0_6+€ 4’6 e~

Bhabha
day (

21, 22) e
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/ ee ( Y] ) (}/2 )
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1
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(57)

Here the step functions ©(cuts) stand for the particular
cuts applied. The auxiliary parameter 6y defines cones
around the directions of the motion of the charged par-
ticles in which the emission of hard photons is approxi-
mated by the factorized form by convolution of collinear
radiation factors [214] with the Born cross section. The
dependence on the parameters A and 6y cancels out in
the sum with the last term of Eq. (57), where the photon
energy and emission angles with respect to all charged par-
ticles are limited from below (k° > Ae, 0; > 6p). Taking
into account vacuum polarization the Born level Bhabha
cross section with reduced energies of the incoming elec-
tron and positron can be cast in the following form:

z1,22)  4o? 1 a?+ 221 +¢)?
4o - 3a2{ 1—m#))2 2:3(1—c)?
1 23(1—¢)? + 23(1 4 ¢)?
[1—I1(8)|? 2a?
1 z%(l—l—c)Q}dQ_’
(= () aa(l-o)
s2225(1 —¢)

21+ 2o — (21 — z9)c
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déy (

+

—
—
|
i~
—

>

(58)

where IT(Q?) is the photon self-energy correction. Note
that in the cross section above the cosine of the scattering
angle, ¢, is given for the original c.m. reference frame of
the colliding beams.
For the two-photon production channel, a similar rep-
resentation is used in MCGPJ:
1 1

doete =) = /dleéveS’V(zl)/dzzDé\éS’V(zQ)

Z1 22

1

« a [dzx

,K’W) ,/7

xSV + T T
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2 05 2 R
><|:(1—I+2>1 4+2:||:d0'0(1—.’1,‘,1)
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R 1 4a3
+d00(1,1—$):| + g@ / d[‘g,,y
z; > A
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z3(1+c3)
. [%(1«:1)(1 3)
q
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9

+ two cyclic permutations|,

¢; =cosb;, 6, =p_q,, (59)

where the cross section with reduced energies has the form
d6 )" (21, 22) B 202 22(1—c1)? + 23(1 +¢1)?
dey s (=) (s + 22+ (22— 21)c1)?

and the factor 1/3 in the last term of Eq. (59) takes into
account the identity of the final-state photons. The sum
of the last two terms does not depend on A and 6.
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Concerning BabaYaga@NLO the matching starts from
the observation that Eq. (26) for the QED corrected all-
order cross section can be rewritten in terms of the PS
ingredients as

dogy = 11(Q%2) )

n=0

1
= My rr|* dP,, (60)

The expansion at O(a) of Eq. (60) does not coincide, by
construction, with an exact O(«) result. In fact

do‘%L = [1 — — I log Q ] |M0|2d¢0 + ‘M1 LL| ddq
= [1 + Ca,LL] |M0|2d(p0 + |./\/l1’[,[,|2d§p17 (61)
where I, = 0176 P(2)dz, whereas an exact NLO cross

section can be always cast in the form

do® = [1 + Cu] [Mo|?d®g + | M |?dd,. (62)

The coefficients C, contain the complete O(«) virtual
and soft-bremsstrahlung corrections in units of the Born
squared amplitude and |M;|? is the exact squared matrix
element with the emission of one hard photon. We remark
that Cq 11, has the same logarithmic structure as C, and
that M 11| has the same singular behaviour like | M |2.

In order to match the LL and NLO calculations the
following correction factors, which are by construction in-
frared safe and free of collinear logarithms, are introduced

Muf* = [Mizr]
Murel?
(63)
so that the exact O(«) cross section can be expressed, up
to terms of O(a?), in terms of its LL approximation as

do® = Fsv(l + Ca7LL)|Mo|2d(po + FH|M1,LL|2d¢1-
(64)
Driven by Eq. (64), Eq. (60) can be improved by writing
the resummed matched cross section as

do-l?r?atched = Fsy H(Q2 )
Z <H FH> IMa.pr)? dd,. (65)

n= 0

The correction factors Fyr; follow from the definition (63)
for each photon emission. The O(«) expansion of Eq. (65)
coincides now with the exact NLO cross section of Eq. (62)
and all HO LL contributions are the same as in Eq. (60).
This formulation is implemented in BabaYa@NLO for both
Bhabha scattering and photon pair production, using, of
course, the appropriate SV and hard bremsstrahlung for-
mulae. This matching formulation has been also applied
to the study of Drell-Yan-like processes, by combining the
complete O(«a) electroweak corrections with QED shower
evolution in the generator HORACE [215,216, ].

As far as BHWIDE is concerned, this MC event gen-
erator realizes the process

et (p)+e () — et(pa)t+e (g2) +m(k)+. . +m(kn)
(66)

Fsy = 1+(Co —Co.rr), Fu = 1+
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via the YFS exponentiated cross section formula

d3k dy

do =

n!

) d3p2 d3 q2

iy(p1+aq1 *pz*quz kj)+D 3
€ ’ ﬂn(klv . poqo
242

(67)

where the real infrared function B and the virtual infrared
function B are given presently [202], and here we note the
usual connections

N k<Kmaz J31. _
2B = [ LIS

ko
D :/d3k; 5k) (e7vk

for the standard YF'S infrared real emission factor

2
P1 q1
/ =+ ...
leQf (pl-k ql-k)

if Qy is the electric charge of f in units of the positron
charge. Here, the “...” represent the remaining terms in
S(k) obtained from the one given by respective substitu-
tions of Qf, p1, @y, ¢1 with corresponding values for the
other pairs of the respective external charged legs accord-
ing to the YFS prescription in Ref. [197,219] (wherein due
attention is taken to obtain the correct relative sign of each
of the terms in S(k) according to this latter prescription).
We have explicitly the representations

- G(Kmax - k)) ’ (68)

;- (69)

S(k) = 4‘%

204%3(])17 q1, P2, Q2) + 2043(1717(11#72, q2; km) =
Ri(p1,q15 km) + Ri(p2, @25 km) + Ra(p1,p2; km) +

Ro(q1,92: km) — R2(p1, @23 km) — Ra(q1,p2; km), (70)
with )
a\ T
Ru(p. k) = Ralpr ko) + (5) 50 (71)
2 2 1, 2
Ro(p, gim) = = {(1 ﬂ - 1)1 LJr*l ﬂ
s m2 2 m?2
llnzp 1 2 (A+5) 1 02 (A -19)?
2 qO 4 4p0q0 4 4p0q0
(A4 w .
_§RL12<A+6>_§RL12(A 5)
([ A—w ([ A—w
§RL12<A+6>%L12(A (5)
7T2
-1 2
-1, (72)
where A = \/2pg + (p° — ¢°)%, w = p° +¢°, 0 = p’ — ¢°,

and k,, is a soft photon cut-off in the CMS (E?;Oft <k,<
Ebeam)- _

The YFS hard photon residuals (; in (67), ¢ =0, 1, are
given exactly through O(«) in Ref. [202] for BHWIDE, so
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that this latter event generator calculates the YFS expo-
nentiated exact O(«a) cross section for ete™ — ete™ +
n(y) with multiple initial, initial-final, and final state ra-
diation using a corresponding MC realization of Eq. (67)
in the wide angle regime. The O(«) electroweak correc-
tions library, relevant for higher energies, is taken from
Refs. [220,59].

