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1 Introduction

introduction [1]

2 Luminosity

luminosity [2]

3 Scan

scan

4 Radiative return

4.1 History and evolution of the radiative return in
precision physics

The idea to use Initial State Radiation in order to measure
hadronic cross sections from the threshold of a reaction up
to the centre-of-mass (c.m.) energy of colliders with fixed

energies
√
s, to reveal reaction mechanisms and to search

for new mesonic states consists in exploiting the process
e+e− → hadrons+nγ to reduce the c.m. energy of the col-
liding electrons and positrons and consequently the mass
squared M2

had = s−2
√
s Eγ of the hadronic system in the

final state by emitting one or more photons. The method is
particularly well suited for the modern meson factories like
DAΦNE (detector KLOE ) running at the φ-resonance,
BEPCII (detector BESIII ), commissioned in 2008, at the
J/ψ and ψ(2S)-resonances, PEP-II (detector BABAR)
and KEKB (detector Belle) at the Υ (4S)-resonance with
their high luminosities which compensate for the α/π sup-
pression of the emission of a photon. DAΦNE, BEPCII,
PEP-II and KEKB cover the regions in Mhad up to 1.02
GeV, up to 3.8 (maximally 4.6) GeV and up to 10.6 GeV,
respectively (restricted for the latter actually up to 4...5
GeV if hard photons are detected). A big advantage of
the ISR method is the low point-to-point systematic er-
rors of the hadronic energy spectra because the luminosity,
the energy of the electrons and positrons and many other
contributions to the detection efficiencies are determined
once for the whole spectrum. As a consequence, the over-
all normalization error is the same for all energies of the
hadronic system. The term Radiative return alternately
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used for ISR refers to the appearance of pronounced res-
onances (e.g. ρ, ω, φ, J/ψ, Z) with energies below the col-
lider energy. Reviews and updated results can be found
in the Proceedings of the International Workshops in Pisa
(2003) [3], Nara (2004) [4], Novosibirsk (2006) [5], Pisa
(2006) [6], Frascati (2008) [7], Novosibirsk (2008) [8].

Calculations of ISR date back to the sixties-seventies of
the 20th century. For example, photon emission for muon
pair production in electron-positron collisions has been
calculated in Ref. [9], for the 2π-final state in Ref. [10,11],
resonances (ρ, ω, φ) have been implemented in Ref. [11],
the excitation of ψ(3100) and ψ′(3700) in Ref. [12], and
the possibility to determine the pion form factor was dis-
cussed in Ref. [13]. The application of ISR to the new high
luminosity meson factories, originally aimed at the deter-
mination of the hadronic contribution to vacuum polar-
ization, more specifically the pion form factor, has mate-
rialized in the late nineties. Early calculations of ISR for
the colliders DAΦNE, PEP-II, KEKB can be found in
[14–17]. In Ref. [18] calculations of radiative corrections
for pion and kaon production below energies of 2 GeV
have been reported. An impressive example of ISR is the
Radiative Return to the region of the Z -resonance at LEP
2 with collider energies around 200 GeV [19–22] (see Fig.
1).

Fig. 1. The reconstructed distribution of e+e− → qq̄ events as
a function of the invariant mass of the quark-antiquark system.
The data has been taken for a collider energy range of 182 -
209 GeV. The prominent peak around 90 GeV represents the
Z-resonance, populated after emission of photons in the initial
state [20]. (With kind permission of The European Physical
Journal (EPJ)).

ISR became a powerful tool for the analysis of experi-
ments at low and intermediate energies with the develop-
ment of EVA-PHOKHARA, a Monte Carlo event genera-

tor which is user friendly, flexible and easy to implement
into the software of the existing detectors [23–39].

EVA and its successor PHOKHARA allow to simulate
the process e+e− → hadrons + γ for a variety of exclu-
sive final states. As a starting point EVA was constructed
[23] to simulate leading order ISR and FSR for the π+π−

channel, additional soft and collinear ISR was included on
the basis of structure functions taken from [40]. Subse-
quently EVA was extended to include the four-pion state
[24], however, without FSR. Neglecting FSR and radia-
tive corrections, i. e. including one-photon emission from
the initial state only, the cross section for the radiative
return can be cast into the product of a radiator function
H(M2

had, s) and the cross section σ(M2
had) for the reaction

e+e− → hadrons:

s dσ(e+e− → hadrons γ)/dM2
had = σ(M2

had)H(M2
had, s).

