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Abstract. Review of the work done and presented during the workshop “Radiative corrections and gener-
ators for low energy hadronic cross section and luminosity” on precision luminosity at meson factories.

PACS. PACS-key discribing text of that key — PACS-key discribing text of that key

1 Luminosity

The present Section addresses the most important exper-
imental and theoretical issues involved in the precision
determination of the luminosity at meson factories. The
luminosity is the key ingredient underlying all the mea-
surements and studies of the physics processes discussed
in the other Sections. Particular emphasis is put on the
theoretical accuracy inherent the event generators used in
the experimental analysis, in comparison with the most
advanced perturbative calculations and experimental pre-
cision requirements. The effort done during the workshop
to perform tuned comparisons between the predictions of
the most accurate programs is described in detail. New
calculations, leading to an update of the theoretical error
associated to the the prediction of the luminosity cross
section, are also presented. The aim of the Section is to

provide a self-contained and up-to-date description of the
progress occurred during the last few years towards high-
precision luminosity monitoring at flavour factories, as
well as of the open issues necessary for future advances.

The structure of the Section is as follows. After an in-
troduction on the motivation for precision luminosity mea-
surements at meson factories (Section 1.1), the leading-
order (LO) cross sections of the two QED processes of
major interest, i.e. Bhabha scattering and photon pair
production, are presented in Section 1.2, together with the
formulae for the next-to-leading-order (NLO) corrections
to the above processes. The remarkable progress on the
calculation of next-to-next-leading-order (NNLO) QED
corrections to the Bhabha cross section, as occurred in
the last few years, is reviewed in Section 1.4. In particular,
this Section presents new, exact results about lepton and
hadron pair corrections, taking into account realistic event
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selection criteria. Section 1.5 is devoted to the description
of the theoretical methods used in the Monte Carlo (MC)
generators for the simulation of multiple photon radiation.
The matching of such contributions with NLO corrections
is also described in Section 1.5. The main features of the
MC programs used by the experimental collaborations are
summarized in Section 1.6. Numerical results for the ra-
diative corrections implemented into the MC generators
are shown in Section 1.7 for both the Bhabha process and
two photon production. The tuned comparisons between
the predictions of the most precise generators are pre-
sented and discussed in detail in Section 1.8, considering
the Bhabha process at different center of mass (c.m.) ener-
gies and in the presence of realistic experimental cuts. The
theoretical accuracy presently reached by the luminosity
tools is adressed in Section 1.9, where the most important
sources of uncertainty are discussed quantitatively. The
estimate of the total error affecting the calculation of the
Bhabha cross section is given, as main conclusion of the
present work, in Section 1.10, updating and making more
robust results available in the literature. Some open issues
are drawn in Section 1.10 as well.

1.1 Motivation

The luminosity of a collider is the proportionality constant
between the event rate and the cross section of a given
process. For an accurate measurement of the cross section
of an eTe™ annihilation process, the precise knowledge of
the collider luminosity is mandatory.

The luminosity depends on three factors: beam-beam
crossing frequency, beam currents and the beam overlap
area in the crossing region. However, the last quantity is
difficult to determine accurately from the collider optics.
Thus, experiments prefer to determine the luminosity by
the counting rate of well selected events whose cross sec-
tion is known with good accuracy, using the formula

[ 0

where N and o are the number of events and the theoret-
ical cross section of the chosen reference process, respec-
tively. Therefore, the total luminosity error will be given
by the sum in quadrature of the fractional experimental
and theoretical uncertainty.

Since the advent of low luminosity ete™ colliders, a
great effort was devoted to obtaining good precision in the
cross section of electromagnetic processes, extending the
pioneering work of the earlier days [1]. At the eTe™ col-
liders, operating in the c.m. range 1 GeV < /s < 3 GeV,
such as ACO at Orsay, VEPP-II at Novosibirsk and Adone
at Frascati, the luminosity measurement was based on
Bhabha scattering [2,3] with final state e* detected at
small angles, or single and double bremsstrahlung pro-
cesses [1], thanks to the high statistics. The electromag-
netic cross sections scale as 1/s, while elastic eTe™ scat-
tering has a steep dependence on the polar angle, ~ 1/63,
thus providing high rate for small values of 6.

Also at high energy accelerators LEP at CERN and
SLC at Stanford, running in the ’90s around the Z pole
to perform precision tests of the Standard Model (SM), ex-
periments used small-angle Bhabha scattering events. In-
deed, for the very forward angular acceptances considered
by LEP/SLC collaborations, the Bhabha process is dom-
inated by the electromagnetic interaction and, therefore,
calculable at least in principle, with very high theoretical
accuracy. At the end of LEP and SLC operation, a total
(experimental plus theoretical) precision of one per mille
(or better) was achieved [5,6,7,8], thanks to the work of
different theoretical groups and the excellent performance
of precision luminometers.

At low and intermediate energy high-luminosity meson
factories, the small polar angle region is difficult to access
for the presence of the low-beta insertions close to the
beam crossing region, while wide-angle Bhabha scattering
produce a large counting rate and can be exploited for a
precise measurement of the luminosity.

Therefore, also in this latter case of e® scattered at
large angles, i.e. 55° for the KLOE experiment [9] run-
ning at DA®NE, Frascati and 40° for the CLEO-c experi-
ment [10] running at CESR, Cornell, the main advantages
of Bhabha scattering are preserved:

1. large statistics. For example at DA®NE, a statistical
error 0L/L ~ 0.3% is reached in about two hours of
data taking, even at the lowest luminosities;

2. high theoretical accuracy by which the cross section
can be calculated;

3. clean event topology of the signal and small amount of
background.

In Eq. (1) the cross section is usually evaluated by
inserting event generators, which include radiative correc-
tions at a high level of precsion, into the MC code sim-
ulating the detector response. This must be developed to
reproduce the detector performance (geometrical accep-
tance, reconstruction efficiency and resolution of the mea-
sured quantities) to a high level of confidence.

For most cases of interest, the major source of system-
atic uncertainty in the experimental measurement of the
luminosity is exactly the different efficiency or the differ-
ent resolution between data and MC.

For the KLOE luminosity measurement, indeed, the
largest experimental error is due to a difference in reso-
lution on the polar angle, measured with the calorimeter,
that results in a different border effect, between data and
MC. Left panel of Fig. 1 shows the very good agreement
between data and MC distributions of the e* polar an-
gle, where a fractional difference of ~ 0.3% still affects
the border region, due to the steep behaviour of the dis-
tribution. The right panel of Fig. 1 shows the the very
good agreement between data and MC in the acollinear-
ity, ¢ = |0+ + 0.- — 180°|, distribution. In this case, the
analysis cut, ¢ < 9° is very far from te bulk of the distri-
bution, and it does introduce negligible systematic effects.
Also in the CLEO-c luminosity measurement with Bhabha
scattering events, the detector modeling is the main source
of experimental error. In particular, uncertainties include
those due to finding and reconstruction of the electron
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Fig. 1. Comparison between large-angle Bhabha KLOE data (points) and MC (histogram) distributions for the e* polar angle
0 (left) and for the acollinearity, ¢ = |0.+ + 0.— — 180°| (right), where the flight direction of the et is given by the energy
deposit measured in the calorimeter. In each case, MC and data histograms are normalized to unity.

shower, in part due to the nature of the electron shower,
as well as the steep et polar angle distribution.

The luminosity measured with Bhabha scattering events
is often checked by using different QED processes, such as
ete™ — ptpu~ or efe™ — vv. In KLOE, the luminosity
measured with eTe™ — v events differs by 0.3% with re-
spect to Bhabha events. In CLEO-c, eTe™ — pu™ ™ events
are also used and the luminosity from vy (u* ™) is found
to be 2.1% (0.6%) larger than that from Bhabha events.
Fig. 2 shows the CLEO-c data for the polar angle distribu-
tions of all three processes, compared with respective MC
predictions. The three QED processes are also used by the
Babar experiment at the PEP-II collider, Stanford, yield-
ing a luminosity determination of about 1% [11]. Large-
angle Bhabha scattering is the normalization process pri-
marily used by CMD-2 and SND collaborations at VEPP-
2M, Novosibirsk, and by BES experiment at BEPC, Bei-
jing.

The need of precise, namely better than 1%, and pos-
sibly redundant measurements of the collider luminosity
are of utmost importance to perform accurate measure-
ments of eTe”™ — hadrons cross sections, which are the
key ingredient for evaluating the hadronic contribution to
the running of aqrp and the muon anomaly g — 2.

1.2 LO cross sections and NLO corrections

As remarked in Section 1.1, the processes of interest for
luminosity measurement at meson factories are Bhabha
scattering and electron-positron annihilation into two pho-
tons and muon pairs. Here we present the LO formulae
of the cross section of the processes eTe™ — ete™ and
ete™ — ~y, as well as the QED corrections to their cross

sections in the NLO approximation of perturbation the-
ory. The reaction ete™ — pu*u~ is not addressed here
because it is discussed in Section “Scan”.

1.2.1 LO cross sections

For the Bhabha scattering process

(2)

at the Born level with pure photon exchange (see Fig. 3)
the differential cross section reads as

da(})ahabha_oz 3+ 2 2+(’) mg
dR_ 4s 1—c s )7

c=cosf_.

e (p)+et(pr) —e () +et ()

(3)
where

(4)

The angle 6_ is defined between the initial and final elec-
tron three-momenta, df2_ = d¢_df_, and ¢_ is the az-
imuthal angle of the outgoing electron. The small mass
correction terms suppressed by the ratio m?/s are negligi-
ble for the energy range and the angular acceptances here
of interest.

At meson factories the Bhabha scattering cross section
is largely dominated by t-channel photon exchange, fol-
lowed by s-t interference and s-channel annihilation. Fur-
thermore, Z-boson exchange contributions and other elec-
troweak effects are suppressed at least by a factor s/M3.
In particular, for large-angle Bhabha scattering with c.m.
energy /s = 1 GeV the Z boson contribution gives only
about —1 x 107°. For /s = 3 GeV it gives —1 x 107*
and —1 x 1073 for /s = 10 GeV. So only at B-factories

§ = (p— +p+)25
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Fig. 2. Distributions of CLEO-c /s = 3.774 GeV data (cir-
cles) and MC simulations (histogram) for the polar angle of
the positive lepton (upper two plots) in eTe™ and p 1~ events,
and the mean value of | cos 64| of the two photons in 7 events.
MC histograms are normalized to the number of data events.
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Fig. 3. LO Feynman diagrams for the Bhabha process in QED,
corresponding to s-channel annihilation and ¢-channel scatter-
ing.

the electroweak effects should be taken into account at the
tree level when aiming at a permille precision level.

The LO differential cross section of the two-photon
annihilation channel (see Fig. 4)

et (py) + e (p-) — v(q1) +(q2) (5)

can be obtained by a crossing relation from the Compton
scattering cross section computed by Brown and Feyn-

]. It reads as follows

dol”  a® [1+c2 m?

oo (EE) o (M), (6)
df s \1—¢f s
where df2; is an element of the first photon angular phase
space. It is assumed that both the two final photons are
registered in a detector, and their polar angles with re-

spect to the initial beam directions are not small (64,2 >
me/E, where E is the beam energy).

man |

1.3 NLO corrections

The complete set of NLO radiative corrections, emerging
at O(«) of perturbation theory, to Bhabha scattering and
two-photon annihilation can be split into gauge-invariant
subsets: QED corrections, due to emission of real photons
off the charged leptons and exchange of virtual photons
between them, and purely weak contributions arising from
the electroweak sector of the SM.

The complete O(a)) QED corrections to Bhabha scat-
tering are known since a long time [13,14]. The first com-
plete NLO prediction in the electroweak SM was per-
formed in [15], followed by [16] and several others. At the
NNLO, the leading virtual weak NNLO corrections from
the top quark were derived first in [17] and are available
in the fitting programs ZFITTER [18,19] and TOPAZ0
[20,21,22]. The weak NNLO corrections in the Standard
Model are also known for the p-parameter [23,24,25,20,

,28,29,30,31,32,33,34,35,36,37,38,39] and the weak mix-
ing angle [10,41,42,43,44,15], as well as corrections from
Sudakov logarithms [46,47,48,49,50,51,52,53]. Both NLO
and NNLO weak effects are negligible at small energies
and are not implemented yet in numerical packages for
Bhabha scattering at meson factories. In pure QED, the
situation is considerably different due to remarkable progress
on the NNLO corrections in recent years, as emphasized
and discussed in detail in Section 1.4.

As usually, the photonic corrections can be split into
two parts according to their kinematics. The first part
preserves the Born-like kinematics and contains the ef-
fects due to one-loop amplitudes (virtual corrections) and
single soft-photon emission. Examples of Feynman dia-
grams giving rise to such corrections are represented in
Fig. 5. The energy of a soft photon is assumed to be lim-
ited from above by AFE, where F is the beam energy and
the auxiliary parameter A < 1 should be chosen in such
a way that the validity of soft-photon approximation is
guaranteed. The second contribution is due to hard pho-
ton emission, i.e. to single bremsstrahlung with photon
energy above AF and corresponds to the radiative pro-
cess ete” — ete .

Following [54,55], the soft plus virtual (SV) correction
can be cast in the form

dagkiasbii/ do_g)habha 20 3
= 1+ —(L—-1)({2InA+ =
a0 d0- {+7r( ){n +2}

8o 0 o Bh
- ln(ctgi) In A+ WKE"}/abha}, (7)
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Fig. 4. LO Feynman diagrams for the process ete™ — 7.

where the K-factor is given by

0 0
Kg"}}abha = -1 2L12 (SiIl2 5) + 2L12 (COS2 5)

1 w2

+m 3(2& —3¢® — 15¢) 4 2(2¢* — 3¢® + 92

+3c¢ + 21) In?(sin g) —4(c* + ¢® — 2¢) In*(cos g)

0
—4(c® 4 4c* + 5¢ 4 6) lnz(tgi) +2(c® = 3¢% + Tc

—5) In(cos g) +2(3¢® + 9¢® + 5c + 31) In(sin g)} ; (8)

and depends on the scattering angle, because of the con-
tribution due to initial-final-state interference and box di-
agrams (see Fig. 6). It is worth noticing that the SV cor-
rection contains a leading logarithmic part enhanced by
the collinear logarithm L = In(s/m?2).

The differential cross section of single hard bremsstrahlung

et(py)+e (p-) — e () +e (p) + (k)

for scattering angles being large compared with m./F
reads

dophi™ = o5 Reeydlies, (9)
d®p d3p A’k
dleey = WCSM)(ZM +p- —p —pl —k),
+ p—
wT m?2 <s t 2
Regy = —— — —%= ++1>
S R R EE
2 2 2 2
m S t m S t
i)
(X_)2\t1 s X: \t s
2 2
mg S1 tl
_ Aot
e (tl T )
where
W= S S1 tq t U Ui
X+X- XX Xax+s xXIx- o Xax-
T ss1(8% + 8%) + tt1 (2 + 12) + uuq (u? + u?)
a ss1tty ’
and the invariants are defined as
sy =2pp, t=-=2pp , ti=-2pp,
w==2p_py, wui=-=2pp", xz=kps, xip=kpl.

e el

Fig. 5. Examples of Feynman diagrams for real and virtual
NLO QED initial-state corrections to the s-channel contribu-
tion to the Bhabha process.