The result (67) is an exact re-arrangement of the loop
expansion for the respective cross section and it is inde-
pendent of the dummy parameter K,.x. To see how to
derive it, one may proceed as follows. Let the amplitude
for the emission of n real photons in the Bhabha process

be
M) — ZMén)’
)

(73)

M, g(n) is the contribution to M from Feynman diagrams
with £ virtual loops. The key result in the YFS theory of
Ref. [197,219] on virtual corrections is that we may re-
write Eq. (73) as the exact representation

M = B S mim (74)
§=0

where we have defined

4k
B= [ %%
“ / (k2 — A2 + ic)

with the virtual infrared emission factor given by

—io (2@/91»/ — ki)
Sk) = — SN Z,60,7.0. 2
W) = g 3zt (25T
(2p,0; + k) \°
k2 + 2kp;0; +ic)

S(k), (75)

(76)

Here, ) is an infrared regulator mass, and we follow Ref. |

| and identify the sign of the j-th external line charge
here as Z; = @); and 0; = +(—) for outgoing (incoming)
4-momentum p;, so that here py = p1, p2 = ¢, p3 =
P2, Pa=¢q2, Z1 =+1, 01 =—, Zy =1, 0, =—, Z3 =
+1, 3 = +, Zy = —1, 64 = +. The amplitudes {m;n)}
are free of all virtual infrared divergences.

Using the result (74) for M) we get the attendant
differential cross section by the standard methods as

2aRB n ddk
dom =& /H T
N S NSO E
d3pod®
Xﬁ(n)(pla q1,P2,42, k17 Tty kn) %
P2d>
x5 (pl + ¢ —p2—q2— Z’%) ; (77)
1=1

where we have defined

2
P (D11 P2, g, k) = D Y omiM | (78)

spin |j=0

in the incoming eT™e™ CMS system, and we have absorbed
the remaining kinematical factors for the initial state flux
and spin averages into the normalization of the amplitudes
M) for pedagogical reasons, so that the p(™ are aver-
aged over initial spins and summed over final spins. We
then use the key result of Ref. [197,219] on real corrections
to write the exact result

ﬁ(n)(plaqlap27q2akl7'"7kn) = Hg(kl)BO +--- 4+
i=1

Z g(ki)/é’nfl(klv ceey ki717 kiJrlv ceey kn)
i=1

+ﬁn(k17 RN k’n)v (79)
where the hard photon residuals {3;} are determined re-
cursively [197,219] and are free all virtual and all real
infrared singularities to all orders in «a. Introducing the
result (79) into Eq. (77) and summing over the number of
real photons n leads directly to master formula (67). We
see that it allows for exact exclusive treatment of hard

photonic effects on an event-by-event basis.

1.5 Monte Carlo generators

To measure the luminosity, event generators, rather than
analytical calculations, are mandatory to provide theoreti-
cal results of real experimental interest. The software tools
used in early measurements of the luminosity at flavour
factories (and sometimes still used in recent experimen-
tal publications) include generators such as BHAGENF
[221], BabaYaga v3.5 [199] and BKQED [222,223]. These
MC programs, however, are based either on a fixed NLO
calculation (such as BHAGENF and BKQED) or include
corrections to all orders in perturbation theory, but in the

"LL approximation only (like BabaYaga v3.5). Therefore

the precision of these codes can be estimated to lie in the
range 0.5+1%, depending on the adopted experimental
cuts.

The increasing precision reached on the experimental
side during the last years led to the development of new
dedicated theoretical tools, such as BabaYaga@NLO and
MCGPJ, and the adoption of already well-tested codes,
like BHWIDE;, the latter extensively used at high-energy
LEP/SLC colliders for the simulation of the large-angle
Bhabha process. As already emphasized in Section 1.4.2,
all these three codes include NLO corrections in combina-
tion with multiple photon contributions and have, there-
fore, a precision tag of ~ 0.1%. As described in the follow-
ing, the experiments typically use more than one genera-
tor, to keep the luminosity theoretical error under control
through the comparison of independent predictions.

A list of the MC tools used in the luminosity measure-
ment at meson factories is given in Tab. 2, which summa-
rizes the main ingredients of their formulation for radiative
corrections and the estimate of their theoretical accuracy.

The basic theoretical and phenomenological features of
the different generators are summarized in the following.
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Table 2. MC generators used for luminosity monitoring at
meson factories.

Generator Theory Accuracy
BabaYaga v3.5 Parton Shower ~ 0.5+1%
BabaYaga@QNLO O(a) + PS ~0.1%
BHAGENF O(a) ~ 1%
BHWIDE O(a) YFS ~ 0.5%(LEP1)
BKQED O(a) ~ 1%
MCGPJ O(a) + SF < 0.2%

1. BabaYaga v3.5 — It is a MC generator developed by
the Pavia group at the starting of DA®NE opera-
tion using a QED PS approach for the treatment of
LL QED corrections to luminosity processes and later
improved to account for the interference of radiation
emitted by different charged legs in the generation of
the momenta of the final-state particles. The main
drawback of BabaYaga v3.5 is the absence of O(«)
non-log contributions, resulting in a theoretical preci-
sion of ~ 0.5% for large-angle Bhabha scattering and
of about 1% for vy and p*u~ final states. It is used
by the CLEO-c collaboration for the study of all the
three luminosity processes.

2. BabaYaga@NLO — It is the presently released version
of BabaYaga, based on the matching of exact O(«) cor-
rections with QED PS, as described in Section 1.4.2.
The accuracy of the current version is estimated to be
at 0.1% level for large-angle Bhabha scattering, two-
photon and gt~ ® production. It is presently used by
the KLOE and BaBar collaborations, and under con-
sideration by the BES-IIT experiment. Like BabaYaga
v3.5, BabaYaga@NLO is available at the web page of
the Pavia phenomenology group
www.pv.infn.it/ hepcomplex/babayaga.html.

3. BHAGENF/BKQED - BKQED is the event generator
developed by Berends and Kleiss and based on the clas-
sical exact NLO calculations of [222,223] for all QED
processes. It was intensively used at LEP to perform
tests of QED through the analysis of the ete™ — v
process and is adopted by the BaBar collaboration for
the simulation of the same reaction. BHAGENF is a
code realized by Drago and Venanzoni at the begin-
ning of DA®NE operation to simulate Bhabha events,
adapting the calculations of [222] to include the con-
tribution of the ® resonance. Both generators lack the
effect of HO corrections and, as such, have a precision
accuracy of about 1%. The BHAGENF code is avail-
able at the web address

www.lnf.infn.it/“graziano/bhagenf/bhabha.html.

4. BHWIDE — It is a MC code realized in Krakow-Knox-
wille at the time of LEP/SLC operation and described
in [202]. In this generator exact O(«a) corrections are
matched with the resummation of soft and collinear

8 At present, finite mass effects in the virtual corrections to
ete”™ — ptpu™, which should be included for precision simula-
tions at the ®-factories, are not included in BabaYaga@NLO.

logarithms through the YFS exponentiation approach.
According to the authors the precision is estimated
to be about 0.5% for c.m. energies around the Z res-
onance. This accuracy estimate was derived through
detailed comparisons of the BHWIDE predictions with
those of other LEP tools in the presence of the full
set of NLO corrections, including purely weak cor-
rections. However since the latter are phenomenologi-
cally unimportant at eTe™ accelerators of moderately
high energies and the QED theoretical ingredients of
BHWIDE are very similar to the formulation of both
BabaYaga@NLO and MCGPJ, one can argue that BH-
WIDE accuracy for physics at flavour factories is at the
level of 0.1%. It is adopted by the KLOE, BaBar and
BES collaborations. The code is available at

placzek.home.cern.ch/placzek/bhwide/.