However, for a precise evaluation of σ(M2
had) the lead-

ing logarithmic approximation inherent in EVA is insuffi-
cient. Therefore, in the next step, the exact one-loop cor-
rection to the ISR process was evaluated analytically, first
for large angle photon emission [25], then for arbitrary, in-
cluding collinear configurations [26]. This was and is one
of the key ingredients of the generator called PHOKHARA
[27,28], which also includes soft and hard real radiation,
evaluated using exact matrix elements formulated within
the framework of helicity amplitudes [27]. FSR in NLO
approximation was addressed in [29] and incorporated in
[30,31]. The importance of the charge asymmetry, a conse-
quence of interference between ISR and FSR amplitudes,
for a test of the (model dependent) description of FSR
has been emphasized already in Ref.[23] and was further
studied in [31].

Subsequently the generator was extended to allow the
generation of many more channels with mesons, likeK+K−,
K0K̄0, π+π−π0, an improved description of the 4π modes
[32,33] and improvements in the description of FSR for
the µ+µ− channel [30,31]. Also the nucleon channels pp̄
and nn̄ were implemented [34] and it was demonstrated
that the separation of electric and magnetic proton form
factors is feasible for a wide energy range. In fact, for the
case of ΛΛ̄ and including the polarization sensitive weak
decay of Λ into the simulation, it was shown that even the
relative phase between the two independent form factors
could be disentangled [35].

Starting already with [41] various improvements were
made to include the direct decay φ→ π+π−γ as a specific
aspect of FSR into the generator, a contribution of specific
importance for data taken on top of the φ resonance.

This was further pursued in the event generators FEVA
and FASTERD based on EVA-PHOKHARA. FEVA in-
cludes the effects of the direct decay φ → π−π+γ and
the decay via the ρ-resonance φ → ρ±π∓ → π−π+γ
[42–44]. The code FASTERD takes into account Final
State Radiation in the frameworks of both Resonance Per-
turbation Theory and sQED, Initial State Radiation and
their interference and the direct decays e+e− → φ →
(fo; fo + σ)γ → π+π−γ, e+e− → φ → ρ±π∓ → π+π−γ
and e+e− → ρ → ωπo → πoπoγ [45], with the possibility
to include additional models.
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EVA-PHOKHARA was applied for the first time to an
experiment to determine the cross section e+e− → π+π−

from the reaction threshold up to the maximum energy
of the collider with the detector KLOE at DAΦNE [46–
70] (Section 4.4.1). The motivation was the determination
of the 2π final state contribution to the hadronic vacuum
polarization.

The determination of the hadronic contribution to the
vacuum polarization, which arises from the coupling of vir-
tual photons to quark-antiquark-pairs γ⋆ → qq̄ → γ⋆, is
possible by measuring the cross section of electron positron
annihilation into hadrons e+e− → γ∗ → qq̄ → hadrons
applying the optical theorem. It is of great importance
for the interpretation of the precision measurement of the
anomalous magnetic moment of the muon aµ in Brookhaven
(E821) [71–74] and for the determination of the value of
the running fine structure constant at the Zo resonance
α(m2

Z), contributing to precision tests of the Standard
model of particle physics, see for details e. g. Jegerlehner
[75], also Davier and Marciano [76], or Teubner et al. [77–
79]. The hadronic correction below about 2 GeV is dom-
inated by the 2π final state, which contributes about 70
% due to the dominance of the ρ−resonance. Other ma-
jor contributions come from the three- and four-pion final
states. These hadronic final states constitute at present
the largest error to the Standard model value of aµ and
α(m2

Z) and can be determined only experimentally be-
cause calculations within perturbative QCD are unrealis-
tic, calculations on the lattice are not yet available with
necessary accuracy, and calculations in the framework of
chiral perturbation theory are restricted to values close
to the reaction thresholds. At energies above about 2 to
2.5 GeV perturbative QCD calculations start to become
possible and reliable, see for Refs. [80,81], also [82].