QED radiative corrections to the two-photon annihila-
tion channel were obtained in [56,57,58,59], while purely
weak corrections were later computed in [60].

In the one-loop approximation the part of the differ-
ential cross section with the Born-like kinematics reads

as
dog” a As 3
— Sl -1 =4
o {1+W[(L )<2ln - +2>

0l
dopisiv _
ds

1—¢2 31+ 1—c¢;
A Sl 1
sV 3+2(1+c§) i sa )
cg 1l14¢ 51l—0c
1 = 1 —
+< +H 1+21C1>n 5 Tl Cl):|a

c1 = cos b, b =qip_. (10)

In addition, the three-quantum annihilation process
epe) + e () = vl@) + v(e2) + (as)
must be included, whose cross section is given by

+

dot e 737 — SrZs dF377 (11)
Ry —s BHOG) o LT xd 4 04+ ()
T XX “Lxaxa(x4)? XiX5X3

+ (cyclic permutations),

d’ Q1d fhd % 5 (p

df‘g7
Q1 q2Q3

P - — @),

where

Xi = ip—, X;:qip-‘m 7’21’253

The process has to be treated as a radiative correction
to the two—quantum annihilation. The energy of the third
photon should exceed the auxiliary threshold AFE. In prac-
tice, the tree photon contribution, as well as the radiative
Bhabha process ete™ — ete™+, should be simulated with

the help of a MC event generator in order to take into ac-

X" x4+ count the proper experimental criteria of event selection.

In addition to the corrections discussed above, also
the effect of vacuum polarization, due to the insertion of
fermion loops inside the photon propagators, must be in-
cluded in the precise calculation of the Bhabha scatter-
ing cross section. Its theoretical treatment, which faces
the non-trivial problem of the non-perturbative contribu-
tion due to light quarks, is not discussed here since it is
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T e

Fig. 6. Feynman diagrams for NLO QED box corrections to
the s-channel contribution to the Bhabha process

addressed in detail in the Section Vacuum Polarization.
However, numerical results for such correction are pre-
sented in Section 1.7 and Section 1.9.

In Fig. 7 the cross sections of the Bhabha and two pho-
ton production processes in the LO and NLO approxima-
tions are shown as a function of the c.m. energy between
Vs ~2m, and /s ~ 10 GeV (upper panel). The results
were obtained imposing the following cuts for the Bhabha
process:

N = 450 gIAX — 135
EMD — 035 émax = 10° (12)
min,max min

where 6 are the angular acceptance cuts, E}
is the minimum energy threshold for the detection of the
final-state electron/positron and &max is the maximum
eTe™ acollinearity. For the photon pair production pro-
cesses we used:

OUIn — 450 QUAX _ 1350
EMN =035 &max = 10° (13)
min,max

where, as in Eq. (12), 65 are the angular accep-
tance cuts, EM™ is the minimum energy threshold for
the detection of at least two photons and &max is the
maximum acollinearity between the most energetic and
next-to-most energetic photon.

The cross sections display the typical 1/s QED scaling.
The relative effect of NLO corrections is shown in the up-
per panel. It can be seen that the NLO corrections are in-
creasing as the c.m. energy increases, because of the grow-
ing importance of the collinear logarithm L = In(s/m?).
The corrections to ete™ — 7 are about one half of those
to Bhabha scattering, because of the absence of final-state
radiation effects in photon pair production.

1.4 NNLO Corrections to the Bhabha Scattering Cross
Section

Beyond the NLO corrections discussed in the previous Sec-
tion, in recent years a significant effort was devoted to the
calculation of the perturbative corrections to the Bhabha
process at the NNLO in QED.

The calculation of the full NNLO corrections to the
Bhabha scattering cross section requires three types of in-
gredients: i) the two-loop matrix elements for the ete™ —
ete™ process; i) the one-loop matrix elements for the
ete~™ — ete vy process, both in the case in which the

100000 ¢
10000 |-

1000 =N N

o (nb)

100

10 -

0 2 4 6 8 10
V5 (GeV)
Fig. 7. Cross sections of the processes eTe™ — ete™ and

ete™ — ~v in the LO and NLO approximations, as a func-

tion of the c.m. energy at meson factories (upper panel). In
the lower panel, the relative contribution due to NLO QED
corrections to the two processes is shown.

additional photon is soft or hard; i) the tree-level ma-
trix elements for eTe~™ — ete vy, with two soft, two
hardor one soft and one hardphotons. Also the process
ete™ — ete~ete™, with one of the two ete™ pairs to be
considered as undetected contributes to the Bhabha signa-
ture at NNLO, because the data taking at meson factories
typically requires the presence of at least two tracks in the
detector. Dependent on the kinematics, other final states
like e.g. eTe” T~ or those with hadrons are also possi-
ble.

The advent of new calculational techniques and a deeper
understanding of the IR structure of unbroken theories,
such as QED or QCD, made the calculation of the com-
plete set of two-loop QED corrections possible. The his-
tory of this calculation will be presented in Section 1.4.1.

We consider then the one-loop matrix elements with
three particles in the final state. The diagrams involving
the emission of a soft photon are known and they were in-
cluded in the calculations of the two-loop matrix elements,
in order to remove the IR soft divergencies. However, al-
though the contributions due to a hard-collinear photon
are taken into account in logarithmic accuracy by the MC
generators, a full calculation of the diagrams involving a
hard-photon in a general phase-space configuration is still
missing. In Section 1.4.2, we will comment on the possible
strategies which can be adopted in order to calculate these
corrections.

As a general comment, it must be noticed that the
fixed-order corrections calculated through NNLO calcu-
lations are taken into account at the leading logarithmic
(LL) level into the MC generators, which include, as dis-
cussed in Section 1.5 and Section 1.6, the logarithmically
enhanced contributions of soft and collinear photons at all
orders in perturbation theory.

Concerning the tree level graphs with four particles
in the final state, the production of a soft ete™ pair was
addressed in the literature, but only with logarithmic ac-
curacy, and it is included in the two-loop calculation (see
Section 1.4.1. New results obtained during the workshop
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about lepton and hadron pair corrections, which are presentlyPhotonic Corrections

neglected into the available Bhabha codes, are presented
in Section 1.4.3.

1.4.1 Virtual corrections for the ete™ — ete™ process

The calculation of the virtual two-loop QED corrections
to the Bhabha scattering differential cross section was car-
ried out in the last 10 years. This calculation was made
possible by an improvement of the techniques employed
in the evaluation of multiloop Feynman diagrams. An es-
sential tool used to manage the calculation is the Laporta
algorithm [61,62,63,64], which allows to reduce a generic
combination of dimensionally-regularized scalar integrals
to a combination of a small set of independent integrals
called the “Master Integrals” (MIs) of the problem under
consideration. The calculation of the MlIs is then pursued
by means of a variety of methods. Particularly important
are the differential equations method [65,66,67,68,69,70,

] and the Mellin-Barnes techniques [72,73, ,76,77,

,79,80,81]. Both methods proved to be very useful in
the evaluation of virtual corrections to Bhabha scattering
since they are especially effective in problems with a small
number of different kinematical parameters. They both al-
low one to obtain an analytic expression for the integrals,
which must be written in terms of a suitable functional ba-
sis. A basis which was extensively employed in the calcula-
tion of multiloop Feynman diagrams of the type discussed
here is represented by the Harmonic Polylogarithms [82,

,84,85,86, ,89,90] and their generalizations. An-
other fundamental achievement which allowed to complete
the calculation of the QED two-loop corrections was an
improved understanding of the IR structure of QED. In
particular, the relation between the collinear logarithms
in which the electron mass m. plays the role of a natural
cut-off and the corresponding poles in the dimensionally
regularized massless theory was extensively investigated
in [ 7 ) ) ]'

A first complete diagrammatic calculation of the two-
loop QED virtual corrections to Bhabha scattering can
be found in [95]. However, this result was obtained in the
fully massless approximation (m. = 0), by employing di-
mensional regularization (DR) to regulate both soft and
collinear divergencies. Today, the complete set of two-loop
corrections to Bhabha scattering in pure QED have been
evaluated using m. as a collinear regulator, as required in
order to include these fixed-order calculations in available
Monte Carlo event generators. The Feynman diagrams in-
volved in the calculation can be divided in three gauge in-
dependent sets: i) diagrams without fermion loops (“pho-
tonic” diagrams), #) diagrams involving a closed electron
loop, and iii) diagrams involving a closed loop of hadrons
or a fermion heavier than the electron. Some of the dia-
grams belonging to the aforementioned sets are shown in
Figs. 8-13. These three sets are discussed in more details
below.

A large part of the NNLO photonic corrections can be
evaluated in a closed analytic form, retaining the full de-
pendence on m, [96], by using the Laporta algorithm for
the reduction of the Feynman diagrams to a combination
of MIs, and then the differential equations method for the
MIs analytic evaluation. With this technique it is possible
to calculate, for instance, the NNLO corrections to the
form factors [97,98]. However, a calculation of the two-
loop photonic boxes retaining the full dependence on m,
seems to be beyond the reach of this method. This is due
to the fact that the number of Master Integrals belonging
to the same topology is, in some cases, large. Therefore,
one must solve analytically large systems of first-order or-
dinary linear differential equations; this is not possible in
general. Alternatively, in order to calculate the different
MIs involved, one could use the Mellin-Barnes techniques,
as shown in [78,79,98,99,100,101], or a combination of
both methods. The calculation is very complicated and
a full result is not yet available'. However, the full de-
pendence on m, is not phenomenologically relevant. In
fact, the physical problem exhibits a well defined mass
hierarchy. The mass of the electron is always very small
compared to the other kinematic invariants and it can
be safely neglected everywhere, with the exception of the
terms in which it acts as a collinear regulator. The ratio of
the photonic NNLO corrections to the Born cross section
is the following 2

da(Q,PH) m2 m2
(PH,i) T4
oo = 3 zga L +O< <, = ) . (14)
7
where L, = In(s/m?) and where the coefficients §(**?)

are functions of the scattering angle 6. The approxima-
tion given by Eq. (14) is sufficient for a phenomenological
description of the process®. The coefficients of the dou-
ble and single collinear logarithm in Eq. (14), 6("*2) and
5D wwere obtained in [102,103]. However, the preci-
sion required for luminosity measurements at e*e™ collid-
ers demands the calculation of the non-logarithmic coeffi-
cient, §("*9), The latter was obtained in [01,92] by recon-
structing the differential cross section in the s > m?2 # 0
limit from the dimensionally regularized massless approx-
imation [95]. The main idea of the method developed in

,92] is outlined below. As far as the leading term in
the small electron mass expansion is considered, the dif-

! For the planar double box diagrams, all the MI integrals
are known [99] for small me, while the MIs for the non-planar
double box diagrams are not completed.

2 Infrared logarithms have been omitted in Eq. (14) and fol-
lowing ones, because they disappear when summing up the
contribution of hard photons and inclusive photon energy con-
ditions are considered.

3 It can be shown that the terms suppressed by a positive
power of m?/s do not play any phenomenological role already
at very low c.m. energies, /s ~ 10 MeV. Moreover, the terms
m?2/t (or mZ/u) become important in the extremely forward
(backward) region, unreachable for the experimental set ups.
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s’
g

Fig. 8. Some of the diagrams belonging to the class of the
“photonic” NNLO corrections to the Bhabha scattering differ-
ential cross section. The additional photons in the final state
are soft.

ference between the massive and the dimensionally reg-
ularized massless Bhabha scattering can be viewed as a
difference between two regularization schemes for the in-
frared divergences. With the known massless two-loop re-
sult at hand, the calculation of the massive one is reduced
to constructing the infrared matching term which relates
the two above mentioned regularization schemes. To per-
form the matching an auxiliary amplitude is constructed,
which has the same structure of the infrared singularities
but is sufficiently simple to be evaluated at least in leading
order in the small mass expansion. A particular form of
the auxiliary amplitude is dictated by the general theory
of infrared singularities in QED and involves the expo-
nent of the one-loop correction as well as the two-loop
corrections to the logarithm of the electron form factor.
The difference between the full and the auxiliary ampli-
tudes is infrared finite. It can be evaluated by using dimen-
sional regularization for each amplitude and then taking
the limit of four space-time dimensions. The infrared di-
vergences, which induce the asymptotic dependence of the
virtual corrections on the electron and photon masses, are
absorbed into the auxiliary amplitude while the techni-
cally most nontrivial calculation of the full amplitude is
performed in the massless approximation. The matching
of the massive and massless results is then necessary only
for the auxiliary amplitude and it is straightforward. Thus
the two-loop massless result for the scattering amplitude
along with the two-loop massive electron form factor [104]
are sufficient to obtain the two-loop photonic correction
to the differential cross section in the small electron mass
limit.

A method based on a similar principle was subsequently
developed in [93,94]; the authors of [94] confirmed the re-
sult of [91,92] for the NNLO photonic corrections to the
Bhabha scattering differential cross section.

do(2:EL) a? 3 L m2 m2
- = (EL,]) 7 e e
da(BDm)77r226 LEJFO(S ’ t)'

=0

(15)

T8 e
O R I

Fig. 9. Some of the diagrams belonging to the class of the
“electron loop” NNLO corrections. The additional photons or
electron-positron pair in the final state are soft.

Electron Loop Corrections

The NNLO electron loop corrections arise from the inter-
ference of two-loop Feynman diagrams with the tree-level
amplitude as well as from the interference of one-loop dia-
grams, as long as one of the diagrams contributing to each
term involves a closed electron loop. This set of corrections
presents a single two-loop box topology, and it is there-
fore technically less challenging to evaluate with respect
to the photonic correction set. The calculation of the elec-
tron loop corrections was completed a few years ago [105,

, 107,108]; the final result retains the full dependence of
the differential cross section on the electron mass m.. The
MIs involved in the calculation were identified by means of
the Laporta algorithm and evaluated with the differential
equation method. As expected, after UV renormalization
the differential cross section presented only residual IR
poles which were removed by adding the contribution of
the soft photon emission diagrams. The resulting NNLO
differential cross section could be conveniently written in
terms of 1- and 2-dimensional Harmonic Polylogarithms
(HPLs) of maximum weight three. Expanding the cross
section in the limit s,[t| > m2, the ratio of the NNLO
corrections to the Born cross section can be written as in
Eq. (14):

do(2BL) a? 3 L m2 m2
- = (EL,:) (2 e e
o = 3 20 Le+(’)( e )

Note that the series now starts with a cubic collinear log-
arithm. This logarithm appears, with an opposite sign,
in the corrections due to the production of an electron-
positron pair (the soft-pair production was considered in

]). When the two contributions are considered together
in the full NNLO, the cubic collinear logarithms cancel.
Therefore, the physical cross section includes at most a
double logarithm, as in Eq. (14).

The explicit expression of all the coefficients 6%, ob-
tained by expanding the results of [105,106,107] was con-
firmed by two different groups [94,108]. In [94] the small
electron mass expansion was performed within the soft-
collinear effective theory (SCET) framework, while the
analysis in [108] employed the asymptotic expansion of

(16)
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the Master Integrals.