5. MCGPJ — It is the generator developed by the Dubna-
Novosibirsk collaboration and used at VEPP-2M col-
lider. This program includes exact O(«) corrections
supplemented with HO LL contributions related to
the emission of collinear photon jets and taken into
account through analytical QED collinear SF, as de-
scribed in Section 1.4.2. The theoretical precision is
estimated to be better than 0.2%. The generator is
available at the web address
cmd.inp.nsk.su/"sibid/.

It is worth noticing that the theoretical uncertainty
of the most accurate generators based on the matching
of exact NLO with LL resummation starts at the level of
O(a?) NNL contributions, as far as photonic corrections
are concerned. Other sources of error affecting their phys-
ical precision are discussed in detail in Section 1.8

1.6 Numerical results

Before showing the results which enable us to settle the
technical and theoretical accuracy of the generators, it is
worth discussing the impact of various sources of radiative
corrections implemented in the programs used in the ex-
perimental analysis. This allows one to understand which
corrections are strictly necessary to achieve a precision at
the per mille level for both the calculation of integrated
cross section and the simulation of more exclusive distri-
butions.

1.6.1 Integrated cross sections

The first set of phenomenological results about radiative
corrections refer to the Bhabha cross section, as obtained
by means of the code BabaYaga@NLO, according to differ-
ent perturbative and precision levels. In Tab. 3 we show

the values for the Born cross section oo, the O(a) PS

and exact cross section, O'ES and UEILO, respectively, as

well as the LL PS cross section ¢F3 and the matched

cross section oy .+ hed- Furthermore, the cross section in

the presence of the vacuum polarization correction oyt
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Table 3. Bhabha cross section (in nb) at meson factories
according to different precision levels and using the cuts of
Eq. (12), but with an angular acceptance of 55° < 64 < 125°.
The numbers in parentheses are 10 MC errors.

V5(GeV)  1.02 4 10
o0 529.4631(2) 44.9619(1) 5.5026(2)
oy F 542.657(6)  46.9659(1)  5.85526(3)
onto  451.523(6)  37.1654(6) 4.4256 (2)
obs 454.503 (6)  37.4186 (6) 4.4565 (1)
Omatched  455.858 (5)  37.6731(4)  4.5046 (3)
oS 458.437(4)  37.8862(4) 4.5301(2)

is also shown. The results correspond to the c.m. ener-
gies /s = 1,4,10 GeV, and were obtained with the se-
lection criteria of Eq. (12), but for an angular acceptance
of 55° < 61 < 125° resembling realistic data taking at
meson factories. One should keep in mind that the cuts
of Eq. (12) tend to single out quasi-elastic Bhabha events
and that the energy of final-state electron/positron cor-
responds to a so-called “bare” event selection (i.e. with-
out photon recombination), which corresponds to what
is done in practice at flavour factories. In particular the
rather stringent energy and acollinearity cuts enhance the
impact of soft and collinear radiation with respect to a
more inclusive setup.

From these cross section values, it is possible to cal-
culate the relative effect of various corrections, namely
the contribution of vacuum polarization and exact O(«)
QED corrections, of non-logarithmic (NLL) terms enter-
ing the O(«) cross section, of HO corrections in the O(«)
matched PS scheme and finally of NNL effects beyond or-
der « largely dominated by O(a?L) contributions. The
above per cent corrections are shown in Tab. 4 and can be
derived from the cross section results of Tab. 3 according
to the following definitions

VP
_ 0o —0o _ ONLO — 00
1 1)
VP = — oa =" >
(o) o)
PS
SNLL — ONLO — 04 p Omatched — ONLO
a - ) HO = 5
ONLO ONLO
PS PS
5 _ Omatched — ONLO — O + 04
a2l = .

ONLO

From Tab. 4 it can be seen that O(«a) corrections de-
crease the Bhabha cross section by about 15+17% at the
® and 7-charm factories, and by about 20% at the B-
factories. Within the full set of O(«) corrections, non-log
terms are of the order of 0.5%, almost independently of
c.m. energy, as expected, and with a mild dependence on
the angular acceptance cuts as due to box/interference
contributions. The effect of HO corrections due to multi-
ple photon emission is about 1% at the ® and 7-charm
factories and reaches about 2% at the B-factories. The
contribution of (approximate) O(a?L) corrections is at
the 0.1% level, while the vacuum polarization increases
the cross section by about 2% around 1 GeV, and of about

5% and 6% at 4 GeV and 10 GeV, respectively. Concern-
ing the latter correction the non-perturbative hadronic
contribution to the running of a was parameterized in
terms of the HADRSN routine [224,225,226] included in
BabaYaga@NLO both in the LO and NLO diagrams. We
have checked that the results obtained for the vacuum
polarization correction in terms of the parametrization
[129] agree at the 107% level with those obtained with
HADRS5N, as shown in detail in Section 1.8. Those rou-
tines return a data driven error thus affecting the theoret-
ical precision of the calculation of the Bhabha cross cross
section as will be discussed in Section 1.9.

Analogous results about the size of radiative correc-
tions to the process eTe™ — 7y are given in Tab. 5 [227].
They were obtained using BabaYaga@NLO, according to
the experimental cuts of Eq. (13) for the c.m. energies
Vs =1,3,10 GeV.

Table 4. Relative size of different sources of correction (in
per cent) to the large-angle Bhabha cross section for typical
selection cuts at ®, 7-charm and B factories.

Vs(GeV)  1.02 4. 10.
Ou —1473 —17.32 —19.57
SNLL —0.66 —0.68 —0.70
SHO 0.97 1.35 1.79
0ozl 0.09 0.09 0.11
5vp 2.43 4.46 6.03

Table 5. Photon pair production cross sections (in nb) at dif-
ferent accuracy levels and relative corrections (in per cent) for
the setup of Eq. (13) and the c.m. energies /s = 1,3,10 GeV.

Vs (GeV) 1 3 10

o0 137.53 15.281 1.3753
ONLO 129.45 14.211 1.2620
obs 128.55 14.111 1.2529
Omatched  129.77 14.263 1.2685
ots 128.92 14.169 1.2597
0a —5.87 —7.00 -8.24

SNLL 0.70 0.71 0.73

SHO 0.24 0.37 0.51

The numerical errors coming from the MC integra-
tion are not shown in Tab. 4 because they are beyond the
quoted digits. From Tab. 4 it can be seen that the exact
O(a) corrections lower the Born cross section by about
5.9% (® resonance), 7.0% (at /s = 3 GeV) and 8.2%
(Y resonance). The effect due to O(a™L™) (with n > 2)
terms is quantified by the contribution dgo, which is a pos-
itive correction of about 0.2% (at the ® resonance), 0.4%
(T-charm factories) and 0.5% (at the 7" resonance), and
therefore important in the light of the aimed per mille ac-
curacy. On the other hand also next-to-leading O(«) cor-
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rections, quantified by the contribution 6N are neces-
sary at the precision level of 0.1%, since their contribution
is of about 0.7% almost independently of the c.m. energy.
To further corroborate the precision reached in the cross
section calculation of ete™ — 77, we also evaluated the
effect due to the most important sub-leading O(a?) pho-
tonic corrections and given by order oL contributions. It
turns out that the effect due to O(a?L) corrections does
not exceed the 0.05% level. Obviously, the contribution of
vacuum polarization is absent in vy production and this
is an advantage for particularly precise predictions as the
uncertainty associated with the hadronic part of vacuum
polarization does not affect the cross section calculation.