The Novosibirsk groups CMD−2 [5,83–91] and SND
[92–97] measured hadronic cross sections below 1.4 GeV
by changing the collider energy (energy scan, see pre-
ceding Section 3). The Initial State Radiation method
used by KLOE represents an alternative, independent and
complementary way to determine hadronic cross sections
with different systematic errors. KLOE has determined
the cross section for the reaction e+e− → π+π− in the en-
ergy region between 0.63 and 0.958 GeV by measuring the
reaction e+e− → π+π−γ and applying a radiator function
based on PHOKHARA. It obtained for the hadronic con-
tribution to the anomalous magnetic moment of the muon
due to the 2π final state aππ

µ = (356.7±3.1stat+syst)·10−10

[68]. This value is in good agreement with those from SND
[97] and CMD-2 [91]: aππ

µ = (361.0 ± 5.1stat+syst) · 10−10

and aππ
µ = (361.5 ± 3.4stat+syst) · 10−10, respectively, dif-

fering by 3 standard deviations, however, from the value
for aππ

µ obtained by the analysis of τ -decays into 2 pions

according to τ− → π−πoντ [75–79,98] which, however,
must be corrected for isospin symmetry breaking.

Soon after the application of EVA-PHOKHARA to
KLOE [46] the BABAR collaboration also started the
measurement of hadronic cross sections exploiting ISR
[99] and using PHOKHARA (Section 4.4.2). In recent years
a plethora of final states has been studied, starting with

the reaction e+e− → J/ψ γ → µ+µ− γ [100]. While de-
tecting a hard photon the upper energy for the hadron
cross sections is limited to roughly 4.5 GeV. Final states
with 3, 4, 5, 6 charged and neutral pions , 2 pions and
2 kaons, 4 kaons, 4 pions and 2 kaons, with a φ and a
fo(980), J/ψ and 2 pions or 2 kaons, pions and η, kaons
and η, but also baryonic final states with protons and an-
tiprotons, Λo and Λ̄o, Λo and Σ̄o, Σo and Σ̄o, DD̄, DD̄∗,
and D∗D̄∗ mesons, etc. have been investigated [101–113].
In preparation are final states with 2 pions [114] and 2
kaons. Particularly important final states are those with
4 pions (including ωπo) which contribute significantly to
the muon anomalous magnetic moment and which were
poorly known before the ISR measurements. In many of
these channels additional insights into isospin symmetry
breaking are expected from the comparison between e+e−

annihilation and τ decays.

More recently also Belle joined the ISR programme
with emphasis on final states containing mesons with hid-
den and open charm: J/ψ and ψ(2S), D and D̄, Λc

+Λc
−

[115–122] (Section 4.4.3 ).

A major surprise in recent years was the opening of
a totally new field of hadron spectroscopy applying ISR.
Several new relatively narrow highly excited states with
JPC = 1−−, the quantum numbers of the photon, have
been discovered (preliminarily denoted as X, Y, Z ) at
the B-factories PEP-II and KEKB with the detectors
BABAR and Belle, respectively. The first of them was
found by BABAR in the reaction e+e− → Y (4260) γ →
J/ψ π+π−γ [123,124], a state around 4260 MeV with a
width of 90 MeV, later confirmed by Belle via ISR [125,
116,126] and by CLEO in an direct energy scan [127] and a
radiative return [128] . Another state was detected at 2175
MeV by BABAR in the reaction e+e− → Y (2175) γ →
φfo(980)γ [105]. Belle found new states at 4050, 4360,
4660 MeV in the reactions e+e− → Y γ → J/ψ π+π−γ
and e+e− → Y γ → ψ(2S) π+π−γ [127,117,116]. The
structure of basically all of these new states (if they will
survive) is unknown so far. 4 quark states, e. g. a [cs][c̄s̄]
state for Y (4260), a [ss][s̄s̄] state for Y (2175), hybrid and
molecular structures are discussed, see also [129].