Heavy-Flavor and Hadronic Corrections

Finally, we consider the corrections originating from two-
loop Feynman diagrams involving a heavy flavor fermion
loop?. Since this set of corrections involves one more mass
scale with respect to the corrections analyzed in the previ-
ous sections, a direct diagrammatic calculation is in prin-
ciple a more challenging task. Recently, in [94] the authors
applied their technique based on SCET to Bhabha scat-
tering and obtained the heavy flavor NNLO corrections
in the limit in which s, [t], |ul > m? > mZ, where m7
is the mass of the heavy fermion running in the loop.
Their result was very soon confirmed in [108] by means
of a method based on the asymptotic expansion of Mellin
Barnes representation of the Master Integrals involved in
the calculation. However, the results obtained in the ap-

proximation s, [t[, [u] > m% > m? cannot be applied to

the case in which the /s < my (as in the case of a tau loop
at /s ~ 1 GeV), and they apply only to a relatively nar-
row angular region perpendicular to the beam direction
when /s is not very much larger than my (as in the case
of top-quark loops at ILC). It was therefore necessary to
calculate the heavy flavor corrections to Bhabha scatter-
ing assuming only that the electron mass is much smaller
than the other scales in the process, but retaining the full
dependence on the heavy mass, s, [t], [u],m} > mZ.

The calculation was carried out in two different ways:
in [110,111] it was done analytically, while in [112,113] it
was done numerically with the dispersion relations.

The technical problem of the diagrammatic calculation
of Feynman integrals with four scales can be simplified
by considering carefully, once more, the structure of the
collinear singularities of the heavy-flavor corrections. The
ratio of the NNLO heavy flavor corrections to the Born
cross section is given by

do@r) o2 2L N m2 m2
o = g3 20 L+ 0 ( f) ()

where now the coefficients §(*) are functions of the scat-
tering angle 6 and, in general, of the mass of the heavy
fermions involved in the virtual corrections. It is possi-
ble to prove that, in a physical gauge, all the collinear
singularities factorize and can be absorbed in the exter-
nal field renormalization [114]. This observation has two
consequences in the case at hand. The first one is that
box diagrams are free of collinear divergencies in a phys-
ical gauge; since the sum of all boxes forms a gauge in-
dependent block, it can be concluded that the sum of
all box diagrams is free of collinear divergencies in any
gauge. The second consequence is that the single collinear
logarithm in Eq. (17) arises from vertex corrections only.
Moreover, if one chooses on-shell UV renormalization con-
ditions, the irreducible two-loop vertex graphs are free

4 Here by “heavy flavor” we mean a muon or a tau-lepton,
as well as an heavy quark, like the top, the b- or the c-quark,
depending on the c.m. energy range that we are considering.

Fig. 10. Some of the diagrams belonging to the class of the
“heavy fermion” NNLO corrections. The additional photons in
the final state are soft.

of collinear singularities. Therefore, among all the two-
loop diagrams contributing to the NNLO heavy flavor cor-
rections to Bhabha scattering, only the reducible vertex
corrections are logarithmically divergent in the m, — 0
limit®. The latter are easily evaluated even if they depend
on two different masses. By exploiting these two facts,
one can obtain the NNLO heavy-flavor corrections to the
Bhabha scattering differential cross section assuming only
that s, [¢[, [u],m% > m?. In particular, one can set m, = 0
from the start in all the two-loop diagrams with the ex-
ception of the reducible ones. This procedure allows one to
effectively eliminate a mass scale from the two-loop boxes,
so that these graphs can be evaluated with the techniques
already employed in the diagrammatic calculation of the
electron loop corrections®. In the case in which the heavy
flavor fermion is a quark, it is straightforward to mod-
ify the calculation of the two-loop self-energy diagrams to
obtain the mixed QED-QCD corrections to Bhabha scat-
tering [111].

An alternative approach to the calculation of the heavy
flavor corrections to Bhabha scattering, is based on dis-
persion relations. This method also applies to hadronic
corrections. The hadronic and heavy-fermion corrections
to the Bhabha-scattering cross section can be obtained by
appropriately inserting the renormalized irreducible pho-
ton vacuum-polarization function I7 in the photon prop-
agator:

9pv
P2 +id
(18)
The vacuum polarization II can be represented by a once-
subtracted dispersion integral [1],

Guv
@ +id

Jua (q2 af qa qﬁ)

I 2
2109 (a7)

2 oo
H(qQ) - _? M2 d z
4

Im I7(z) 1
‘ 2 —z+id’

(19)

5 Additional collinear logarithms arise also from the inter-
ference of one-loop diagrams in which at least one vertex is
present.

5 The necessary MIs can be found in [111,115,116,117].
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The contributions to II then may be determined from a
(properly normalized) production cross-section by the op-
tical theorem [118],
@
Im Hhad(z) = 75 Rhad(z). (20)

In this way, the hadronic vacuum polarization may be ob-
tained from the experimental data for Rya.q:

o({ete™ — v* — hadrons}; 2)

Rpad(z) = (4ra?)/(3z2)

(21)

In the low-energy region the inclusive experimental data
may be used [119,120]. Around a narrow hadronic reso-

F€+67

res

nance with mass M, and width
relation

one may use the

9 _
Rres(z) = ;ZMYGSF6+E 5(’2 - Mr2es)7

res (22)
and in the remaining regions the perturbative QCD pre-
diction [121]. Contributions to IT arising from leptons and
heavy quarks with mass my, charge @)y and color C'y can
be computed directly in perturbation theory:

m2 m2
Rp(zimy) = Q30 [1+2—-L | (/1-4—-L (23)
z z

As a result of the above, the massless photon propaga-
tor gets replaced by a massive propagator, whose effective
mass z is subsequently integrated over:

q*+1id ) '

(gu,, -
(24)

For self-energy corrections to Bhabha scattering at one-
loop order, the dispersion approach was first employed in
[122]. Two-loop applications of this technique, prior to
Bhabha scattering, are the evaluation of the hadronic ver-
tex correction [123] and of two-loop hadronic corrections
to the lifetime of the muon [124].

The fermionic and hadronic corrections to Bhabha scat-
tering at one-loop accuracy come only from the self-energy
diagram; see for details Section 5 “Vacuum polarization”.
At two-loop level, there are reducible and irreducible self-
energy contributions, vertices and boxes. The reducible
corrections are easily treated. For the evaluation of the ir-
reducible two-loop diagrams, it is advantageous that they
are one-loop diagrams with self-energy insertions, because
the application of the dispersion technique as described
here is possible.

The kernel function for the irreducible two-loop vertex was
derived in [123] and verified in e.g. [113], and the three
kernel functions for the two-loop box functions were first
obtained in [125,112,113] and verified in [126]. A com-
plete collection of all the relevant formulae may be found
in [113], and the corresponding Fortran code bhbhnnlohf
is publicly available, see the webpage [127] at

http://www-zeuthen.desy.de/theory /research/bhabha/. In

G a (% dz R(z)
@ +1i0 37 Jae 2(¢%2 — 2+ 1)

quqv
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Fig. 11. Two-loop corrections to Bhabha scattering at /s =
1.02 GeV, normalized to the QED tree-level cross section, as a
function of the electron polar angle. No cuts. The parameteri-
zation of Rpqeq due to [128] and [119,120,121] are very close to
each other.

[113], the dependence of the various heavy-fermion NNLO
corrections on In(s/m3) for s,[t|, [u| >> m?} was studied.
The irreducible vertex behaves (before a combination with
real pair emission terms) like In®(s /m?) [123], while the
sum of the various infrared divergent diagrams as a whole
behaves like In(s/m%) In(s/mZ). This is in accordance with
(17), but the limit plays no effective role at the energies
studied here.

As a result of recent years efforts, we have now for all the
non-photonic virtual two-loop contributions at least two
completely independent calculations. The net result, as a
ratio of the NNLO corrections to the Born cross section in
per mille, is shown in Figure 11 for KLOE and in Figure
12 for BABAR/BELLE. While the non-photonic correc-
tions stay at 1 per mille or less for KLOE, they reach a few
per mille at the BABAR/BELLE energy range. The pho-
tonic NNLO corrections amount to some per mille, both
at @ and B factories. However, as already emphasized, the
bulk of both photonic and non-photonic corrections is in-
corporated into the generators used by the experimental
collaborations. Hence, the consistent comparison between
the results of NNLO calculations and the MC predictions
at the same perturbative level allows to settle the theoret-
ical accuracy of the luminosity tools. as discussed quanti-
tatively in Section 1.9.

1.4.2 Fixed-Order calculation of the Hard Photon Emission
at One Loop

The one-loop matrix element for the process eTe™ —
ete~v is one of the contributions to the complete set of
NNLO corrections to Bhabha scattering. Its evaluation
requires the non-trivial computation of one-loop tensor
integrals associated to pentagon-diagrams.
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Fig. 12. Two-loop corrections to Bhabha scattering at /s =
10.56 GeV, normalized to the QED tree-level cross section, as
a function of the electron polar angle. No cuts. The parame-
terization of Rpqq is due to [128].

Fig. 13. Some of the diagrams belonging to the class of the
“hadronic” corrections. The additional photons in the final
state are soft.

According to the standard Passarino-Veltman (PV)
approach [129], one-loop tensor integrals can be expressed
in terms of scalar integrals, called Master Integrals (MIs),
with trivial numerators that are independent of the loop
variable, each multiplied by a Lorentz structure depend-
ing only on combinations of the external momenta and
the metric tensor. The achievement of the complete PV-
reduction amounts to solve a non-trivial system of equa-
tions. TR: The next statement is not clear to me. I try to
modlfy7 please check if it is ok w1th you. DH&%G%S—SHG—-I%&S

tools: It is difficult to implement the PV-reduction nu-
merically, since it gives rise to Gram determinants. The
latters naturally arise in the procedure of inverting a sys-
tem and they can vanish in special phase-space points.
This fact requires a proper modification of the reduc-
tion algorithm [130,131, ,135,136]. A viable
solution for the complete algebralc reduction of tensor-
pentagon (and tensor-hexagon) integrals was formulated

in [137,138,139], by exploiting the algebra of signed mi-
nors [140]. In this approach, the cancelation of powers
of inverse Gram determinants was performed recently in

[141,142].

The computation of the one-loop 5-point amplitude
ete™ — eTe v can be alternatively performed by using
generalized-unitarity cutting rules (see [143] for a detailed
compilation of references). In the following, we propose
two ways to achieve the result, respectively via an ana-
lytical and a semi-numerical method. The application of
generalized cutting-rules as an on-shell method of calcula-
tion is based on two fundamental properties of scattering
amplitudes: i) analyticity, according to which any ampli-
tude is determined by its own singularity structure [144,

,146,118,147]; 41) and unitarity, according to which
the residues at the singularities are determined by prod-
ucts of simpler amplitudes. Turning these properties into
a tool for computing scattering amplitudes is possible be-
cause of the underlying representation of the amplitude in
terms of Feynman integrals and their PV-reduction, which
grants the existence of a representation of any one-loop
amplitudes as linear combination of MIs, each multiplied
by a rational coefficient. In the case of eTe™ — eTe™,
pentagon-integrals shewld-bewltimately may be expressed,
though PV-reduction, to a linear combination of 17 MIs
(including 3 boxes, 8 triangles, 5 bubbles, and 1 tadpole).
Since the requ1red MIs are analytically known [148,

,138,132,151,152], the determination of their coefﬁ—
cients is what is needed for reconstructing the amplitude
as a whole. To this aim, one may use the Mathematica
program hexagon [141,142]. Also, matching the general-
ized cuts of the amplitude against the cuts of the MIs pro-
vides an efficient way to extract their (rational) coefficients
out of the amplitude itself. In general, the fulfillment of
multiple-cut conditions requires loop momenta with com-
plex components. The effect of the cut-conditions is to
freeze some of its components, when not all, according to
the number of the cuts. With the quadruple-cut [153] the
loop momentum is completely frozen, yielding the alge-
braic determination of the coefficients of n-point functions
with n > 4. In cases where fewer than four denominators
are cut, like triple-cut [154, 155, 156], double-cut [157, 158,

,160,161,155], and single-cut [162], the loop momen-
tum is not frozen: the free-components are left over as
phase-space integration variables.

For each multiple-cut, the evaluation of the phase-space
integral would generate, in general, logarithms and a non-
logarithmic term. The coefficient of a given n-point MI
finally appears in the non-logarithmic term of the cor-
responding n-particle cut, where all the internal line are
on-shell (while the logarithms correspond to the cuts of
higher-point MIs which share that same cut). Therefore
all the coefficients of MlIs can be determined in a top-
down algorithm, starting from the quadruple-cuts for the
extraction of the 4-point coefficients, and following with
the triple-, double-, and single-cuts, for the coefficients of
3-, 2- and 1-point, respectively. The coefficient of an n-
point MI (n > 2) can be also obtained by specializing to

+
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the case at hands the generating formulas given in [163]
for general one-loop amplitudes.

Instead of the analytic evaluation of the multiple-cut
phase-space integrals, it is worth considering the feasi-
bility of computing the process ete™ — eTe™y with a
seminumerical technique by-now known as OPP-reduction
[164,165], based on the decomposition of the numerator of
any one-loop integrand in terms of its denominators [166,

,168,169]. Within this approach, the coefficients of the
MIs can be found simply by solving a system of numeri-
cal equations, and avoiding any explicit integration. The
OPP-reduction algorithm exploits the polynomial struc-
tures of the integrand when evaluated at values of the
loop-momentum fulfilling multiple cut-conditions: i) for
each n-point MI, one considers the n-particle cut obtained
by setting all the propagating lines on-shell; i) such a cut
is associated to a polynomial in terms of the free com-
ponents of the loop-momentum, which corresponds to the
numerator of the integrand evaluated at the solution of the
on-shell conditions; iii) the constant-term of that polyno-
mial is the coefficient of the MI.

Hence, the difficult task of evaluating one-loop Feynman
integrals is reduced to the much simpler problem of poly-
nomial fitting, recently optimized by using a projection-
technique based on the Discrete Fourier Transform [170)].

In general the result of a dimensional-regulated ampli-
tude in the 4-dimensional limit, being D (= 4—2¢) the reg-
ulating parameter, is expected to contain (poly)logarithms,
often referred to as the cut-constructible term, and a pure
rational term. In a remarkable over-emphasized? paper
[171] which completed the OPP-method, the rising of the
rational term was attributed to two potential sources (of
UV-divergent integrals): one, defined R;, due to the D-
dimensional completion of the 4-dimensional contribution
of the numerator; a second one, called Rs, due to the
(—2¢)-dimensional algebra of Dirac-matrices. Therefore in
the OPP-approach the calculation of the one-loop ampli-
tude eTe™ — eTe” can proceed through two computa-
tional stages:

1. the coeflicients of the MIs that are responsible both for
the cut-constructible and for the R;-rational terms can
be determined by applying the 0PP-reduction discussed
above [164,165,170];

2. the Ry-rational term can be computed by using addi-
tional tree-level-like diagrammatic rules, very much re-
sembling the computation of the counter terms needed
for the renormalization of UV-divergencies [171].