1.6.2 Distributions

Besides the integrated cross section, various differential
cross sections are used by the experimentalists to monitor
the collider luminosity. In Fig. 16 and Fig. 17 we show two
distributions which are particularly sensitive to the de-
tails of photon radiation, i.e. the ete™ invariant mass and
acollinearity distribution, in order to quantify the size of
NLO and HO corrections. The distributions are obtained
according to the exact O(a) calculation and with the two
BabaYaga versions, BabaYaga v3.5 and BabaYaga@NLO.
From Fig. 16 and Fig. 17 it can be clearly seen that mul-
tiple photon corrections introduce significant deviations
with respect to an O(«) simulation, especially in the hard
tails of the distributions where they amount to several
per cent. To make clearly visible the contribution of exact
O(«a) non-log terms the inset shows the relative differ-
ences between the predictions of BabaYaga v3.5 (denoted
as OLD) and BabaYaga@NLO (denoted as NEW). Actu-
ally as discussed in Section 1.4.2 these differences mainly
come from non-log NLO contributions and to a smaller
extent from O(a?L) terms. Their effect is flat and at the
level of 0.5% for the acollinearity distribution while they
reach the several per cent level in the hard tail of the
invariant mass distribution.

It is also worth noticing that LL radiative corrections
beyond a2 can be quite important for accurate simula-
tions at least when considering differential distributions.
This means that even with a complete NNLO calculation
at hand it would be desirable to match such corrections
with the resummation of all the remaining LL effects. In
Fig. 18, the relative effect of HO corrections beyond a?
dominated by the o contributions (dashed line) is shown
in comparison with that of the a? corrections (solid line)
on the acollinearity distribution for the Bhabha process
at DA®NE. As it can be seen the o? effect can be as large
as 10% in the phase space region of soft photon emission,
corresponding to small acollinearity angles with almost
back-to-back final-state fermions.

Concerning the process ete™ — vy we show in Fig.
19 the energy distribution of the most energetic photon,
while the acollinearity distribution of the two most ener-
getic photons is represented in Fig. 20. The distributions
refer to exact O(a) corrections matched with the PS algo-
rithm (solid line), to the exact NLO calculation (dashed
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Fig. 16. Invariant mass distribution of the Bhabha process at
KLOE, according to BabaYaga v3.5 (OLD), BabaYaga@NLO
(NEW) and an exact NLO calculation. The inset shows the
relative effect of NLO corrections, given by the difference of
BabaYaga v3.5 and BabaYaga@NLO predictions. From [200].
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Fig. 17. Acollinearity distribution of the Bhabha pro-
cess at KLOE, according to BabaYaga v3.5 (OLD) and
BabaYaga@NLO (NEW). The inset shows the relative effect
of NLO corrections, given by the difference of BabaYaga v3.5
and BabaYaga@NLO predictions. From [200].
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Fig. 18. Relative effect of HO corrections o?L? and a"L"

(n > 3) to the acollinearity distribution of the Bhabha process

at KLOE. From [200].
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Fig. 19. Energy distribution of the most energetic photon
in the process ete™ — v, according to the PS matched
with O(«) corrections denoted as exp (solid line), the exact
O(«) calculation (dashed line) and the pure all-order PS as
in BabaYaga v3.5 (dashed-dotted line). Inset: relative effect
(in per cent) of multiple photon corrections (solid line) and
of non-log contributions of the matched PS algorithm (dashed
line). From [227].

line) and to all-order pure PS predictions of BabaYaga
v3.5 (dashed-dotted line). In the inset of each plot, the
relative effect due to multiple photon contributions (duo)
and non-logarithmic terms entering the improved PS al-
gorithm (0N is also shown, according to the definitions
given in Eq. (80).

For the energy distribution of the most energetic pho-
ton particularly pronounced effects due to exponentiation
are present. In the statistically dominant region, HO cor-
rections reduce the O(«) distribution by about 20%, while
they give rise to a significant hard tail close to the energy
threshold of 0.31/s as a consequence of the higher photon
multiplicity of the resummed calculation with respect to
the fixed-order NLO prediction. Needless to say, the rela-
tive effect of multiple photon corrections below about 0.46
GeV not shown in the inset is finite but huge. This repre-
sentation was chosen to make also visible in the inset the
contribution of O(«a) non-log terms, that otherwise would
be hardly seen in comparison with the multiple photon
corrections. Concerning the acollinearity distribution, the
contribution of higher-order corrections is positive and of
about 10% for quasi-back-to-back photon events, whereas
it is negative and decreasing from ~ —30% to ~ —10%
for increasing acollinearity values. As far as the contri-
butions of non-logaritmic effects dominated by next-to-
leading O(«) corrections are concerned, they contribute
at the level of several per mille for the acollinearity distri-
bution, while they lie in the several per cent range for the
energy distribution.

As a whole, the results of the present Section empha-
size that both exact O(a) and HO photonic corrections
are necessary, as well as taking into account the running
of a, for a 0.1% theoretical precision in the calculation of
both the cross sections and distributions.
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Fig. 20. Acollinearity distribution for the process eTe™ — 7,

according to the PS matched with O(«) corrections denoted as
exp (solid line), the exact O(«) calculation (dashed line) and
the pure all-order PS as in BabaYaga v3.5 (dashed-dotted line).
Inset: relative effect (in per cent) of multiple photon corrections
(solid line) and of non-log contributions of the matched PS
algorithm (dashed line). From [227].

1.7 Tuned comparisons

The typical procedure followed in the literature to estab-
lish the technical precision of the theoretical tools is to
perform tuned comparisons between the predictions of in-
dependent programs using the same set of input parame-
ters and experimental cuts. This strategy was initiated in
the 90s during the CERN workshops for precision physics
at LEP and is still in use when considering processes of
interest for physics at hadron colliders demanding partic-
ularly accurate theoretical calculations. The tuning proce-
dure is a key step in the validation of generators, because
it allows to check that the different details entering the
complex structure of the generators, e.g. implementation
of radiative corrections, event selection routines, MC in-
tegration and event generation, are under control and to
fix possible mistakes.

The tuned comparisons discussed in the following were
performed switching off the vacuum polarization correc-
tion to the Bhabha scattering cross section. Actually, the
generators implement the non-perturbative hadronic con-
tribution to the running of a according to different pa-
rameterizations, which differently affect the cross section
prediction (see Section 4 for discussion). Hence, this sim-
plification is introduced to avoid possible bias in the inter-
pretation of the results and allows to disentagle the effect
of pure QED corrections. Also, the comparisons take into
account realistic event selection cuts, in order to provide
useful results for the experiments.