Detailed analyses allow, in addition, also the identi-
fication of intermediate states and consequently a study
of reaction mechanisms. For instance, in the case of the
final state with 2 charged and 2 neutral pions (e+e− →
π+π−πoπoγ) the dominating intermediate states are ωπo

and a1(1260)π, while ρ+ρ− and ρofo(980) contribute sig-
nificantly less.

Many more highly excited states with quantum num-
bers, different from those of the photon, have been found
in decay chains of the primarily produced heavy mesons at
the B -factories PEP-II and KEKB. These analyses with-
out ISR have clearly been triggered and encouraged by
the unexpected discovery of highly excited states with
JPC = 1−− found with ISR.

Also baryonic final states with protons and antipro-
tons, Λo and Λ̄o, Λo and Σ̄o, Σo and Σ̄o have been inves-
tigated using ISR. The effective proton form factor shows
a strong increase down to the pp̄ threshold and nontriv-
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ial structures at invariant pp̄ masses of 2.25 and 3.0 GeV,
so far unexplained [103,130–133]. Furthermore, it should
be possible to disentangle electric and magnetic form fac-
tors and thus shed light on discrepancies between different
measurements of these quantities in the spacelike region
[134].

Prospects for the Radiative Return at the Novosibirsk
collider VEPP2000 and BEPCII are discussed in Sections
4.4.4 and 4.4.5.

4.2 Radiative return: A theoretical overview

4.2.1 Radiative return at leading order

We consider the e+e− annihilation process

e+(p1) + e−(p2) → hadrons + γ(k1) , (1)

where the real photon is emitted either from the initial
state (Fig. 2a) or the final state (Fig. 2b). The former
process is denoted initial state radiation (ISR), while the
latter is called final state radiation (FSR).

The differential rate for the ISR process can be cast
into the product of a leptonic Lµν and a hadronic Hµν

tensor and the corresponding factorized phase space

dσISR =
1

2s
Lµν

ISRHµν

×dΦ2(p1, p2;Q, k1)dΦn(Q; q1, ·, qn)
dQ2

2π
, (2)

where dΦn(Q; q1, ·, qn) denotes the hadronic n-body phase-
space with all the statistical factors coming from the hadro-
nic final state included, Q =

∑

qi and s = (p1 + p2)
2.

e+

e−

h̄

h

γ

(a)

e+

e−

h̄

h

γ

(b)

Fig. 2. Leading order contributions to the reaction e+e− →
h h̄+γ from ISR (a) and FSR (b). Final state particles are pions
or muons, or any other multihadron state. The blob represents
the hadronic form factor.

For an arbitrary hadronic final state, the matrix ele-
ment for the diagrams in Fig. 2a is given by

A
(0)
ISR = M

(0)
ISR · J (0) =

= − e2

Q2
v̄(p1)

(

ε/∗(k1)[k/1 − p/1 +me]γ
µ

2k1 · p1

+
γµ[p/2 − k/1 +me]ε/

∗(k1)

2k1 · p2

)

u(p2) J
(0)
µ , (3)

where Jµ is the hadronic current. The superscript (0) in-
dicates that the scattering amplitude is evaluated at tree-
level. Summing over the polarizations of the final real pho-
ton, averaging over the polarizations of the initial e+e−

state, and using current conservation, Q · J (0) = 0, the
leptonic tensor

L
(0),µν
ISR = M

(0), µ
ISR (M

(0), ν
ISR )† ,

can be written in the following form:

L
(0), µν
ISR =

(4πα)2

Q4

[(

2m2q2(1 − q2)2

y2
1y

2
2

− 2q2 + y2
1 + y2

2

y1y2

)

gµν

+

(

8m2

y2
2

− 4q2

y1y2

)

pµ
1p

ν
1

s
+

(

8m2

y2
1

− 4q2

y1y2

)

pµ
2p

ν
2

s

−
(

8m2

y1y2

)

pµ
1p

ν
2 + pν

1p
µ
2

s

]

, (4)

with

yi =
2k1 · pi

s
, m2 =

m2
e

s
, q2 =

Q2

s
. (5)