The numerical influence of the radiative loop diagrams,
including the pentagon diagrams, is expected to be not
particularly large. However, the calculation of such correc-
tions would greatly help to assess the physical precision of
existing programs.

1.4.3 Pair Corrections

As was mentioned in the part on virtual heavy flavor and
hadronic corrections of Section 1.4.1, these virtual cor-
rections have to be combined with real corrections in or-
der to get physically sensible results. The virtual NNLO

electronic, muonic, pion corrections have to be combined
with the emission of real electron, muon, pion pairs, re-
spectively. The real pair production cross sections are fi-
nite, but cut dependent. As was first explicitely shown for
Bhabha scattering in [109] for electron pairs, and also dis-
cussed in [113], there appear exact cancellations of terms
of the order In®(s/m?2) or lng(s/mfc), so that the leading

terms are at most of order In?(s/m?2), lnz(s/m?).

In Table 1 we show sample NNLO contributions with typ-
ical kinematical cuts for KLOE and Babar/Belle ener-
gies. Besides contributions from unresolved pair emissions
Opairs; We also add unresolved real hard photon emission
contributions opqerq. The corrections opqirs from fermions
have been calculated with the Fortran package HELAC—
PHEGAS [172,173,174,175], the real pion corrections with
PHOKHARA [176,177], the NNLO hard photonic correc-
tions op, with a program from Czyz etc., please quote [?].
The latter depend, technically, on the soft photon cut-off
EMn = w. After adding up with 0,1, the sum of the
two oy4s4n 1S independent of that; in fact we use here
W/ Epeam = 107% The 0,4, is determined with an up-
dated version of the Fortran package bhbhnnlohf [113,127]
in order to cover also pion pair corrections. Cuts, which
tend to single out Bhabha events, have been applied in
Table 1; for the @ factory KLOE/DA®NE (Frascati):

— /5 =1.02 GeV

- E’min =0.4 GeV

— 55° < 04 < 125°

= &maz =9°,

and for the B-factories BABAR/PEP-II (SLAC) and BEL-
LE/KEKB (KEK):

— /s =10.56 GeV
— |cos(f+)| < 0.7 and
cos(04)] < 0.65 or |cos(f_)| < 0.65
— |p+|/Ebearn > 0.75 and |p_|/Epeam > 0.5 or
|p—|/Ebeam > 0.75 and |p+|/Epeam > 0.5
- g;o’rtliaz =30°.
Here it is F,,;n the energy threshold for the final state elec-
tron/positron, 61 are the electron/positron polar angles
and &4, is the maximum allowed polar angle acollinear-
ity:

£=10, +6_—180°|, (25)

and ¢3¢ is the maximum allowed three dimensional acollinear-
ity:
“p— 180°
¢34 = larccos ( Py D > X —180°|.  (26)
(Ip—lp+| @
Forete™ — eTe~u™ ™, cuts are applied only to the ete™

pair. In the case of ete™ — ete~ete, all possible eTeF
combinations are checked and if at least one pair fulfils
the cuts the event is accepted.

At KLOE, the electron pair corrections contribute at
about 5 x 1074, and at BABAR/BELLE at about 2.5 x
1073, while all the other cases studied are even smaller.
Like in small-angle Bhabha scattering at LEP/SLC, the
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Table 1. The NNLO corrections to the Bhabha scattering
Born cross section op: virtual corrections o, , soft and hard
real photon emissions o, 0, and pair emission contributions
Opairs; all cross sections in nanobarns with an angular accep-
tance cut |cosf| < 0.7.

Electron pair corrections

OB Oh Ov+s Ov+s+h Opairs
KLOE  529.055 8.632 -11.564 -2.932 0.271
BABAR 6.748 0.296 -0.271 0.025 0.017
Muon pair corrections
oB Oh Oy+ts Ov+s+h Opairs
KLOE  529.055 1.357 -1.598 -0.242 -
BABAR 6.748 0.112 -0.114 -0.0022  0.0005
Tau pair corrections
OB Oh Ov+s Ov+s+h Opairs
KLOE  529.055 0.018 -0.022 -0.003 -
BABAR 6.748 0.019 -0.020 -0.0007 -
Pion pair corrections
oB Oh Oy+ts Ov+s+h Opairs
KLOE  529.055 1.066 -1.252 -0.186 -
BABAR 6.748 0.075 -0.078 -0.0026  0.0003

pair corrections [178] are largely dominated by the elec-
tron pair contribution.
Check that the numbers are correct.

1.5 Multiple photon effects and matching with NLO
corrections

1.5.1 Universal methods for leading logarithmic corrections

From inspection of Eq. (7) and Eq.(10) for the SV NLO
QED corrections to the cross section of the Bhabha scat-
tering and eTe™ — 77 process, it can be seen that large
logarithms L = In(s/m?2), due to collinear photon emis-
sion, are present. Similar large logarithmic terms arise af-
ter integration of the hard photon contributions from the
kinematical domains of photon emission at small angles
with respect to charged particles. For the energy range
of meson factories, the logarithm is large numerically, i.e.
L 2 15 and the corresponding terms give the bulk of the
total radiative correction. These contributions represent
also the dominant part of the NNLO effects discussed in
Section 1.4. Therefore, the logarithmically enhanced con-
tributions due to emission of soft and collinear photons
must be taken into account at all orders in perturbation
theory, to achieve the required theoretical accuracy.

The methods for the calculation of higher-order (HO)
QED corrections on the grounds of the generators em-
ployed nowadays at flavour factories were already used,
widely and successfully, in the 90s at LEP/SLC for elec-
troweak tests of the SM. They have been adopted for
the calculation of both the small-angle Bhabha scatter-
ing cross section (necessary for the high-precision lumi-
nosity measurement) and Z-boson observables. Hence, the
theory accounting for the control of HO QED corrections
at meson factories can be considered particularly robust,
having passed the very stringent tests of LEP/SLC era.

The most popular and standard approach to keep un-
der control multiple photon effects are the QED Structure
Function (SF) method [179, 180,181,
Suura (YFS) exponentiation [183]. The former is used in
all the version of the generator BabaYaga [184,185,180]
and MCGPJ [187] (albeit according to different realiza-
tions), while the latter is the theoretical recipe adopted in
BHWIDE [188]. Actually, analytical QED SFs D(z, Q?),
valid in the strictly collinear approximation, are imple-
mented in MCGPJ, whereas BabaYaga is based on a MC
Parton Shower (PS) algorithm to reconstruct D(z, Q%) nu-
merically.

The Structure Function approach

Let us consider, for definiteness, the annihilation pro-
cess e"et — X, where X is some given final state, and
oo(s) its lowest order cross section. Initial-state (IS) QED
radiative corrections can be described according to the fol-
lowing picture. Before arriving at the annihilation point,
the incoming electron (positron) of four-momentum p_ )
radiates real and virtual photons. These photons, due to
the dynamical features of QED, are mainly radiated along
the direction of motion of the radiating particles, and their
effect is mainly to reduce the original four-momentum of
the incoming electron (positron) to xy(g)p_(4). After this

pre-emission, the hard scattering process e~ (z1p_ e (z2py ) —

X takes place, at a reduced squared c.m. energy § =
x1228. The resulting cross section, corrected for IS QED
radiation, can be represented as follows [179,180,181]

1
O’(S):/ dxydzeD(x1,5)D (22, $)oo(z1225)O(cuts),
0

(27)
where D(x,s) is the electron SF, representing the prob-
ability that an incoming electron (positron) radiates a
collinear photon, retaining a fraction z of its original mo-
mentum at the energy scale Q? = s, and O(cuts) stands
for a rejection algorithm taking care of experimental cuts.
When considering photonic radiation only the non-singlet
part of the SF is of interest. If the running of the QED
coupling constant is neglected, the non-singlet part of the
SF is the solution of the following Renormalization Group
(RG) equation, analogous to the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equation of QCD [189,190,191]:

7] a [tdz x
SED({LS) = %/L ?P+(Z)D (;,s) , (28)

where P, (z) is the regularized Altarelli-Parisi (AP) split-
ting function electron — electron + photon, given by

1
Py(z)=P(z) —6(1 — z)/o dzP(x),

1 2
P(z) = +z

T (29)

Equation (28) can be also transformed into an integral

equation, subject to the boundary condition D(z, m?) =

]. and Yennie-Frautschi-
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0(1 —x):
D(z,s) =o(1— x+—/ sz/ *P+ Qz)
(30)

Eq. (30) can be solved exactly by means of numerical
methods, such as the inverse Mellin transform method.
However, this derivation of D(x, s) turns out be problem-
atic in view of phenomenological applications. Therefore,
approximate (but very accurate) analytical representa-
tions of the solution of the evolution equation are of major
interest for practical purposes. This type of solution was
the one typically adopted in the context of LEP/SLC phe-
nomenology. A first analytical solution can be obtained
in the soft photon approximation, i.e. in the limit x ~ 1.
This solution, also known as Gribov-Lipatov (GL) approx-
imation, exponentiates at all perturbative orders the large
logarithmic contributions of infrared and collinear origin,
but it does not take into account hard-photon (collinear)
effects. This drawback can be overcome by solving the
evolution equation iteratively. At the n-th step of the it-
eration, one obtains the O(a™) contribution to the SF for
any value of z. By combining the GL solution with the
iterative one, in which the soft-photon part has been elim-
inated in order to avoid double counting, one can build a
hybrid solution of the evolution equation. It exploits all
the positive features of the two kinds of solutions and is
not affected by the limitations intrinsic to each of them.
Two classes of hybrid solutions, namely the additive and
factorized ones, are known in the literature and both were
adopted for applications to LEP/SLC precision physics. A
typical additive solution, where the GL approximation is
supplemented by finite order terms present in the iterative
solution, is given by [192]

3
Da(z,s) = ng)(fﬁ)v
i=0
1303 )
di?)(x,s) = Dgr(z,s) = eXPILQ(ﬁlSillﬁ;E)] %5(1 _ g)he
2

49 (w,5) = ~ 30 +2),

4D (z,5) = 312ﬁ (14 2) (—4In(1 — 2) + 3Inz)
_41hixx — 55— x} ,
dP(z,s) = @53 {(1 + 2) [18¢(2) — 6Lis(x)

—12In*(1 — 2)] +
+%(1 +72%) Iz — 12(1 + 2¥) InzIn(1 — z)
—6(z+5)(1 —z)In(1 — )

1 2
—1(39 — 24z — 15z )} } )

where I is the Euler gamma-function, vg = ... the Euler-
Mascheroni constant, ( the Riemann {-function and [ is

1
- [2(1 + 8z +32%)Inz efe”

the large collinear factor

2 p(3)-]

Explicit examples of factorized solutions, which are
obtained by multiplying the GL solution by finite order
terms, in such a way that, order by order, the iterative
contributions are exactly recovered, can be found in [193].
For the calculation of HO corrections with a per mille
accuracy analytical SFs in additive and factorized form
containing up to O(a?) finite order terms are sufficient
and in excellent agreement. They also agree well below
the 0.1% level with the exact numerical solution of the
QED evolution equation. Explicit solutions up to the fifth
order in o were calculated in [194,

The RG method described above was applied in [196]
for the treatment of LL QED radiative corrections to vari-
ous processes of interest for the physics at meson factories.
Such a formulation was later implemented in the genera-
tor MCGPJ. For example, according to [196], the Bhabha
scattering cross section, accounting for LL terms in all or-
ders, O(a™L™), n = 1,2,..., of perturbation theory, is
given by

(32)

doBhabha _ Z /d21/ dzo D3 (21) D3 (22)

a,b,c,d=e* v

dyr rg Y1y (Y2 e Y2
xdo@=¢ (2, 2 / —=D"® (= —Z=De (2=
( 1 2) 7 Yl e C(Yl) s Y2 e+d(Y2)
2
+0 <a2L, a’:> , (33)

where dod®=¢4 (2, z3) is the differential LO cross section of

the process ab — cd with energy fractions of the incoming
particles being scaled by factors z; and zo with respect to
the initial electron and positron, respectively. In the nota-
tion of [196], the electron SF DS (z) is distinguished from

the electron fragmentation function D"(z) to point out
the role played by IS radiation (described by D% (z)) with
respect to the one due to final-state radiation (described
by D (2)). However, because of their probabilistic mean-
ing, the electron structure and fragmentation functions
coincide. In Eq. (33) the quantities Y7 o are the energy
fractions of particles ¢ and d with respect to the beam en-
ergy. Explicit expressions for Y7 o = Y7 2(21, 22, cosf) and
other details on the kinematics can be found in [196]. The
lower limits of the integrals, Z; o and @i 2, should be de-
fined according to the experimental conditions of particle
registration and kinematical constraints. For the case of
— 77y process, one has to change the master for-
mula (33) by picking up the two photon final state. For-
mally it can be done just by choosing the proper fragmen-
tation functions, D& and Dirg .

The photonic part of the non-singlet electron structure

( Sfragmentation) function in O(a™L™) considered in [196]

cads as follows

®i

D5 (2) = (1 - 2) + Z (w-1) 5 [POE]"
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(07

1e(2) = 5 (L = 1)Pye(2) + O(a®L?),
Der(2) = %LPW(Z) +0(a2L?),
2
PO = | T
1—=z 4
] 3 1422
_£1§O{6(1—z)(21nA+2)—|—8(1—Z—A) T, },

dt

M%ﬂwzjt

z

PED@PY (3), (31)
1+ (1—2)2

P (z) = 224 (1 —2)2, z

Pye(z) =
Starting from the second order in « there appear also non-
singlet and singlet e*e™ pair contributions to the struc-
ture function:

_ 2
DS (2) = 1 (L) PD(:) + 00°L?),

3 \27
etem 1l / « 2 a
D, (@:QQ#JR@+QMHL

R(2) = Puy @ Ppo(2) =
Note that radiation of a real pair, i.e. appearance of addi-
tional electrons and positrons in the final state, require ap-
plication of nontrivial conditions of experimental particle
registration. Unambiguously, that can be done only within
a Monte Carlo event generator based on four-particle ma-
trix elements, as already discussed in the Section 1.4.