The present Section is a merge of results available in
the literature [200] with those of new studies. The results
refer to the Bhabha process at the energies of ®, 7-charm
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Table 6. Cross section predictions [nb] of BabaYaga@NLO
and BHWIDE for the Bhabha cross section corresponding to
two different angular acceptances, for the KLOE experiment
at DA®NE, and their relative differences (in per cent).

angular acceptance BabaYaga@NLO BHWIDE §(%)
20° = 160° 6086.6(1) 6086.3(2) _ 0.005
55° +— 125° 455.85(1) 455.73(1)  0.030

and B factories. No tuned comparisons for the two photon
production process have been carried out.

1.7.1 ® and 7-charm factories

First we show comparisons between BabaYaga@NLO and
BHWIDE according to the KLOE selection cuts of Eq.
(12), considering also the angular range 20° < ¥4 < 160°
for cross section results. The predictions of the two codes
are reported in Tab. 6 for the two acceptance cuts to-
gether with their relative deviations. As can be seen the
agreement is excellent, the relative deviations being well
below the 0.1%. Comparisons between BabaYaga@NLO
and BHWIDE at the level of differential distributions are
given in Fig. 21 and Fig. 22 where the inset shows the rel-
ative deviations between the predictions of the two codes.
As can be seen there is very good agreement between the
two generators, as the predicted distributions appear at a
first sight almost indistinguishable. Looking in more de-
tail, there is a relative difference of a few per mille for the
acollinearity distribution (Fig. 22) and of a few per cent
for the invariant mass (Fig. 21), but only in the very hard
tails, where the fluctuations observed are due to limited
MC statistics. These configurations however contribute to
the integrated cross section negligibly, their contribution
being a factor 103 < 10* smaller than that around the very
dominant peak regions. In fact these differences on differ-
ential distributions translate into agreement on the cross
section values well below the one per mille, as shown in
Tab. 6.

Similar tuned comparisons were performed between
the results of BabaYaga@NLO, BHWIDE and MCGPJ
in the presence of cuts modeling the event selection cri-
teria of the CMD-2 experiment at the VEPP-2M collider,
for a c.m. energy of 1/s = 900 MeV. The cuts used in this
case are

0— 4+ 0+ — 7| < A6,
16— + 64| — 7| < 0.15,
p—sin(f_) > 90 MeV,
(p— +p+)/2 290 MeV,

11< (0 —0_+m)/2<7m—1.1,

D+ Sin(@_,.) > 90 MeV,
(80)

where 6_,0, are the electron/positron polar angles, re-
spectively, ¢4 their azimuthal angles, and pL the moduli
of their three-momenta. Af stands for an acollinearity cut.

Figure 23 shows the relative differences between the
results of BHWIDE and MCGPJ according to the criteria

Table 7. Cross section predictions [nb] of BabaYaga@NLO
and MCGPJ for the Bhabha cross section at 7-charm factories
(v/s = 3.5 GeV) and their relative difference (in per cent).

BabaYaga@QNLO MCGPJ  6(%)
35.20(2) 35.181(5) 0.06
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Fig. 21. Invariant mass distribution of the Bhabha process
according to BHWIDE and BabaYaga@NLO, for the KLOE
experiment at DA®NE, and relative differences of the program
predictions (inset). From [200].

of Eq. (80), as a function of the acollinearity cut Af. The
relative deviations between the results of BabaYaga@NLO
and MCGPJ for the same cuts are given in Fig. 24. It can
be seen that the predictions of the three generators lie
within a 0.2% band with differences of ~ 0.3% for ex-
treme values of the acollinearity cut. This agreement can
be considered satisfactory since for the acollinearity cut of
real experimental interest (A# =~ 0.2 rad) the generators
agree within the one per mille.

A number of comparisons was also performed for a
c.m. energy of 3.5 GeV relevant to the experiments at
7T-charm factories. An example is given in Tab. 7 where
the predictions of BabaYaga@NLO and MCGPJ are com-
pared, using cuts similar to those of Eq. (80) and for an
acollinearity cut of Af = 0.25 rad. The agreement be-
tween the two codes is below one per mille. Comparisons
between the two codes were also done at the level of dif-
ferential cross sections, showing satisfactory agreement in
the statistically relevant phase space regions. Preliminary
results [228] for a c.m. energy on top of the J/¥ resonance
show good agreement between BabaYaga@NLO and BH-
WIDE predictions too.

1.7.2 B-factories

Concerning the B-factories, a considerable effort was done
to establish the level of agreement between the genera-
tors BabaYaga@QNLO and BHWIDE in comparison with
BabaYaga v3.5 too. This study made use of the realistic lu-
minosity cuts quoted in Section 1.3.3 for the BaBar exper-
iment. The cross sections predicted by BabaYaga@NLO
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Fig. 22. Acollinearity distribution of the Bhabha process ac-
cording to BHWIDE and BabaYaga@NLO, for the KLOE ex-
periment at DA®NE, and relative differences of the program
predictions (inset). From [200].
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Fig. 23. Relative differences between BHWIDE and MCGPJ
Bhabha cross sections as a function of the acollinearity cut, for
the CMD-2 experiment at VEPP-2M.

and BHWIDE are shown in Tab. 8, together with the cor-
responding relative differences as a function of the consid-
ered angular range. The latter are also shown in Fig. 25,
where the 1o numerical error due to MC statistics is also
quoted. As it can be seen, the two codes agree nicely, the
predictions for the central value being in general in agree-
ment at the 0.1% level or statistically compatible when-
ever a two to three per mille difference is present.

To further investigate how the two generators compare
with each other a number of differential cross sections was
studied. The results of this study are shown in Fig. 26 and
Fig. 27 for the distribution of the electron energy and the
polar angle, respectively, and in Fig. 28 for the acollinear-
ity. For both the energy and scattering angle distribu-
tion the two programs agree within the statistical errors
showing deviations not above the 0.5%. For the acollinear-
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Fig. 24. Relative differences between BabaYaga@NLO and
MCGPJ Bhabha cross sections as a function of the acollinearity
cut, for the CMD-2 experiment at VEPP-2M.
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Table 8. Cross section predictions [nb] of BabaYaga@NLO
and BHWIDE for the Bhabha cross section as a function of
the angular selection cuts for the BaBar experiment at PEP-II
and absolute value of their relative differences (in per cent).

angular range (c.m.s.) BabaYaga@NLO BHWIDE |6(%)|
15° = 165° 110.5(1) 110.53(8)  0.025
30° = 150° 24.17(2) 2422(2)  0.207
40° = 140° 11.67(3) 11.660(3)  0.086
50° = 130° 6.31(3) 6.289(4)  0.332
60° = 120° 1.928(2) 1.031(3)  0.141
70° = 110° 3.554(6) 3549(3)  0.155
80° = 100° 0.824(2) 0.822(1)  0.243

ity dependence of the cross section, BabaYaga@QNLO and
BHWIDE agree within ~ 1%. Therefore, the level of the
agreement between the two codes around 10 GeV is the
same as that observed at the ® factories.