The leptonic tensor is symmetric under the exchange of
the electron and the positron momenta. Expressing the
bilinear products yi by the photon emission angle in the
center of mass frame

y1,2 =
1 − q2

2
(1 ∓ β cos θ) , β =

√

1 − 4m2 ,

and rewriting the two-body phase space

dΦ2(p1, p2;Q, k1) =
1 − q2

32π2
dΩ , (6)

it is evident that expression (4) contains several singular-
ities: soft singularities for q2 → 1 and collinear singular-
ities for cos θ → ±1. The former are avoided by requir-
ing a minimal photon energy. The later are regulated by
the electron mass. For s ≫ m2

e, the expression (4) can
be nevertheless safely taken in the limit me → 0 if the
emitted real photon lies far from the collinear region. In
general, however, one encounters spurious singularities in
the phase space integrations if powers of m2 = m2

e/s are
prematurely neglected.

Physics of the hadronic system, whose description is
model dependent, enters through the hadronic tensor

Hµν = J (0)
µ (J (0)

ν )† , (7)

where the hadronic current has to be parameterized through
form factors. For two charged pions in the final state, the
current

J
(0), µ
π+π− = ieF2π(Q2) (q1 − q2)

µ , (8)

where q1 and q2 are the momenta of the π+ and π− re-
spectively, is determined by only one function, the pion
form factor F2π. The current for the µ+µ− final state is
defined obviously by QED:

J
(0), µ
µ+µ− = ie ū(q2)γ

µv(q1) . (9)
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Integrating the hadronic tensor over the hadronic phase
space, one gets

∫

HµνdΦn(Q; q1, ·, qn) =
e2

6π
(QµQν − gµνQ2)R(Q2) ,

(10)
where R(Q2) = σ(e+e− → hadrons)/σ0(e

+e− → µ+µ−),
with

σ0(e
+e− → µ+µ−) =

4π α2

3Q2
(11)

the tree-level muonic cross section in the limit Q2 ≫ 4m2
µ.

After the additional integration over the photon angles,
the differential distribution

Q2 dσISR

dQ2
=

4α3

3s
R(Q2)

{

s2 +Q4

s(s−Q2)
(L− 1)

}

, (12)

with L = log(s/m2
e) is obtained. If instead the photon

polar angle is restricted to be in the range θmin < θ <
π − θmin, this differential distribution is given by

Q2 dσISR

dQ2
=

4α3

3s
R(Q2)

{

s2 +Q4

s(s−Q2)
log

1 + cos θmin

1 − cos θmin

− s−Q2

s
cos θmin

}

. (13)
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Q

 2
 (

nb
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Fig. 3. The suppression of the FSR contributions to the cross
section by a suitable choice of angular cuts. Results from the
PHOKHARA generator. No cuts (upper curves) and suitable
cuts applied (lower curves).

In the later case, the electron mass can be taken equal
to zero before integration, since the collinear region is ex-
cluded by the angular cut. The contribution of the two

pion exclusive channel can be calculated from Eq.(12) and
Eq.(13) with

Rπ+π−(Q2) =
1

4

(

1 − 4m2
π

Q2

)3/2

|F2π(Q2)|2 , (14)

and the corresponding muonic contribution with

Rµ+µ−(Q2) =

√

1 −
4m2

µ

Q2

(

1 +
2m2

µ

Q2

)

. (15)

A potential complication for the measurement of the
hadronic cross-section from the radiative return may arise
from the interplay between photons from ISR and FSR [23].
Their relative strength is strongly dependent on the pho-
ton angle relative to the beam and to the direction of the
final state particles, the c.m. energy of the reaction and
the invariant mass of the hadronic system. While ISR is
independent of the hadronic final state, FSR is not. More-
over, it cannot be predicted from first principles and thus
has to be modeled.