In the same way as in QCD, the LLA cross sections
depend on the choice of the factorization scale @2 in the
argument of the large logarithm L = In(Q?/m?), which is
not fixed a priori by the theory. However, the scale should
be taken of the order of the characteristic energy trans-
fer in the process under consideration. Typical choices
are Q% = 5, Q?> = —t, and Q% = st/u. The first one is
good for annihilation channels, like ete™ — ptu~, the
second one is optimal for small-angle Bhabha scattering,
where the t-channel exchange dominates, see [197]. The
last choice allows to exponentiate the leading contribu-
tion due to initial-final state interference [198] and is par-
ticularly suited for large-angle Bhabha scattering in QED.
The option Q2 = st/u is adopted in all the versions of the
generator BabaYaga. Reduction of the scale dependence
can be achieved by taking into account next-to-leading

corrections in O(a” L™~ 1), next-to-next-to-leading ones in 2 —

1-—

15

energy fraction x, in such a way that the AP splitting
function is regularized as follows:

51— 2) /OI+ dzP(z)

Of course, in the limit 4 — 1 Eq. (35) recovers the usual
definition of the AP splitting function given in Eq. (29).
By inserting the modified AP vertex into Eq. (28), one
obtains

Py (2) = b(ay — 2)P(2) (35)

S%D(I,S) = %/au %P( YD (E 3)

D5 / d=P(z).  (36)

Separating the variables and introducing the Sudakov form
factor

a ["tds [Tt
II(s1,s82) = exp [%/ ?/ dzP(z)] ,
S2 0

which is the probability that the electron evolves from
virtuality —so to —s; without emitting photons of energy

(37)

(4 +72+42%) + 2(1+ 2) In 2 fraction larger than 1 — 24 =€ (¢ < 1), Eq. (36) can be

recast into integral form as follows:

D(z,s) =1II(s )D(x m?)

g [ S [ e (E s

The formal iterative solution of Eq. (38) can be repre-
sented by the following infinite series:

o= XA [

n=0i=1
dz; 9 x 9
—P(z;) p H(sp,mz)D | ————,m2 | .
zi_1) Ri 21 2n
(39)

N)‘Q

(si—1,8:)

a [T

Xi
27 S (a1

The particular form of Eq. (39) allows to exploits a Monte
Carlo method for building the solution iteratively. The
steps of the algorithm are as follows:

set @* = m?, and fix z = 1 according to the boundary
condition D(x,m?) = 6(1 — z);
generate a random number ¢ in the interval [0, 1];

O(a™L"~2) etc. 3 — if £ < I1(s,Q?) stop the evolution; otherwise
4 — compute Q'? as a solution of the equation & = IT(Q"?, Q?);
The Parton Shower algorithm 5 — generate a random number z according to the proba-
The PS algorithm is a method for providing a Monte bility density P(2) in the interval [0, 2.];
6 — substitute + — 2z and Q% — Q'?; go to 2.

Carlo iterative solution of the evolution equation, at the
same time generating the four-momenta of the electron
and photon at a given step of the iteration. It was devel-
oped within the context of QCD and later applied in QED
too.

In order to implement the algorithm, it is first nec-
essary to assume the existence of an upper limit for the

The z distribution of the electron SF as obtained through
the PS algorithm and a numerical solution (based on the
inverse Mellin transform method) of the QED DGLAP
equation is shown in Fig. 14. Perfect agreement is seen.
Once D(z, s) has been reconstructed by the algorithm, the
master formula of Eq. (27) can be used for the calculation
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number of events

Fig. 14. Comparison for the x distribution of the electron
SF at /s = 190 GeV, as obtained by means of a numerical
solution of the QED evolution equation (solid line) and the PS
algorithm (histogram).
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Fig. 15. QED corrected Bhabha cross section at DAPNE as
a function of the infrared regulator £ of the PS approach, ac-
cording to set up of Eq. (?7?). The error bars correspond to lo
Monte Carlo error.

467.49 |- }

0.01

of LL corrections to the cross section of interest. This cross
section must be independent on the soft-hard photon sep-
arator ¢, in the limit of small € values. This can be clearly
seen in Fig. 15, where the QED corrected Bhabha cross
section as a function of the fictitious parameter ¢ is shown
at DAPNE energies, according to the cuts of Eq. (12), for
an angular acceptance 61 of 55° +125°. The cross section
reaches a plateau for € smaller than 1074,

The main advantage of the PS algorithm with respect
to the analytical solutions of the electron evolution is the
possibility of going beyond the strictly collinear approxi-
mation and generating transverse momentum p; of elec-
trons and photons at each branching. In fact, the kine-
matics of the branching process e(p) — €/(p’) + v(q) can
be written as

((I_Z)Ea —Pl1, qz)
(40)
Once the variables p?, p’ ? and z are generated by the PS
algorithm, the on-shell condition ¢? = 0, together with the
longitudinal momentum conservation, allows to obtain an

p= (anypz) ) p/: (ZE7pLap,/z) , 4=
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expression for the p, variable:

Pl =(1-2)(p* = p?) (41)
at first order in p?/E? < 1, p? /E? < 1.

However, some not correct behaviours of the exclusive
photon kinematics reconstruction are connected with this
PS picture, due to the approximations inherent Eq. (41).
First of all, since within the PS algorithm the generation
of p’? and z are independent, it can happen that in some
branching the p? as given by Eq. (41) is negative. In order
to avoid this problem, the introduction of any kinemati-
cal cut on p? or z generation (or the regeneration of the
whole event) would mean a not correct reconstruction of
the SF =z distribution, which is important for a precise
cross section calculation. Furthermore, in the PS scheme,
each fermion produces its photons cascade independently
from the other ones, missing the effects due to the interfer-
ence of radiation coming from different charged particles.
As far as inclusive cross sections (i.e., no cuts are imposed
on the generated photons) are considered, these effects are
largely integrated out but they become important when
more exclusive variables distributions are looked at, as
shown in [199]

Concerning the first problem, it can be overcome choos-
ing a generation of photons p different from Eq. (41). For
example, one can choose to extract the photon cos®, ac-
cording to the universal leading poles 1/p - k present in
the matrix element for photon emission. Namely, one can
generate cos v, as

1

cos v _
7T — Bcosvy

(42)

where (3 is the speed of the emitting particle. In this way,
photon energy and angle are generated independently, dif-
ferently from Eq. (41). The nice feature of this prescription
is that p? = EZsin® ¥, is always well defined and the x
distribution reproduces exactly the SF, because any fur-
ther kinematical cuts must be imposed to avoid unphysical
events. At this stage, the PS is used only to generate pho-
tons energies and photons multiplicity. The problem of in-
cluding the radiation interference is still unsolved, because
the variables of photons emitted by a fermion are still un-
correlated with those of the other charged particles. The
issue of including photon interference can be successfully
worked out looking at the YFS formula [183]:

47K,
(2w 32k0

7pz

Z 7]1773 (

do, ~ do’o ] H kl)

(43)
It gives the differential cross section do,, for the emission
of n photons, whose momenta are kq, - - -, k;,, from a kernel
process described by doy and involving IV fermions, whose
momenta are p1,---,pyn. In Eq. (43), n; is a charge factor,
which is +1 for incoming e~ or outgoing et and —1 for
incoming e™ or outgoing e~. Note that Eq. (43) is valid
in the soft limit (k; — 0). The important point is that it
also accounts for coherence effects. From YFS formula, it
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is straightforward to read out the angular spectrum of the
1*" photon:

N
1— ;85 cosV;;
9 7 . Mg 3
COSV an (1 — B cos¥y)(1 — Bj cos )

ij=1

(44)
It is worth noticing that in the LL prescription, the
same quantity writes as

1

N
cos v Z T Zcoso Grcos U (45)
i=1

whose terms are of course contained in Eq. (44).

In order to consider also coherence effects in the an-
gular distribution of the photons, one can generate cos 9.,
according to Eq. (44), rather than Eq. (45). This recipe
[199] is adopted in BabaYaga v3.5 and BabaYaga@NLO.

Yennie-Frautschi-Suura exponentiation

The YFS exponentiation procedure, implemented in
the code BHWIDE, is a technique for summing up all the
infra-red (IR) singularities present in any process accom-
panied by photonic radiation [183]. It is inherently ex-
clusive, i.e. all the summations of the IR-singular contri-
butions are done before any phase-space integration over
the virtual- or real-photon four-momenta are performed.
The method was mainly developed by S. Jadach, B.F.L.
Ward and collaborators to realize precision MC tools. In
the following, the general idea underlying the procedure
are summarized.

Let us consider, for definiteness, the scattering process
et (pr)e”(p2) — filgr) - fu(gn), where fi(q1)--- fu(qn)
represents a given arbitrary final state, and let Mg be its
tree-level matrix element. By using standard Feynman-
diagram techniques, it is possible to show that the same
process, when accompanied by [ additional real photons
radiated by the IS particles, and under the assumption
that the [ additional photons are soft, i.e. their energy is
much smaller that any energy scale involved in the process,
can be described by the factorized matrix element built up
by the lowest order one, M, times the product of [ eikonal

currents, namely

1
i(ki) -p2  eilki) 'P1>}

M~ M e — , 46

oI a L (46)

ki - p2

where e is the electron charge, k; are the momenta of
the photons and ¢;(k;) their polarization vectors. Tak-
ing the square of the matrix element in Eq. (46) and
multiplying for the proper flux factor and the Lorentz-
invariant the cross section for the process e¥(py)e™ (p2) —
fi(q1) -+ fu(gn) + lrealphotons can be written as

l
1
0 — -
do,’ = daol! H
i=1
262 <€i kz) P2
k; - p2

>

1
[kzdkld COS 191d§01 m
Y

By summing on the number of final-state photons, one
obtains the cross section for the original process accom-
panied by an arbitrary number of real photons, namely

o0
3 do®
=0

1
= dogyexp [kdkd cos Vdyp—=

do(>®) =

2(2m)3
e(k) - e(k) - p1 2
ZeQ< (k-)pr_ (k_)pf’ ) 1 (48)

Equation (48), being limited to real radiation only, is IR
divergent once the phase space integrations are performed
down to zero photonic energy. This problem, as well known,
finds its solution in the matching between real and virtual
photonic radiation. At any rate, Eq. (48) already shows
the key feature of exclusive exponentiation, i.e. summing
up all the perturbative contributions before performing
any phase space integration.

In order to get meaningful radiative corrections, be-
sides IS real photon corrections it is necessary to consider
also IS virtual photon corrections, i.e. the corrections due
to additional internal photon lines connecting the IS elec-
tron and positron. For a vertex-type amplitude, the result
can be written as

p =+ k) +m

62
=—i d*k 0]
My, 2(277)4/ k2+i€v(p1)V W1kt k2 +ie
(P2 +§) +m
r— 4
X 2p2_k+k2+i€’mu(p2)7 (49)

where I" stands for the Dirac structure competing to the

lowest order process, in such a way that My = v(p1) I "u(p2).

The soft-photon part of the amplitude can be extracted
by taking k* ~ 0 in all the numerators. In this approxi-
mation, the amplitude of Eq. (49) becomes

le = MO xV
4p1 - p2

_ 2ia / 41
ICE k2 +ic (2p1 -k + k2 +ie)(2py - k + k2 +ig)

It can be seen that, as in the real case, the IR virtual
correction factorizes off the LO matrix element, so that it
is universal, i.e. independent of the details of the process
under consideration, and is divergent in the IR portion of
the phase space.

The correction given by n soft virtual photons can be
seen to factorize with an additional 1/n! factor, namely

1
My, = Mo x V", (51)

so that by summing over all the additional soft virtual
photons one obtains

My = Mg x exp[V]. (52)

(50)
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As already noticed, both the real and virtual factors
are IR divergent. In order to obtain meaningful expres-
sions, one has to adopt some regularization procedure.
One possible regularization procedure is to give the pho-
ton a (small) mass A\ and modifying eqs. (47) and (50)
accordingly. Once all the expressions are properly regular-
ized, one can write down the YFS master formula, which
takes into account real and virtual photonic corrections to
the LO process. In virtue of the factorization properties
discussed above, the master formula can be obtained from
Eq. (48) with the substitution dog — dog|exp(V)|?, i.e

1
do = doo|exp(V)|* exp {kdkd cos 19d<p27

(2m)?
2 (elk) p e(k) -p1 ?
3 (o),

€

(53)

As a last step, it is possible to perform analytically the
IR cancellation between virtual and very soft real pho-
tons. Actually, since very soft real photons do not affect
the kinematics of the process, the real photon exponent
can be split into a contribution coming from photons with
energy less than a cutoff k,,;, plus a contribution coming
from photons with energy above the same cutoff. The first
contribution can be integrated over all its phase space and
then combined with the virtual exponent. After this step
it is possible to remove the regularizing photon mass by
taking the limit A — 0, so that Eq. (53) becomes

1
do = dogexp(Y)exp {kdkd@( — kmin) cos ﬂdgﬁm
T

2

S (i dony] o0
. k- p2 k- p1
where Y is given by
1
Y =2V + /kdkd@(kmm — k) cos ﬂdgpm
2

o (dn_dny -

k- p2 k- p1

g

The explicit form of Y can be derived by performing all
the details of the calculation, and reads

kmin

Y =0(In

+6YFS7

1 a (72 1
6 = — —_ _— =
YFS 4ﬁ+7r<3 2>,

1.5.2 Matching NLO and higher-order corrections

(56)

As it will be shown numerically in Section 1.7, NLO cor-
rections must be combined with multiple photon emission
effects to achieve a theoretical accuracy at the per mille
level. This combination, technically known as matching, is
on the grounds of the most precise generators used for lu-
minosity monitoring, i.e. BabaYaga@NLO, BHWIDE, and

MCGPJ. Although the matching is implemented accord-
ing to different theoretical details, some general aspects
are common to all the recipes and must be emphasized:

1. it is possible to match NLO and HO corrections consis-
tently, avoiding ouble counting of LL contributions at
order v and preserving the advantages of resummation
of soft and collinear effects beyond O(«);

2. the convolution of NLO corrections with HO terms al-
lows to include, even if approximately, the dominant
part of NNLO corrections, given by infrared-enhanced
a?L sub-leading contributions. This was argued and
demonstrated analytically and numerically in |
comparison with the available O(a?) corrections to s-
channel processes and t¢-channel Bhabha scattering.
Such an aspect of the matching procedure is crucial
to settle the theoretical accuracy of the generators by
means of explicit comparisons with the exact NNLO
perturbative corrections discussed in Section 1.4, and
will be addressed in Section 1.9

3. BabaYaga@NLO and BHWIDE implement a fully fac-
torized matching recipe, while MCGPJ include some
terms in additive form, as visible in the formulae re-
ported in the following. This can give rise to some (mi-
nor) differences, when performing tuned comparisons
between the programs predictions.

Remarkably, the topic of matching is one of the most
important advances in modern perturbatve QCD and elec-
troweak calcuations for physics at hadron colliders. The
NLO QCD corrections were matched with QCD PS in

,204] and such approaches gave rise to the
codes MC@NLO and POHWEG used for simulations of
many processes in hadronic collisions. For the Drell-Yan-
like processes, the complete O(a) electroweak corrections
were combined with QED/QCD shower evolution and im-
plemented in the generator HORACE [205,206]. It is cur-
rently used for the precision measurement of the WW-boson
mass at the Fermilab Tevatron and for preliminary inves-
tigations in view of the early data at the CERN LHC.

In the following we summarize the basic features of the
matching procedure as implemented in the codes MCGPJ
and BabaYaga@NLO. For BHWIDE, the interested reader
is referred to the original literature [188].