The main conclusions emerging from the tuned com-
parisons discussed in the present Section can be summa-
rized as follows:

— The predictions for the Bhabha cross section of the
most precise tools, i.e. BabaYaga@NLO, BHWIDE and
MCGPJ, generally agree within 0.1%. If (slightly) larger
differences are present they show up for particularly
tight cuts or are due to limited MC statistics. When
statistically meaningful discrepancies are observed they
can be ascribed to the different theoretical recipes for
the treatment of radiative corrections and their tech-
nical implementation. For example, as already empha-
sized, BabaYaga@NLO and BHWIDE adopt a fully
factorized prescription for the matching of NLO and
HO corrections, whereas MCGPJ implement some pieces



28 S. Actis et al.:

04— -]
-
c r ]
8 o2 =
S
o r l { ]
o |
£ [ ‘ ]
8 0o -
c o ]
o r ]
o -04 -
= r ]
S osf -
[ L N
1> - -
0.8 —
o b b b b b b v by 0
1 20 30 50 70 80

angular range (from x to 180-x degrees)

Fig. 25. Relative differences between BabaYaga@NLO and
BHWIDE Bhabha cross sections as a function of the angular
acceptance cut for the BaBar experiment at PEP-II. From [14].

BHWIDE Babayaga@NLO Babayaga3.s
T T T T T T T T T T T T T T T

g
.

3
7

5
7

5
T
5
T
5
T

H
T
@ -
Q e
T T
-
~
©
N

[nb/0.05 GeV ]
o
T

[nb/0.05GeV]
99 15 /0,05 Gev]
aE -

do
aE
do
daE

ik
10 10

2 3 4
E.[GeV]

E, [GeV]
> : r‘elauve dl‘"erence‘ : > _ z?om in : :
S of S 2F —
o OE 0092003 o [
8 10f 8 |
2 -20p / Saisp
5 -a0f # 5 i
g 50F + g [
© 605# ©05
o E yags o
S _70;} BHW\DEB;‘EJIIJ]AEXu\AdSE < t
D _apk BHWIDE - Babayaga@NLO o) [
8 a0 8 of
s TS T a9 5‘3
Es[GeV] E. [GeV]

Fig. 26. Electron energy distributions according to BHWIDE,
BabaYaga@NLO and BabaYaga v3.5 for the BaBar experiment
at PEP-II and relative differences of the predictions of the
programs. From [14].

of the radiative corrections in additive form. This can
give rise to discrepancies between the programs pre-
dictions especially in the presence of tight cuts en-
hancing the effect of soft radiation. Furthermore dif-
ferent choices are adopted in the generators for the
scale entering the collinear logarithms in HO correc-
tions beyond O(«), that are another possible source
of the observed differences. To go beyond the present
situation a further non trivial effort should be done by
comparing, for instance, the programs in the presence
of NLO corrections only (technical test) and by ana-
lyzing their different treatment of the exponentiation
of soft and collinear logarithms. This would certainly
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shed light on the origin of the (small) discrepancies
still registered at present.

— Also the distributions predicted by the generators agree
well, with relative differences below the 1% level. Slight-
ly larger discrepancies are only seen in sparsely popu-
lated phase space regions corresponding to very hard
photon emission and which do not influence noticeably
the luminosity measurement.

1.8 Theoretical accuracy

As discussed in Section 1.1, the total luminosity error
crucially depends on the theoretical accuracy of the MC
programs used by the experimentalists. As emphasized
in Section 1.5, some of these generators like BHAGENF,
BabaYaga v3.5 and BKQED miss theoretical ingredients
which are unavoidable for cross section calculation with
a precision at the per mille level. Therefore, they are in-
adequate for a highly accurate luminosity determination.
BabaYaga@NLO, BHWIDE and MCGPJ include, how-
ever, both NLO and multiple photon corrections and their
accuracy aims at a precision tag of 0.1%. But also these
generators are affected by uncertainties which must be
carefully considered in the light of the very stringent crite-
ria of per mille accuracy. The most important components
of the theoretical error of BabaYaga@NLO, BHWIDE and
MCGPJ, mainly due to approximate or partially included
pieces of radiative corrections, come from the following
sources:

1. the non-perturbative light quark contribution to the
running of «. It can be reliably evaluated only using
the data of the hadron cross section at low energies.
Hence, the vacuum polarization correction receives a
data driven error which affects in turn the prediction
of the Bhabha cross section, as emphasized in Section
4.

2. the complete set of O(a?) QED corrections. In spite of
the impressive progress in this area, as reviewed in Sec-
tion 1.3, an important piece of NNLO corrections, i.e.
the exact NLO SV QED corrections to the single hard
bremsstrahlung process ete™ — eTe™r, is still miss-
ing for the full s+t Bhabha process . However, partial
results obtained for t-channel small-angle Bhabha scat-
tering [229,11] and large-angle annihilation processes
are available [230,231].

3. the O(a?) contribution due to real and virtual (lepton
and hadron) pairs. The virtual contributions originate
from the NNLO electron, heavy flavor and hadronic
loop corrections discussed in Section 1.3, while the real
corrections are due to the conversion of an external
photon into pairs. The latter, as discussed in Section
1.3.3, gives rise to a final state with four particles, two
of which to be considered as undetected to contribute
to the Bhabha signature.

9 As already remarked and further discussed in the following
the complete calculation of the NLO corrections to hard pho-
ton emission in Bhabha scattering was performed during the
completion of this report [65].

The uncertainty relative to the first point can be esti-
mated by using the routines available in the literature for
the calculation of the non-perturbative hadronic contri-
bution Aoz}(l?dr(qQ) to the vacuum polarization. Actually
these routines return, in addition to Aa](i)dr(qQ), an error
Ohadr ON its value. Therefore an estimate of the induced er-
ror can be simply obtained by computing the Bhabha cross

section with Aaﬁz)dr(qz) + Shaqr and taking the difference
as the theoretical uncertainty due to the hadronic con-
tribution to vacuum polarization. In Tab. 9, the Bhabha
cross sections, as obtained in the presence of the vacuum
polarization correction according to the parameterizations
of [224,225,226] (denoted as J) and of [129] (denoted as
HMNT), respectively, are shown for ®, r-charm and B
factories. The applied angular cuts refer to the typically
adopted acceptance 55° < 6L < 125°.

Table 9. Bhabha scattering cross section in the presence
of the vacuum polarization correction, according to [224,225,
] (J) and [129] (HMNT), at meson factories. The notation
J_/HMNT_, J/HMNT and J;/HMNT, indicates minimum,
central and maximum value of the two parametrizations.

Parametrization & T-charm B
J_ 542.662(4) 46.9600(1) 5.85364(2)
J 542.662(4) 46.9658(1) 5.85529(2)
J+ 542.662(4) 46.9715(1) 5.85693(2)
HMNT_ 542.500(5) 46.9580(1) 5.85496(1)
HMNT 542.391(5) 46.9638(1) 5.85621(1)
HMNT 542.283(5) 46.9697(1) 5.85746(2)

From Tab. 9 it can be seen that the two treatments
of Aah‘z)dr(qz) induce effects on the Bhabha cross section
in very good agreement, the relative differences between
the central values being 0.05% (®-factories), 0.005% (7-
charm factories) and 0.02% (B-factories). This can be un-
derstood in terms of the dominance of ¢-channel exchange
for large-angle Bhabha at meson factories. Indeed, the two
routines provide results in excellent agreement for space-
like momenta, as we explicitly checked, whereas different
predictions show up for time-like momenta which, how-
ever, contribute to the Bhabha cross section only marginally.
Also the spread between the minimum/maximum values
and the central one as returned by the two routines agrees
rather well, also a consequence of the dominance of ¢-
channel exchange. This spread amounts to a few units
in 10~* and is presented in detail in Tab. 10 in the next
Section.