The amplitude for FSR (Fig. 2b) factorizes as well as

A
(0)
FSR = M (0) · J (0)

FSR , (16)

where
M (0)

µ =
e

s
v̄(p1)γµu(p2) . (17)

Assuming that pions are point-like, the FSR current for
two pions in scalar QED (sQED) reads

J
(0), µ
FSR = −i e2 F2π(s)

×
[

−2gµσ + (q1 + k1 − q2)
µ (2q1 + k1)

σ

2k1 · q1

−(q1 − k1 − q2)
µ (2q2 + k1)

σ

2k1 · q2

]

ǫ∗σ(k1) . (18)

Due to momentum conservation, p1 + p2 = q1 + q2 + k1,
and current conservation, this expression can be simplified
further to

J
(0), µ
FSR = 2i e2 F2π(s)

[

gµσ +
qµ
2 q

σ
1

k1 · q1
+
qµ
1 q

σ
2

k1 · q2

]

ǫ∗σ(k1) .

(19)

This is the base model adopted in EVA [23] and in PHO-
KHARA [25–32,35,135] to simulate FSR off charged pi-
ons. The corresponding FSR current for muons is given
by QED.

The fully differential cross section describing photon
emission at leading order can be split into three pieces

dσ(0) = dσ
(0)
ISR + dσ

(0)
FSR + dσ

(0)
INT , (20)

which originate from the squared ISR and FSR amplitudes
respectively, plus the interference term. The ISR–FSR in-
terference, is odd under charge conjugation,

dσ
(0)
INT(q1, q2) = −dσ(0)

INT(q2, q1) , (21)
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0.02

0.0225

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cos θµ+

dσ
(e

+ e− →
µ+ µ− γ)/

dc
os

 θ
µ+

  (
nb

)

10.6 GeVISR+FSR

ISR only

30 o < θγ , θµ < 150 o

√Q 2 < 6 GeV

√Q 2 < 3 GeV

√Q 2 < 1 GeV

Fig. 5. At
√
s=10.6 GeV, angular distribution of π+ (ISR ≃ FSR+ISR) and of µ+ for various Q2 cuts.

and its contribution vanishes after angular integration. It
gives rise, however, to a relatively large charge asymmetry
and, correspondingly, to a forward–backward asymmetry

A(θ) =
Nh(θ) −Nh(π − θ)

Nh(θ) +Nh(π − θ)
. (22)

The asymmetry can be used for calibration of the FSR
amplitude, and fits to the angular distribution A(θ) can
test details of its model dependence [23].

The second option to disentangle ISR from FSR ex-
ploits the markedly different angular distribution of the
photon from the two processes. This observation is com-
pletely general and does not rely on any model like sQED
for FSR. FSR is dominated by photons collinear to the
final state particles, while ISR is dominated by photons
collinear to the beam direction. This suggests that we
should consider only events with photons well separated
from the charged final state particles and preferentially
close to the beam [23,27,28].

This is illustrated in Fig. 3, which has been generated
running PHOKHARA at leading order (LO). After intro-
ducing suitable angular cuts the contamination of events

h

h̄

γ

e+ e−

√
s = 1.02 GeV

γ

e+ e−

√
s = 10.6 GeV

Fig. 6. Typical kinematic configuration of the radiative return
at low and high energies.

with FSR is easily reduced to less than a few per mille.
The price to pay, however, is a suppression of the thresh-
old region too. To have access to that region photons at
large angles need to be tagged, and a better control of FSR
is required. In Fig. 4 the angular distribution of π+ and
µ+ at DAPHNE energies,

√
s = 1.02 GeV, are shown for
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different angular cuts. The angles are defined with respect
to the incoming positron. If no angular cut is applied, the
angular distribution in both cases is highly asymmetric as
a consequence of the ISR–FSR interference contribution.
If cuts suitable to suppress FSR, and therefore the ISR–
FSR interference, are applied, the distributions become
symmetric.

Two complementary analysis are therefore possible.
The small photon angle analysis, where the photon is un-
tagged and FSR can be suppressed below some reasonable
limit. This analysis is suitable for intermediate values of
the invariant mass of the hadronic system. And the large
photon angle analysis, giving access to the threshold re-
gion, where FSR is more pronounced and the charge asym-
metry is a useful tool to probe its model dependence.