The matching approach realized in the MC event gen-
erator MCGPJ was developed in [187]. In particular, Bhabha
scattering with complete O(«) and HO LL photonic cor-
rections is represented in the following way:

d ete”—ete (v)

/ dz / dzo DN57(21) D257 (22)
zZ1 Zo
da.(])Bhabhm(

ds2_
Yi Ys

dy: /dy2 NS,y Y1 NS Y2
7 7= D sV D 7Y
X/ Yl Y2 ee (}/1) (}/2)

Yth Yth

22) (1 + %KSV) O(cuts)

| through
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do.(])Bhabha 2 9(2) ’1,’2
dé_(l]_%habha(l —x, 1) dUBhabha(l 1— )
[ a0 a0 O(cuts)
? 8a 0 Ae

— ln(ctg2)l —

_i 342
1—c

dFeé’y
27r s/ —9 cuts) dQ_ (57)
k0> Ae
6;>6¢

Here the step functions ©(cuts) stand for the particular
applied cuts. The auxiliary parameter 6y defines cones
around the directions of charged particles motion in which
the emission of hard photons is approximated by the fac-
torized form by convolution of collinear radiation factors |

with the Born cross section. The dependence on the pa-
rameters A and 6y cancels out in the sum with the last
term of Eq. (57), where the photon energy and emis-
sion angles with respect to all charged particles are lim-
ited from below (k° > Ae, 0; > 6). Taking into account
vacuum polarization, the Born level Bhabha cross sec-
tion with reduced energies of the incoming electron and

positron can be cast in the following form:
d&(l)?;habha( a2 +Z§(1 +C)2
222(1 —¢)?

21,2:2> o 40[2{ 1
TR T TIE
1 2(1—c¢)? + 23(1 + ¢)?
I (3)[2 2a?

] 1 i Z%(1+C)2}d97
(1—I(1))(1 - I1(3))* az(l-c)

s2329(1 —¢)

21+ 29 — (21 — 22)c

+|17

—Re

t=— (58)

§ = 21298,

where IT(Q?) is the photon self-energy correction. Note
that in the cross section above the cosine of the scattering
angle, ¢, is given for the original c.m. reference frame of
the colliding beams.

For the two photon production channel, a similar rep-
resentation is used in MCGPJ:

1 1

doee = = /dleé\iS”(zl)/dZQDéVeS’V(@)
zZ1 Z2
i d
xdég (21, 22) (1+ K%’&) + g/f
m
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x[<1—x+ ) x][doo(l—xl)
B R

2;>A
T—00>0;>00

2 2
z5(1+c¢
{ 3(1+c3) + two cyclic permutations|,
Zl 22

5(1—cf)(1—c3)
0
zi:q—i, c; =cosb;, 0;,=

- (59)

Qi )
where the cross section with reduced energies has the form

207 (1 —c1)® +23(1+ 1)

5 (1=cf)(z1 4 22+ (22 — 21)c1)?

d&g”(zl, 2’2)
dfy

)

and the factor 1/3 in the last term of Eq. (59) takes into
account the identity of the final photons. The sum of the
last two terms does not depend on A and 6.

Concerning BabaYaga@NLO, the matching starts from
the observation that Eq. (27) for the QED corrected all-
order cross section can be rewritten, in terms of the PS
ingredients, as

oo

doss, = I1(Q% ¢) Z

n= 0

\Mn rr|? do, (60)

]

The expansion at O(a) of Eq. (60) does not coincide, by
construction, with an exact O(«) result. In fact

dofp = |1- 7 I log o } |Mo|?d®y + | My r1|*dPy

[1 + Oa,LL] |M0| ddg + |M17LL|2dSZS1

(61)

whereas an exact NLO cross section can be always cast in
the form

do® = [1+ Co] [Mo|*d®g + | M [*dd, (62)
The coefficient C\, contains the complete virtual O(«) and
the O(«) soft-bremsstrahlung squared matrix elements, in
units of the Born squared amplitude, and |Mj|? is the ex-
act squared matrix element with the emission of one hard
photon. We remark that C, 1 has the same logarithmic
structure as C, and that |[M; 11|? has the same singular
behaviour of |M; |2.

In order to match the LL and NLO calculations, the
following correction factors, which are by construction in-
frared safe and free of collinear logarithms, are introduced

(M| — Myl
M L ]?
(63)
so that the exact O(«) cross section can be expressed, up
to terms of O(a?), in terms of its LL approximation as

Fsy(1+ Co )| Mol?ddy + F|My pr|>dd,

(64)
Driven by Eq. (64), Eq. (60) can be improved by writing
the resummed cross section as

€) Z% (H FH> Morz|? dB,,

n=0 i=0

(65)
The correction factors Fir; follow from the definition Eq. (63
for each photon emission. The expansion at O(«) of Eq. (65)

Fy =1+

Fsy = 1+(Cq — Ca,LL),

do® =

damatched - FSV H(Q27
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Table 2. MC generators used for luminosity monitoring at
meson factories.

Generator Theory Accuracy
Bagenf O(«) ~ 1%
BabaYaga v3.5 Parton Shower 0.5+ 1%
BabaYaga@QNLO O(«) + PS ~0.1%
BOWIDE O(a) YFS ~ 0.5%(LEPL)
BKQED O(a) ~1%
MCGPJ O(a) 4+ SF < 0.2%

coincides now with the exact NLO cross section Eq. (62)
and all higher order LL contributions are the same as in
Eq. (60). This formulation is implemented in BabaYa@NLO
for both Bhabha scattering and photon pair production,

using, of course, the appropriare SV and hard bremsstrahlung 5

formulae.

As the SF method, the method of YFS exclusive expo-
nentiation can been improved in order to take into account
HO corrections on top of finite-order exact results (see for
instance [188] and references therein).

1.6 Monte Carlo generators

The software tools used in early measurements of lumi-
nosity at flavour factories (and sometimes still used in
recent experimental publications) include generators such
as Bagenf [208], BabaYaga v3.5 [185] and BKQED [209,

|. However, the above MC programs either are based
on a fixed NLO calculation (such as Bagenf and BKQED)
or include corrections to all orders in perturbation theory,
but in the LL approximation only (like BabaYaga v 3.5).
Therefore, the precision of these codes can be estimated
to lie in the range 0.5+1%, depending on the adopted ex-
perimental cuts.

The increasing precision reached on the experimental
side during the last few years led to the development of
new, dedicated theoretical tools, such as BabaYaga@QNLO
and MCGPJ, and the adoption of already well-tested codes,
such as BHWIDE, the latter extensively used at high-
energy LEP /SLC colliders for simulation of the large-angle
Bhabha process. As already emphasized in Section 1.5.2 |
all these three codes include NLO corrections in combina-
tion with multiple photon contributions and have, there-
fore, a precision tag of ~ 0.1%.

A list of the MC tools used in the luminosity measure-
ment at meson factories is given in Tab. 2, which summa-
rizes the main ingredients of their formulation for radiative
corrections and the estimate of their theoretical accuracy.

The basic theoretical and phenomenological features of
the different generators are summarized in the following.

1. Bagenf/BKQED — BKQED is the event generator de-
veloped by Berends and Kleiss and based on the clas-
sical, exact NLO calculations of [209,210] for all QED
processes. It was significantly used at LEP, especially
for the simulation of the eTe™ — 7 process. Bagenf is
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a code realized by Drago and Venanzoni at the begin-
ning of DA®NE operation to simulate Bhabha events,
adapting the calculations of [209] to include the con-
tribution of the @ resonance. Both generators lack the
effect of HO corrections and, as such, have a precision
accuracy of about 1%.

2. BabaYaga v3.5 — It is a MC generator developed by the

Pavia group at the starting of DA®NE operation us-

ing a QED PS approach for the treatment of LL. QED

corrections to luminosity processes and later improved
to account for the interference of radiation emitted
by different charged legs in the generation of the mo-
menta of the final-state particles. The main drawback
of BabaYaga v3.5 is the absence of O(«) non-log con-

tributions, resulting in a theoretical precision of ~ 0.5%

for large-angle Bhabha scattering and of about 1% for

~v and ptp~ final states.

BabaYaga@QNLO — It is the presently released version

of BabaYaga, based on the matching of exact O(«a)

corrections with QED PS, as described in Section 1.5.2.

The accuracy of the current version is estimated to be

at 0.1% level for large-angle Bhabha scattering, two-

photon and p*p~ 7 production. Like BabaYaga v3.5,

BabaYaga@NLO is available at the web page of the

Pavia phenomenology group

www.pv.infn.it/ hepcomplex/babayaga.html.

4. BHWIDE -1t is a MC code realized in Krakow-Knoxwille
at the time of LEP operation and described in [188].
In this generator, exact O(«) corrections are matched
with the resummation of soft and collinear logarithms
through the YFS exponentiation approach. Accord-
ing to the authors, the precision is estimated about
0.5% for LEP1. This accuracy estimate was derived
through detailed comparisons of the BHWIDE predic-
tions with those of other LEP tools in the presence of
the full set of NLO corrections, including purely weak
corrections. However, since the latter are phenomeno-
logically unimportant at eTe™ accelerators of moder-
ately high energies and the QED theoretical ingredi-
ents of BHWIDE are very similar to the formulation
of both BabaYaga@NLO and MCGPJ, one can argue
that BHWIDE accuracy for physics at flavour factories
is at the level of 0.1%. The code is available at
placzek.home.cern.ch/placzek/bhwide/.

5. MCGPJ — It is the generator developed by a Dubna-
Novosibirsk collaboration and used at VEPP collider.
This program includes exact O(a) corrections supple-
mented with HO LL contributions related to the emis-
sion of collinear photon jets and taken into account
through collinear QED Structure Functions (SF). The
theoretical precision is estimated to be better than
0.2%.

It is worth noticing that the theoretical uncertainty of
the most accurate generators, based on the matching of
exact NLO with LL resummation, starts at the level of

T At present, finite mass effects in the virtual corrections to
ete”™ — putp~, which should be taken into for precision simu-
lations at the @-factories, are not included in BabaYaga@NLO.
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Table 3. Bhabha cross section (in nb) at meson factories ac-
cording to different precision levels and using the cuts of Eq.
(12), but with an angular acceptance of 55° < 6+ < 125°. The
numbers in parenthesis are 10 MC errors.

V5(GeV)  1.02 4 10
o0 529.4631(2) 44.9619(1) 5.5026(2)
oy F 542.657(6)  46.9659(1)  5.85526(3)
onto  451.523(6)  37.1654(6) 4.4256 (2)
obs 454.503 (6)  37.4186 (6) 4.4565 (1)
Omatched  455.858 (5)  37.6731(4)  4.5046 (3)
oS 458.437(4)  37.8862(4) 4.5301(2)

sub-leading NNLO contributions, as far as photonic cor-
rections are concerned. Other sources of error affecting
their physical precision are discussed in detail in Section
1.9

1.7 Numerical results

Before showing the results which enable to settle the tech-
nical and theoretical accuracy of the generators, it is worth
discussing the impact of the various sources of radiative
corrections implemented in the programs used in the ex-
perimental analysis. This allows to understand which cor-
rections are strictly necessary to achieve a precision at the
per mille level, for both the calculation of integrated cross
section and simulation of more exclusive distributions.

1.7.1 Integrated cross sections

The first set of phenomenological results about radiative
corrections refer to the Bhabha cross section, as obtained
by means of the code BabaYaga@NLO, according to dif-
ferent perturbative and precision levels. In Tab. 3 we show

the values for Born cross section o, the O () PS and ex-

act cross section, O’ES yLO, respectively, as well as

the LL PS cross section ' and the matched cross section
oexp- Furthermore, the cross section in the presence of the
vacuum polarization correction, og v p, is also shown. The
results correspond to the c.m. energies /s = 1,4,10 GeV,
and were obtained with the selection criteria of Eq. (12,
but for an angular acceptance of 55° < 61 < 125° resem-
bling realistic data taking at meson factories. It is worth
noticing that the cuts of Eq. (12 tend to single out quasi-
elastic Bhabha events and that the energy of final-state
electron/positron corresponds to a so-called “bare” event
selection (i.e. without photon recombination), which cor-
responds to what is done in practice at flavour factories.
In particular, the rather stringent energy and acollinear-
ity cuts enhance the impact of soft and collinear radiation
with respect to a more inclusive set up.

From these cross section values, it is possible to cal-
culate the relative effect of various corrections, namely
the contribution of vacuum polarization and exact O («)

and o
PS

QED corrections, of non-logarithmic (NLL) terms enter-
ing the O () cross section, of HO corrections in the O («)
matched PS scheme and, finally, of NNL effects beyond or-
der «, largely dominated by O (L) contributions. The
above per cent corrections are shown in Tab. 4 and can be
derived from the cross section results of Tab. 3 according
to the following definitions

VP
_ 099 —0o0 _ ONLO — 00
o 0o = —2 20
VP = a =
(1) (o)}
NLO PS
SNLL — g ~Oq P Omatched — ONLO
a = HO =
ONLO ONLO
NLO PS PS
5 __ Omatched — 04 —0 740,
a2 =

go

From Tab. 4 it can be seen that O(«) corrections de-
crease the Bhabha cross section of about 15+17% at the
@ and 7-charm factories, and of about 20% at the B—
factories. Within the full set of O(«) corrections, non-log
terms are of the order of 0.5%, almost independently of
the centre-of-mass (c.m.) energy, as expected, and with a
mild dependence on the angular acceptance cuts, as due
to box/interference contributions. The effect of HO cor-
rections due to multiple photon emission is about 1% at
the @ and 7-charm factories and reaches about 2% at the
B—factories. The contribution of (approximate) O(a?L)
corrections is at the 0.1% level, while the vacuum polar-
ization increases the cross section of about 2% around 1
GeV, and of about 5% and 6% at 4 GeV and 10 GeV,
respectively. Concerning the latter correction, the non-
perturbative hadronic contribution to the running of «
were parameterized in terms of the HADRSN routine [211,

], included in BabaYaga@NLO both in the LO and one-
loop diagrams. However, during the workshop, we checked
that the results obtained for the vacuum polarization cor-
rection in terms of the parametrization [120] agree, at the
10~* level, with those obtained with HADRSN, as shown
in detail in Section 1.9. It is worth noticing that such
routines return a data-driven error, thus affecting the the-
oretical precision of the calculation of the Bhabha cross
cross section, as discussed, in conclusion, in Section 1.10.

Analogous results about the size of radiative correc-
tions to the process eTe™ — 7y are given in Tab. 5 [213].
They were obtained using BabaYaga@QNLO, according to
the experimental set up of Eq. (13) and for the c.m. ener-
gies /s =1,3,10 GeV.

The numerical errors coming from the MC integra-
tion are not shown in Tab. 4 because they are beyond the
quoted digits. From Tab. 4 it can be seen that the exact
O (a) corrections lower the Born cross section of about
5.9% (& resonance), 7.0% (at /s = 3 GeV) and 8.2%
(T resonance). The effect due to O (a™L™) (with n > 2)
terms is quantified by the contribution dgo, which is a
positive correction of about 0.2% (& resonance), 0.4% (7-
charm factories) and 0.5% (7" resonance), and, therefore,
important in the light of the aimed per mille accuracy.
On the other hand, also next-to-leading O («) corrections,

quantified by the contribution 501>ILL, are necessary at the
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Table 4. Relative size of different sources of correction (in
per cent) to the large-angle Bhabha cross section for typical
selection cuts at @, 7-charm and B factories.

Vs(GeV) 1.02 4. 10.

N —14.73 —17.32 —19.57
SNLL —0.66 —0.68 —0.70
dHO 0.97 1.35 1.79
821 0.09 0.09 0.11
Svp 2.43 4.46 6.03

Table 5. Photon pair production cross sections (in nb) to dif-
ferent accuracy levels and relative corrections (in per cent) for
the set up of Eq. (13) and the c.m. energies /s = 1,3,10 GeV.