Concerning the second point a general strategy to eval-
uate the size of missing NNLO corrections consists in de-
riving a cross section expansion up to O(a?) from the
theoretical formulation implemented in the generator of
interest. It can be cast in general into the following form
(81)

2 2 2 2
o _ _« o o
0" = Osy + 05y H + Ouu,

where in principle each of the O(a?) contributions is af-
fected by an uncertainty to be properly estimated. In Eq.
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(81) the first contribution is the cross section including
O(a?) SV corrections, whose uncertainty can be evaluated
through a comparison with some of the available NNLO
calculations reviewed in Section 1.3. In particular, in [200]

the og\z, of the BabaYaga@NLO generator was compared
with the calculation of photonic corrections by Penin [99,

] and the calculations by Bonciani et al. [104, 105,115,

,117] who computed two-loop fermionic corrections (in
the one-family approximation Ng = 1) with finite mass
terms and the addition of soft bremsstrahlung and real
pair contributions '°. The results of such comparisons are
shown in Fig. 29 and Fig. 30 for realistic cuts at the ®-

factories. In Fig. 29 o is the difference between ag‘\z, of
BabaYaga@NLO and the cross sections of the two O(a?)
calculations, denoted as photonic (Penin) and Ny = 1
(Bonciani et al.), as a function of the logarithm of the
infrared regulator e. It can be seen that the differences
are given by flat functions, demonstrating that such dif-
ferences are infrared-safe, as expected, as a consequence
of the universality and factorization properties of the in-
frared divergences. In Fig. 30, do is shown as a function of
the logarithm of a fictitious electron mass and for a fixed
value of € = 1075, Since the difference with the calcula-
tion by Penin is given by a straight line, this indicates
that the soft plus virtual two-loop photonic corrections
missing in BabaYaga@NLO are O(a?L) contributions, as
already remarked. On the other hand, the difference with
the calculation by Bonciani et al. is fitted by a quadratic
function, showing that the electron two-loop effects miss-
ing in BabaYaga@NLO are of the order of a2L?. How-
ever, it is important to emphasize that, as shown in detail
in [200], the sum of the relative differences with the two
O(a?) calculations does not exceed the 2 x 10~% level for
experiments at ®- and B-factories.

The second term in Eq. (81) is the cross section con-
taining the one-loop corrections to single hard photon
emission and its uncertainty can be estimated by relying
on partial results existing in the literature. Actually the
exact perturbative expression of og‘f/,H is not yet available
for full s +t¢ Bhabha scattering but using the results valid
for small-angle Bhabha scattering [229,11] and large-angle
annihilation processes [230,231] the relative uncertainty
of the theoretical tools in the calculation of ag‘\z,AH can
be conservatively estimated at the level of 0.05%. Indeed
the papers [229,11,230,231] show that a YFS matching of
NLO and HO corrections gives SV one-loop results for the
t-channel process eTe™ — eTe™ v and s-channel annihila-
tion eTe™ — ffv (f = fermion) differing from the exact
perturbative calculations by a few units in 10~ at most.
This conclusion holds also when photon energy cuts are
varied. It is worth noting that during the completion of
the present work a complete calculation of the NLO QED

10 To provide meaningful results the contribution of the vac-
uum polarization was switched off in BabaYaga@NLO to com-
pare with the calculation by Penin consistently. For the same
reason the real soft and some pieces of virtual electron pair cor-
rections were neglected in the comparison with the calculation
by Bonciani et al..
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Fig. 29. Absolute differences (in nb) between the U§‘\2, pre-
diction of BabaYaga@NLO and the NNLO calculations of the
photonic corrections [99,100] (photonic) and of the electron
loop corrections [104,105,115,116,117] (Np = 1) as a function
of the infrared regulator e for typical KLOE cuts. From [200].
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Fig. 30. Absolute differences (in nb) between the aé"é pre-
diction of BabaYaga@NLO and the NNLO calculations of the
photonic corrections [99,100] (photonic) and of the electron
loop corrections [104,105,115,116,117] (Np = 1) as a function
of a fictitious electron mass for typical KLOE cuts. From [200].

corrections to hard bremsstrahlung emission in full s + ¢
Bhabha scattering appeared in the literature [65], along
the lines described in Section 1.3.2. Explicit comparisons
between the results of such an exact calculation with the
predictions of the most accurate MC tools according to
the typical luminosity cuts used at meson factories would
be worthwhile to make the present error estimate related
to the calculation of U§€/7H more robust.

The third contribution in Eq. (81) is the double hard
bremsstrahlung cross section whose uncertainty can be di-
rectly evaluated by explicit comparison with the exact
ete™ — eTe vy cross section. In [200] was shown that
the differences between 0‘%; as in BabaYaga@QNLO and
the matrix element calculation which exactly describes the
contribution of two hard photons are really negligible, be-
ing at the 1075 level.

The relative effect due to lepton (e, s, 7) and hadron
() pairs has been numerically analyzed in Section 1.3.3,
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in the presence of realistic selection cuts. This evalua-
tion makes use of the complete NNLO virtual corrections
combined with an exact matrix element calculation of
the four-particle production processes. It supersedes previ-
ous approximate estimates which underestimated the im-
pact of those corrections. According to this new evalua-
tion, the pair contribution dominated by the electron pair
correction amounts to about 0.3% for KLOE and 0.1%
for BaBar. These contributions are partially included in
the BabaYaga@NLO code, as well as in other generators,
through the insertion of the vacuum polarization correc-
tion in the NLO diagrams and detailed comparisons be-
tween the exact calculation and the BabaYaga@NLO pre-
dictions are in progress [232].

1.9 Conclusions and open issues

During the last few years a remarkable progress occurred
in reducing the error of the luminosity measurements at
flavour factories.

Dedicated event generators like BabaYaga@NLO and
MCGPJ were developed in 2006 to provide predictions
for the cross section of the large-angle Bhabha process, as
well as for other QED reactions of interest, with a the-
oretical accuracy at the level of 0.1%. In parallel codes
well-known since the time of LEP/SLC operation such as
BHWIDE were extensively used by the experimentalists
in data analyses. These MC programs all include, albeit
according to different formulations, exact O(a) QED cor-
rections matched with LL contributions describing multi-
ple photon emission. Such ingredients together with the
vacuum polarization correction are strictly necessary to
achieve a physical precision down to the per mille level.
Indeed when considering typical selection cuts the NLO
photonic corrections amount to about 15+20%, the vac-
uum polarization contributes at the several per cent level
and HO effects lie between 1+2%.

The generators mentioned are, however, affected by an
uncertainty due to HO effects neglected in their formula-
tion such as light pair corrections or exact perturbative
contributions present in NNLO calculations. From this
point of view the great progress in the calculation of two-
loop corrections to the Bhabha scattering cross section
was essential to establish the theoretical accuracy of the
existing generators and will be crucial if an improvement
of the precision below the one per mille will be required.