Vs (GeV) 1 3 10

o0 137.53 15.281 1.3753
ONLO 129.45 14211 1.2620
oo 128.55 14.111 1.2529
Omatened  129.77  14.263  1.2685
oS 128.92 14.169 1.2597
80 —5.87 —7.00 —824

SNLL 0.70 0.71 0.73

81O 0.24 0.37 0.51

precision level of 0.1%, since their contribution is of about
0.7%, almost indipendently of the c.m. energy. To fur-
ther corroborate the precision reached in the cross section
calculation of eTe™ — 47, we also evaluated the effect
due to the most important sub-leading O (a2) photonic
corrections and given by oL contributions enhanced by
infrared logarithms. It turns out that the effect due to
O (onL) corrections does not exceed the 0.05% level. Ob-
viously, the contribution of vacuum polarization is absent
in v production and this an advantage for particularly
precise predictions, as the uncertainty associated to the
hadronic part of vacuum polarization does not affect the
cross section calculation.

1.7.2 Distributions

Besides the integrated cross section, various differential
cross sections are used by the experimental collaborations
to monitor the collider luminosity. in Fig. 16 and Fig. 17
we show two distributions which are particularly sensitive
to the details of photon radiation, i.e. the eTe™ invariant
mass and acollinearity distribution, in order to quantify
the size of NLO and HO corrections. To this end, the dis-
tributions obtained according to the exact O(a) calcula-
tion, and the two BabaYaga versions, BabaYaga v3.5 and
BabaYaga@NLO, are shown. From Fig. 16 and Fig. 17
it can be clearly seen that multiple photon corrections
introduce significant deviations with respect to an O(«)
simulation, especially in the hard tails of the distributions,
where they amount to several per cent. To make clearly
visible the contribution of exact O(«) non-log terms, the
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Fig. 16. Invariant mass distribution of the Bhabha process at
KLOE, according to BabaYaga v3.5 (OLD), BabaYaga@NLO
(NEW) and an exact NLO calculation. The inset shows the
relative effect of NLO corrections, given by the difference of
BabaYaga v3.5 and BabaYaga@NLO predictions.
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Fig. 17. Acollinearity distribution of the Bhabha pro-
cess at KLOE, according to BabaYaga v3.5 (OLD) and
BabaYaga@NLO (NEW). The inset shows the relative effect
of NLO corrections, given by the difference of BabaYaga v3.5
and BabaYaga@NLO predictions.

inset shows the relative differences between the predictions
of BabaYaga v3.5 (denoted as OLD) and BabaYaga@NLO
(denoted as NEW). Actually, as discussed in Section 1.5.2,
these differences mainly come from non-log NLO contribu-
tions and, to a smaller extent, from O(a?L) terms. Their
effect is flat and at level of 0.5% for the acollinearity dis-
tribution, while they reach the some per cent level in the
hard tail of the invariant mass distribution.

It is also worth noticing that LL radiative corrections
beyond a? can be quite important for accurate simula-
tions, at least when considering differential distributions.
This means that, even with a complete NNLO calcula-
tion at hand, it would be desirable a matching of such
corrections with the resummation of all the remaining LL
effects. In Fig. 18, the relative effect of HO corrections be-
yond o, dominated by o contributions (dashed line), is
shown in comparison with that of the a? corrections (solid
line) on the acollinearity distribution for the Bhabha pro-
cess at DA®NE. As it can be seen, the o effect can be
as large as 10% in the phase space region of soft photons
emission, corresponding to small acollinearity angles with
almost back-to-back final-state fermions.

Concerning the process ete™ — 77, in Fig. 19 we show
the energy distribution of the most energetic photon, while
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Fig. 18. Relative effect of HO corrections o>L? and a"L"

(n > 3) on the acollinearity distribution of the Bhabha process

at KLOE.

the acollinearity distribution of the two most energetic
photons is represented in Fig. 20. The above distributions
refer to exact O («) corrections matched with the PS algo-
rithm (solid line), to the exact NLO calculation (dashed
line) and to all-order pure PS predictions of BabaYaga
v3.5 (dash-dotted line). In the inset of each plot, the rel-
ative effect due to multiple photon contributions (dexp)
and non-logarithmic terms entering the improved PS al-

gorithm (601\<ILL) is also shown, according to the definitions
given in Eq. (66).

For the energy distribution of the most energetic pho-
ton particularly pronounced effects due to exponentiation
are present. In the statistically dominant region HO cor-
rections reduce the O () distribution of about 20%, while
they give rise to a significant hard tail in the proxim-
ity of the energy threshold of 0.3y/s, as a consequence
of the higher photon multiplicity of the resummed cal-
culation with respect to the fixed-order NLO prediction.
Concerning the acollinearity distribution, the contribution
of higher-order corrections is positive and of about 10%
in correspondence of quasi back-to-back photon events,
whereas it is negative and decreasing from ~ —30% to ~
—10% for increasing acollinearity values. As far as the con-
tributions of non-logaritmic effects, dominated by next-to-
leading O () corrections, are concerned, they contribute
at the level of some per mille for the acollinearity distri-
bution, while they lie in the some per cent range for the
energy distribution.

As a whole, the results shown and discussed in the
present Section emphasize that both exact O(a)) and HO
photonic corrections are necessary, in association with the
running of «, for 0.1% theoretical precision, for both cross
sections and distributions.

1.8 Tuned comparisons

The typical procedure followed in the literature to estab-
lish the technical precision of the theoretical tools is to
perform tuned comparisons between the predictions of in-
dependent programs, using the same set of input param-
eters and experimental cuts. This strategy was initiated
during the CERN workshops for precision physics at LEP
and is still in use nowadays when considering processes of
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Fig. 19. Energy distribution of the most energetic photon
in the process ete™ — ~v, according to the PS matched
with O (a) corrections (solid line), the exact O («) calculation
(dashed line) and the pure all-order PS as in BabaYaga v3.5
(dash-dotted line). Inset: relative effect (in per cent) of multi-
ple photon corrections (solid line) and of non-log contributions
of the matched PS algorithm (dashed line).
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Fig. 20. Acollinearity distribution for the process ete™ — v,

according to the PS matched with O (a) corrections (solid
line), the exact O («) calculation (dashed line) and the pure
all-order PS as in BabaYaga v3.5 (dash-dotted line). Inset: rel-
ative effect (in per cent) of multiple photon corrections (solid
line) and of non-log contributions of the matched PS algorithm
(dashed line).

interest for physics at hadron colliders, such as single W
and Z production, demanding particularly accurate the-
oretical calculations. The tuning procedure is a key step
in the validation of generators, because it allows to check
that the different details entering the complex structure
of generators themselves, e.g. implementation of radiative
corrections, event selection routines, MC integration and
event generation, are under control and to fix possible
bugs.

The tuned comparisons discussed in the following were
performed switching off the the vacuum polarization cor-
rection to the Bhabha scattering cross section. Actually,
the generators implement the non-perturbative hadronic
contribution to the running of a according to different
parameterizations, which differently affect the cross sec-
tion prediction. Hence, this simplification is introduced to



24

avoid possible bias in the interpretation of the results and
allows to disentagle the effect of pure QED corrections.
Also, the comparisons take into realistic event selection
cuts, in order to provide results of actual experimental
interest.

The present Section is a merge of results available in
the literature [186] with those of new studies done during
the workshop. The results refer to the Bhabha process at
the energies of @, T-charm and B factories. No effort was
done on tuned comparisons for the two photon production
process.

1.8.1 & and 7-charm factories

First, we show comparisons between BabaYaga@NLO and
BHWIDE according to the KLOE selection cuts of Eq.
(12), but considering in addition also the angular range
20° > 94 < 160° for cross section results. The predictions
of the two codes are reported in Tab. 6, for the two ac-
ceptance cuts, together with their relative deviations. As
can be seen, the agreement is excellent, the relative devi-
ations being well below the 0.1%. Comparisons between
BabaYaga@NLO and BHWIDE at the level of differen-
tial distributions are given in Fig. 21 and Fig. 22, where
the inset shows the relative deviations between the pre-
dictions of the two codes. As can be seen, there is a very
good agreement between the two generators, as the pre-
dicted distributions appear, at a first sight, almost indis-
tinguishable. Looking in more detail, there is a relative
difference of a few per mille for the acollinearity distri-
bution (Fig. 22) and of a few per cent for the invariant
mass (Fig. 21), but only in the very hard tails, which con-
tribute to the integrated cross section negligibly. In fact,
these differences on differential distributions translate into
an agreement on the cross section values well below the
one per mille, as already shown in Tab. 6.

Similar tuned comparisons were performed during the
workshop between the results of BabaYaga@NLO, BH-
WIDE and MCGPJ in the presence of cuts modeling the
event selection criteria of the CMD-2 experiment at the
VEPP-2M collider, for a c.m. energy of /s = 900 MeV.
The cuts used in this case are:

|97+9+—7T| SA@
6 + 64| =] < 0.15
p_sin(f_) > 90 MeV
(p— +p+)/2 > 90 MeV

1.1<(0 —0_+m)/2<7—-1.1
pysin(6y) > 90 MeV
(66)

where 6_, 0, are the electron/positron polar angles (in ra-
dians), respectively, ¢4 their azimuthal angles, and pL =

\/pzi’x +pi, +pi . the moduli of their three-momenta.

A6 stands for an acollinearity cut.

Fig. 23 shows the relative differences between the re-
sults of BHWIDE and MCGPJ according to the criteria of
Eq. (66), as a function of the acollinearity cut Af. The rel-
ative deviations between the calculations of BabaYaga@NLO
and MCGPJ for the same cuts are given in Fig. 24. It can
be seen that the predictions of the three generators lie
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Table 6. Cross section predictions [nb] of BabaYaga@NLO
and BHWIDE for the Bhabha cross section corresponding to
two different angular acceptances, for KLOE experiment at
DA®NE, and their relative differences.

angular acceptance BabaYaga@NLO BHWIDE §(%)
20° = 160° 6086.6(1) 6086.3(2) _ 0.005
55° + 125° 455.85(1) 455.73(1)  0.030

Table 7. Cross section predictions [nb] of BabaYaga@NLO
and MCGPJ for the Bhabha cross section at 7-charm factories
and their relative difference.

BabaYagaQNLO MCGPJ  §(%)
35.20(2) 35.181(5) 0.06
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Fig. 21. Invariant mass distribution of the Bhabha process
according to BHWIDE and BabaYaga@NLO, for KLOE ex-
periment at DA®NE, and relative differences of the codes pre-
dictions (inset).

within a 0.2% band, with differences of ~ 0.3% for extreme
values of the acollinearity cut only. This agreement can be
considered certainly satisfactory, since for the acollinear-
ity cuts of real interest the generators agree at the one per
mille.

A number of comparisons was also performed for a c.m.
energy of 3.5 GeV relevant for experiments at 7-charm
factories. An example is given in Tab. 7, where the pre-
dictions of BabaYaga@NLO and MCGPJ are compared,
using cuts similar to those of Eq. (66), for an acollinear-
ity cut Af = 0.25 rad. As it can be seen, the agreement
between the two codes is below the one per mille. Compar-
isons between the two codes were also done at the level of
differential cross sections, showing satisfactory agreement
in the statistically relevant phase-space regions. Prelim-
inary results [214] for a c.m. energy on top of the J/¥
resonance show good agreement between BabaYaga@QNLO
and BHWIDE predictions too.

1.8.2 B-factories

Concerning the B-factories, a considerable effort was done
to establish the level of agreement between BabaYaga@NLO
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Fig. 22. Acollinearity distribution of the Bhabha process ac-
cording to BHWIDE and BabaYaga@NLO, for KLOE experi-
ment at DA®NE, and relative differences of the codes predic-
tions (inset).
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Table 8. Cross section predictions [nb] of BabaYaga@NLO
and BHWIDE for the Bhabha cross section as a function of
the angular selection cuts, for Babar experiment at PEP-II,

and their relative differences.

angular range (c.m.s.) BabaYaga@NLO BHWIDE (%)
15° +165° 119.5(1) 119.53(8)  0.025
30° = 150° 24.17(2) 24.22(2)  0.207
40° + 140° 11.67(3) 11.660(8)  0.086
50° = 130° 6.31(3) 6.280(4)  0.332
60° + 120° 1.928(2) 1.931(3) 0.141
70° = 110° 3.554(6) 3549(3)  0.155
80° + 100° 0.824(2) 0.822(1) 0.243
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Fig. 25. Relative differences between BabaYaga@NLO and
BHWIDE Bhabha cross sections as a function of the angular
acceptance cut, for the Babar experiment at PEP-II.

and BHWIDE, in comparison with BabaYaga v3.5 too.
This study made use of the realistic luminosity cuts quoted
in Section 1.4.3 for the Babar experiment. The cross sec-
tions predicted by BabaYaga@NLO and BHWIDE are
shown in Tab. 8, together with the corresponding rela-
tive differences, as a function of the considered angular
range. To guide the eye, the latter are also shown in Fig.
25, where the 1o numerical error due to MC statistics are
also quoted. As can be seen, the two codes nicely agree, the
central value predictions being, in general, in agreement
at the 0.1% level or statistically compatible whenever a a
two-three per mille difference is present.

To further investigate how the two generators compare,
a number of differential cross sections was studied. The re-
sults of this study are shown in Fig. 26 and Fig. 27, for
the electron energy and polar angle distribution, respec-
tively, and in Fig. 28 for the acollinearity distributions. For
both the energy and scattering angle distribution, the two
programs agree within the statistical errors, showing devi-
ations, if present, not above the 0.5%. For the acollinear-
ity dependence of the cross section, BabaYaga@NLO and
BHWIDE agree within ~ 1%. Therefore, the level of the
agreement between the two codes around 10 GeV is the
same as that observed at the @ factories.

The main conclusions emerging from the tuned com-
parisons discussed in the present Section can be summa-
rized as follows:
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— The predictions for the Bhabha cross section of the
mostly precise tools, i.e. BabaYaga@NLO, BHWIDE
and MCGPJ, generally agree within 0.1%. If (slightly)
larger differences are present, they show up for par-
ticularly severe cuts or are due to limited MC statis-
tics. When statistically meaningful discrepancies are
observed, they can be ascribed to the different theoret-
ical recipes for the treatment of radiative corrections
and their technical implementation. However, such dif-
ferences are definitely small in comparison with the
typical experimental error.

— Also the distributions predicted by the generators agree
well, with relative differences below the 1% level. Slightly
larger discrepancies are only seen in sparse populated
phase-space regions corresponding to very hard pho-
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Fig. 28. Acollinearity distributions according to BHWIDE,
BabaYaga@NLO and BabaYaga v3.5 for the Babar experiment
at PEP-II, and relative differences of the codes predictions.

ton emission and which do not influence the luminosity
measurement.

1.9 Theoretical accuracy

As discussed in Section 1.1, the total luminosity error cru-
cially depends on the theoretical accuracy of the genera-
tors used by the experimental collaborations. As empha-
sized in Section 1.6, some of these programs, i.e. Bagenf,
BabaYaga v3.5 and BKQED, miss theoretical ingredients
which are unavoidable for cross section calculation with a
precision at the per mille level. Therefore, they are inade-
quate for a highly accurate luminosity determination. On
the other hand, BabaYaga@NLO, BHWIDE and MCGPJ
include both NLO and multiple photon corrections and, as
such, their accuracy aims at a precision tag of 0.1%. How-
ever, also the above generators are affected by uncertain-
ties which must carefully considered in the light of the very
stringent criteria of per mille physics. The most important
components of the theoretical error of BabaYaga@NLO,
BHWIDE and MCGPJ come from the following sources:

1.

2.

the non-perturbative light quarks contribution to the
running of «. It can be reliably evaluated only using
the data of the hadron cross section at low energies.
Hence, the vacuum polarization correction receives a
data-driven error, which affects, in turn, the prediction
of the Bhabha cross section.

the complete set of O(a?) QED corrections. In spite
of the impressive progress in this area, as reviewed
in Section 1.4, an important piece of NNLO correc-
tions, i.e. exact NLO SV corrections to the single hard
bremsstrahlung process ete™ — ete 7, is still miss-
ing for the full s 4+t Bhabha process. However, partial
results obtained for ¢-channel small-angle Bhabha scat-
tering [215,216] and large-angle annihilation processes
are available |

)
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3. the O(a?) contribution due to real and virtual (lepton
and hadron) pairs. The virtual contributions originate
from the NNLO electron, heavy flavor and hadronic
loop corrections discussed in Section 1.4, while the real
corrections are due to the conversion of a photon into
pairs. The latter, as discussed in Section 1.4.3, gives
rise to a final state with four particles, two of which
to be considered as undetected to contribute to the
Bhabha signature.

The uncertainty relative to point 1. can be estimated
by using the routines available in the literature for the
calculation of the non-perturbative hadronic contribution

Aaﬁi)dr(qz) to the vacuum polarization. Actually, these

routines return, in addition to Aagdr(qQ), an error Opqdr
on its value. Therefore, an estimate of the induced error
can be simply obtained by computing the Bhabha cross

section with Aal(g)dr(q2):t§hadr and taking the difference as
the theoretical uncertainty due to the hadronic contribu-
tion to vacuum polarization. In Tab. 9, the Bhabha cross
sections, as obtained in the presence of the vacuum po-
larization correction according to the parameterization of
[211,212] (denoted as J) and of [120] (denoted as HMNT),
respectively, are shown for &, 7-charm and B factories.
The applied angular cuts refer to the typically adopted
acceptance 55° < f4 < 125°.

Table 9. Bhabha scattering cross section in the presence of the
vacuum polarization correction, according to [211,212] (J) and
[120] (HMNT), at meson factories. The notation J_ /HMNT_,
J/HMNT and J+/HMNT, indicates minimum, central and
maximum value of the two parametrizations.

Parametrization @ 7-charm B
J_ 542.662(4) 46.9600(1) 5.85364(2)
J 542.662(4) 46.9658(1) 5.85529(2)
J+ 542.662(4) 46.9715(1) 5.85693(2)
HMNT_ 542.500(5) 46.9580(1) 5.85496(1)
HMNT 542.391(5) 46.9638(1) 5.85621(1)
HMNT 542.283(5) 46.9697(1) 5.85746(2)

From Tab. 9 it can be seen that the two treatments
of Aa;y (¢%) induce effects on the Bhabha cross section
in very good agreement, the relative differences between
the central values being 0.05% (P-factories), 0.005% (7-
charm factories) and 0.02% (B-factories). This can be un-
derstood in terms of the dominance of ¢-channel exchange
for large-angle Bhabha at meson factories. Indeed, the two
routines provide results in excellent agreement for space-
like momenta, as we explicitly checked, whereas different
predictions show up for time-like momenta, which, how-
ever, contribute to the Bhabha cross section very marginally.
Also, the spread between the minimum/maximum values
and the central one as returned by the two routines agrees
very well, because of the same reason just discussed. This
spread amounts to a few units in 10™% and is detailed in
Tab. 10 in the next Section.
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Concerning point 2., a general strategy to evaluate the
size of missing NNLO corrections consists in deriving from
the theoretical formulation implemented in the generator
of interest a cross section expansion up to O(a?). It can
be cast, in general, in the following form

0°" = o8y +0%yn + ofiu (67)
where, in principle, each of the above O(a?) contributions
is affected by an uncertainty, to be properly estimated. In
Eq. (67), the first contribution is the cross section includ-
ing O(a?) soft plus virtual corrections, whose uncertainty
can be evaluated through a comparison with some of the
available NNLO calculations reviewed in Section 1.4. In
particular, in [186] the aé‘f, of the BabaYaga@NLO gener-
ator was compared with the calculation of photonic correc-
tions by Penin [91,92] and the calculations by Bonciani et
al. [96,97,105,106,107], who computed two-loop fermionic
corrections (in the one-family approximation Ngp = 1)

with finite mass terms and the addition of soft bremsstrahlung

and real pair contributions 8. The results of such com-
parisons are shown in Fig. 1.9 and Fig. 30 for realistic
cuts at the @-factories. In Fig. 1.9 do is the difference be-
tween Ug‘f/ of BabaYaga@NLO and the cross sections of
the two O(a?) calculations, denoted as photonic (Penin)
and Nrp = 1 (Bonciani et al.), as a function of the log-
arithm of the infrared regulator e. It can be seen that
the differences are given by flat functions, demonstrating
that such differences are infrared-safe, as expected, as a
consequence of the universality and factorization proper-
ties of the infrared divergences. In Fig. 30, do is shown as
a function of the logarithm of a fictitious electron mass
and for a fixed value of ¢ = 1075, Since the difference
with the calculation by Penin is given by a straight line,
this indicates that the soft plus virtual two-loop photonic
corrections missing in BabaYaga@NLO are O(a?L) con-
tributions, as already remarked. On the other hand, the
difference with the calculation by Bonciani et al. is fitted
by a quadratic function, showing that the electron two-
loop effects missing in BabaYaga@NLO are of the order
of a?L?. However, it is important to emphasize that, as
shown in detail in [180], the sum of the differences with
the two O(a?) calculations does not exceed the 2 x 10~*
level, for various set up at @- and B-factories.

The second term in Eq. (67) is the cross section con-

taining the one-loop corrections to single hard bremsstrahlung

and its uncertainty can be estimated by relying on partial
results existing in the literature. Actually, the exact per-
turbative expression of Jg‘é’H is not available yet for full
s + t Bhabha scattering, but, using the results valid for
small-angle Bhabha scattering [215,216] and large-angle s-
channel processes [217,218], the relative uncertainty of the

. . . 2
theoretical tools in the calculation of gy, ; can be conser-

8 To provide meaningful results, the contribution of the vac-
uum polarization was switched off in BabaYaga@NLO to com-
pare with the calculation by Penin consistently. For a similar
reason, the real and virtual pair corrections, not implemented
in BabaYaga@NLO, were neglected in the comparison with the
calculation by Bonciani et al..
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vatively estimated at the level of 0.05%. Indeed, the papers
above show that a YFS matching of NLO and HO correc-
tions give SV one-loop results for the t-channel process
ete™ — ete v and s-channel annihilation ete™ — ff~y
(f = fermion) differing from the exact perturbative cal-
culations for a few units in 10~ at most. This conclusion
holds when varying applied photon energy cuts.

The third contribution in Eq. (67) is the double hard
bremsstrahlung cross section, whose uncertainty can be
directly evaluated by explicit comparison with the exact
ete” — eTe v cross section. In [156], it was shown that

the differences between aﬁ; as in BabaYaga@NLO and
the matrix element calculation, which exactly describes
the contribution of two hard photons, are really negligible,
at the 1072 level.

The relative effect due lepton (e, u, 7) and hadron (7)
pairs has been numerically analyzed in Section 1.4.3, in
the presence of realistic selection cuts. This evaluation
makes use of the complete NNLO virtual corrections in as-
sociation with an exact matrix element calculation of the
four-particle production processes. It represents an origi-
nal contribution to the workshop and supersedes previous
approximate estimates, which underestimated the impact
of such corrections. According to this new evaluation, the
pair contribution, dominated by the electron pair correc-
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tion, amounts, in particular, to about 0.05% at KLOE and
0.25% at Babar.

1.10 Conclusions and open issues

During the last few years, a remarkable progress occurred
in reducing the error associated to the luminosity measure-
ment at flavour factories. These advances were presented
between the workshop, together with original work to-
wards more and more reliable theoretical predictions and
a better control of the technical precision of the analysis
tools.

Dedicated event generators, namely BabaYaga@NLO
and MCGPJ, were developed to provide predictions for
the cross section of the large-angle Bhabha process, as well
as the other QED reactions of interest, with a theoretical
accuracy at the level of 0.1%. In parallel, codes well-known
since the time of LEP/SLC operation, such as BHWIDE,
were taken into consideration by the experiments and ex-
tensively used in data analysis. These MC programs all
include, albeit according to different formulations, exact
O(a) corrections matched with LL contributions coming
from multiple photon emission. Such ingredients, together
with the vacuum polarization correction, are strictly nec-
essary to achieve a physical precision down to the per mille
level. Indeed, when considering typical selection cuts, the
NLO photonic corrections amount to about 15+20%, the
vacuum polarization contributes at the some per cent level
and HO effects lie between 1+2%.

On the other hand, the generators above are affected
by an uncertainty due to those HO effects neglected in
their formulation, such as light pair corrections or exact
perturbative contributions present in NNLO calculations.
From this point of view, the great progress in the calcula-
tion of two-loop corrections to the Bhabha scattering cross
section was essential to establish the theoretical accuracy
of the existing generators and is crucial if an improvement
of the precision below the one per mille will be required.

During the workshop, a particular effort was done to
compare the generators predictions consistently, in order
to assess the technical precision in the implementation of
radiative corrections and related computational details.
These comparisons were performed in the presence of re-
alistic event selection criteria, and at different c.m. ener-
gies. For the experiments KLOE and CMD-2 around the
®-resonance, where the statistics of Bhabha events is the
highest and the experimental luminosity error at a few
mille level, the cross section results of BabaYaga@NLO,
BHWIDE and MCGPJ agree within ~ 0.1%. If (slightly)
larger discrepancies are observed, they show up only for
particularly severe cuts or exclusive distributions in spe-
cific phase-space region, which do not influence the lumi-
nosity determination. Very similar results were obtained
for 7-charm and B-factories. The main conclusion of the
work on tuned comparisons is that the technical precision
of MC programs is well under control, the discrepancies
(whenever present) being definitely smaller than the ex-
perimental error.
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On the theoretical side, a new, exact evaluation of lep-
ton and hadron pair corrections to the Bhabha scattering
cross section was carried out, taking into account realistic
cuts. This calculation provides results in rough agreement
with estimates based on singlet SF, but supersedes pre-
vious evaluations in the soft-photon approximation. Also,
the contribution induced by the uncertainty associated to
non-perturbative contribution to the running of o was re-
visited, making use of and comparing the two independent
parameterizations derived in [211,212] and [120].

A summary of the different sources of theoretical er-
ror and their relative impact on the Bhabha cross section
is given in Tab. 10. In this Table, |6¢F| is the error in-
duced by the hadronic component of the vacuum polar-
ization, 455 | the error due to missing pair corrections,
|0§%| the uncertainty coming from SV NNLO corrections,
|05 | the uncertainty in the calculation of the double hard
bremsstrahlung process and |dgy j| the error estimate for
one-loop corrections to single hard bremsstrahlung. As it
can be seen, pair corrections and exact NLO corrections

to ete™ — ete v are the dominant sources of error.

The total theoretical uncertainty, as obtained by sum-
ming the different contributions linearly, is 0.12+0.14%
at the & factories, 0.18% at the 7-charm factories and
~ 0.35% at the B factories. This uncertainty is slightly
affected by the particular choice of the routine for the
calculation of Aagi)dr(qz), since the two parametrizations
considered here give rise to similar errors, with the excep-
tion of the &-factories for which the two recipes return
uncertainties differing of 2 x 10~%. However, as remarked
in [186], the hadronic contribution to vacuum polariza-
tion becomes a relevant source of uncertainty, at some per
mille level, when considering predictions for a c.m. energy
exactly on top of the J/¥ resonance. For such a specific
situation, of interest, for instance, for the BES experiment,

the two prescriptions for Aagdr(f) differ significantly
because of the quite different description of narrow res-
onances. For the time being, in the absence of new data

around the J/¥, the error driven by Aafli)dr(qQ) in this
energy region is an irreducible limiting factor and deteri-
orates the total uncertainty in the Bhabha cross section
prediction up to several per mille.

The theoretical uncertainty quoted in Tab. 10 is suf-
ficient for present and planned precision luminosity mea-
surements at meson factories, the experimental error cur-
rently being about a factor of two or three larger than
such an accuracy. Adopting the strategy followed during
LEP/SLC operation for the luminosity theoretical budget,
one could arrive at a more aggressive error estimate, by
summing the relative contributions in quadrature. How-
ever, for the time being, this does not seem to be necessary
in the light of the current experimental error.

It is worth noticing, in conclusion, that the precision
presently reached by large-angle Bhabha programs used
in the luminosity measurement at meson factories is com-
parable, especially at the @-factories, with that achieved
about ten years ago for luminosity monitoring through
small-angle Bhabha scattering at LEP/SLC.

Table 10. Summary of different sources of theoretical uncer-
tainty in the most precise generators used in the luminosity
measurement, and corresponding total theoretical error for the
calculation of the large-angle Bhabha cross section at meson
factories.

Source of error (%) & T-charm B

[Son [211,212] 0.00 0.01 0.03
[ooa] [120] 0.02 0.01 0.02
[0 pairs 0.05 0.1° 0.25
[0S 0.02 0.02 0.02
oo 0.00 0.00 0.00
LR 0.05 0.05 0.05

160 0.12-0.14 0.18 0.34=0.35

The work done during the workshop left open some
issues. In the context of tuned comparisons, no effort was
done to compare the available codes for the process of
photon pair production. Since it contributes relevantly
to the luminosity determination and precise predictions
for its cross section can be obtained through the codes
BabaYaga@NLO and MCGPJ, this work should be done,
soon or later. This would lead to a deeper understanding
of luminosity on the experimental side. In the framework
of new theoretical advances, an evaluation of the light pair
contribution to the process eTe™ — v would be helpful to
better assess the precision of the generators which include,
for the time being, only photonic corrections to such a pro-
cess. More importantly, the exact one-loop corrections to
the radiative process ete™ — ete~v should be calculated,
going beyond the partial results scattered in the literature
(and referring to selection criteria valid for high-energy
ete™ colliders) or limited to the soft-photon approxima-
tion. This contribution should be evaluated taking into
account the experimental cuts used at meson factories, to
get a better control of the theoretical uncertainty in the
sector of NNLO corrections to Bhabha scattering. Inciden-
tally, this calculation would be also of interest for other
studies at ete™ of moderately high energy, such as the
search for new physics phenomena (e.g. dark matter can-
didates), for which radiative Bhabha scattering is a very
important background.
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