A particular effort was done to compare the predictions
of the generators consistently in order to assess the techni-
cal precision obtained by the implementation of radiative
corrections and related computational details. These com-
parisons were performed in the presence of realistic event
selection criteria and at different c.m. energies. For the
KLOE and CMD-2 experiments around the ®-resonance,
where the statistics of Bhabha events is the highest and
the experimental luminosity error at a few per mille level,
the cross section results of BabaYaga@NLO, BHWIDE
and MCGPJ agree within ~ 0.1%. If (slightly) larger dis-
crepancies are observed, they show up only for particularly
tight cuts or exclusive distributions in specific phase space

regions which do not influence the luminosity determina-
tion. Very similar results were obtained for 7-charm and
B-factories. The main conclusion of the work on tuned
comparisons is that the technical precision of MC pro-
grams is well under control, the discrepancies being due
to different details in the treatment of the same sources
of radiative corrections and their technical implementa-
tion. For example, BabaYaga@NLO and BHWIDE adopt
a fully factorized prescription for the matching of NLO
and HO corrections, whereas MCGPJ implement some ra-
diative corrections pieces in additive form. This can give
rise to some discrepancies between their predictions espe-
cially in the presence of tight cuts enhancing the effect of
soft radiation. Furthermore different choices are adopted
in the generators for the energy scale in the treatment
of HO corrections beyond O(«), that are another pos-
sible source of the observed differences. To go beyond
the present situation a further, non trivial effort should
be done by comparing, for instance, the programs in the
presence of NLO corrections only (technical test) and for
the specific effect due to the exponentiation of soft and
collinear logarithms. This would certainly shed light on
the origin of the (minor) discrepancies still registered at
present.

On the theoretical side a new exact evaluation of lep-
ton and hadron pair corrections to the Bhabha scattering
cross section was carried out taking into account realis-
tic cuts. This calculation provides results in substantial
agreement with estimates based on singlet SF but super-
sedes previous evaluations in the soft-photon approxima-
tion. The results of the new exact calculation were prelimi-
narily compared with the predictions of BabaYaga@NLO,
that includes the bulk of such correction (due to reducible
contributions) through the insertion of the vacuum polar-
ization correction in the NLO diagrams but neglects the
effect of real pair radiation and two-loop form factors. It
turns out that the error induced by the approximate treat-
ment of pair corrections amount to a few units in 10~*
both at KLOE and BaBar. Further work is in progress to
arrive at a more solid and quantitative error estimate for
these corrections when considering other selection criteria
and c.m. energies too [232]. Also, the contribution induced
by the uncertainty related to the non-perturbative contri-
bution to the running of o was revisited making use of and
comparing the two independent parameterizations derived
in [224,225,226] and [129].

A summary of the different sources of theoretical er-
ror and their relative impact on the Bhabha cross sec-
tion is given in Tab. 10. In Tab. 10, |6y5| is the error
induced by the hadronic component of the vacuum polar-
ization, |45 | the error due to missing pair corrections,
|08%| the uncertainty coming from SV NNLO corrections,
|05 | the uncertainty in the calculation of the double hard
bremsstrahlung process and [0gy; | the error estimate for
one-loop corrections to single hard bremsstrahlung. As it
can be seen pair corrections and exact NLO corrections to

ete™ — ete v are the dominant sources of error.

The total theoretical uncertainty as obtained by sum-
ming the different contributions linearly is 0.12-0.14%
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Table 10. Summary of different sources of theoretical uncer-
tainty for the most precise generators used for luminosity mea-
surements and the corresponding total theoretical errors for the
calculation of the large-angle Bhabha cross section at meson
factories.

Source of error (%) @ 7-charm B

[695] [224,225,220]  0.00 0.01 0.03
|65 [129] 0.02 0.01 0.02
EES 0.02 0.02 0.02
O 0.00 0.00 0.00
|05V, 0.05 0.05 0.05
oo ] 0.05 0.1 0.02
Ototal 0.12-0.14 0.18 0.11+0.12

at the @ factories, 0.18% at the 7T-charm factories and
0.11 + 0.12% at the B factories. The slightly larger un-
certainty at the 7-charm factories is mainly due, as can
be seen, to the pair contribution error presently based
on a very preliminary evaluation and for which a deeper
analysis is ongoing [232]. The total uncertainty is slightly
affected by the particular choice of the routine for the cal-

culation of Aaﬁlsa)dr(qQ), since the two parameterizations
considered here give rise to similar errors, with the excep-
tion of the ®-factories for which the two recipes return
uncertainties differing by 2 x 10~4. However the “para-
metric” error induced by the hadronic contribution to the
vacuum polarization may become a relevant source of un-
certainty when considering predictions for a c.m. energy
on top of and closely around very narrow resonances. For
such a specific situation of interest for instance for the
BES experiment, the appropriate treatment of o running
in the calculation of the Bhabha cross section should be
deeper scrutinized because of the differences observed be-

tween the predictions for Aa}(l?dr(qQ) obtained by means
of the available parameterization routines (see Section 4
for a more detailed discussion).

Albeit the theoretical uncertainty quoted in Tab. 10
could be put on firmer grounds thanks to further studies
in progress, it appears to be quite robust and sufficient for
present and planned precision luminosity measurements
at meson factories, the experimental error currently being
about a factor of two or three larger. Adopting the strat-
egy followed during LEP/SLC operation one could arrive
at a more aggressive error estimate by summing the rel-
ative contributions in quadrature. However, for the time
being this does not seem to be necessary in the light of
the current experimental errors.

Concluding the precision presently reached by large-
angle Bhabha programs used in the luminosity measure-
ment at meson factories is comparable with that achieved
about ten years ago for luminosity monitoring through
small-angle Bhabha scattering at LEP/SLC.

Some issues are still left open. In the context of tuned
comparisons no effort was done to compare the available
codes for the process of photon pair production. Since it
contributes relevantly to the luminosity determination and
precise predictions for its cross section can be obtained

by means of the codes BabaYaga@NLO and MCGPJ this
work should be definitely carried out. This would lead
to a better understanding of the luminosity on the ex-
perimental side. In the framework of new theoretical ad-
vances an evaluation of NNLO contributions to the pro-
cess ete™ — 7y would be worthwhile to better assess
the precision of the generators which do not include for
the time being such corrections exactly. More important
the exact one-loop corrections to the radiative process
ete”™ — eTe v should be calculated going beyond the
partial results scattered in the literature (and referring to
selection criteria valid for high-energy ete™ colliders) or
limited to the soft-photon approximation '!. Furthermore
the radiative Bhabha process at one-loop should be eval-
uated taking into account the typical experimental cuts
used at meson factories to get a better control of the the-
oretical uncertainty in the sector of NNLO corrections to
Bhabha scattering. Incidentally this calculation would be
also of interest for other studies at ete™ colliders of mod-
erately high energy, such as the search for new physics
phenomena (e.g., dark matter candidates), for which ra-
diative Bhabha scattering is a very important background.
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1 As already remarked in Section 1.8 during the completion
of the present work a complete calculation of the NLO QED
corrections to hard bremsstrahlung emission in full s+¢ Bhabha
scattering was performed in [65]. However, explicit compar-
isons between the predictions of this new calculation and the
corresponding results of the most precise luminosity tools are
still missing and would be needed to better assess the theoreti-
cal error induced by such contribution in the calculation of the
luminosity cross section.
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