These considerations apply, however, to low beam en-
ergies, around 1 GeV. At high energies, e.g. at B-factories,
very hard tagged photons are needed to access the region
with low hadronic invariant masses and the hadronic sys-
tem is mainly produced back to back to the hard photon.
The suppression of FSR is naturally accomplished and no
special angular cuts are needed. This kinematical situation
is illustrated in Fig. 6. The suppression of FSR contribu-
tions to π+π−γ events is also a consequence of the rapid
decrease of the form factor above 1 GeV. The relative size
of FSR is of the order of a few per mil (see Fig. 5). For
µ+µ− in the final state, the amount of FSR depends on

the invariant mass of the muons. For
√

Q2 < 1 GeV FSR
is still tiny, and becomes more relevant for larger values
of Q2 (see Fig. 5).

4.2.2 Structure functions

The original and default version of EVA [23], simulating
the process e+e− → π+π−γ at LO, allowed for additional
initial state radiation of soft and collinear photons by the
structure function (SF) method [136,40].

In the leading logarithmic approximation (LL), the
multiple emission of collinear photons off an electron is
described by the convolution integral

σ(e−X → Y + nγ) =

∫ 1

0

dx fe(x,Q
2)σ(e−X → Y ) ,

(23)
where fe(x,Q

2) is the probability distribution of the elec-
tron with longitudinal momentum fraction x, and Q is
the transverse momentum of the collinear photons. The
function fe(x,Q

2) fulfills the evolution equation

d

d logQ
fe(x,Q

2) =

∫ 1

x

dz

z

α

π

(

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

)

fe(
x

z
,Q2) , (24)

with initial conditions

fe(x,Q
2)
∣

∣

Q2=m2
e

= δ(1 − x) , (25)

and the + prescription defined as

∫ 1

0

dx
f(x)

(1 − x)+
=

∫ 1

0

dx
f(x) − f(1)

(1 − x)
. (26)

The analytic solution to Eq.(24) provided in Ref. [136,
40], allows to resum soft photons to all orders in pertur-
bation theory, accounting for large logarithms of collinear
origin, L = log(s/m2

e), up to two-loops. The resummed
cross section

σSF =

∫ 1

0

dx1

∫ 1

0

dx2D(x1)D(x2)σe+e−→had.+γ(x1x2s) ,

(27)
is thus obtained by convoluting the Born cross-section of
the hard photon emission process e+e− → hadrons + γ
with the SF distribution [136,40]

D(x) = [1 + δN ]
1/2 βe

2
(1 − x)

βe
2 −1

×
{

1

2
(1 + x2) +

1

2

(1 − x)2

L− 1

+
βe

8

(

−1

2
(1 + 3x2) log x− (1 − x)2

)}

, (28)

with
βe = 2

α

π
(L− 1) , (29)

and

δN =
α

π

(

3

2
L+

π2

3
− 2

)

+β2
e

π2

8
+
(α

π

)2
(

11

8
− 2π2

3

)

L2 . (30)

In the SF approach, the additional emission of collinear
photons reduces the effective c.m. energy of the collision
to

√
x1x2s. Momentum conservation is not accomplished

because the extra radiation is integrated out. In order to
reduce the kinematic distortion of the events, a minimal
invariant mass of the observed particles, hadrons plus the
tagged photon, was required in [23], introducing then a cut
dependency. The SF predictions are, thus, not accurate
enough for a high precision measurement of the hadronic
cross section from the radiative return. A next-to-leading
order (NLO) calculation is in order. The NLO prediction
contains the large logarithms L = log(s/m2

e) at order α3

and additional subleading terms, which are not taken into
account within the SF method. Furthermore, it allows for
a better control of the kinematical configurations because
of momentum conservation. A comparison between SF and
NLO predictions can be found in [27].

4.2.3 Radiative return at NLO

At NLO, the e+e− annihilation process in Eq.(1) receives
contributions from one-loop corrections and from the emis-
sion of a second real photon (see Fig. 7). After renormal-
ization, the one-loop matrix elements still contain infrared
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e+

e−

γ∗

M (0)

h̄

h

γ∗

J (0)

M (1) J (1)

M
(0)
ISR J

(0)
FSR

M
(0)
2ISR J

(0)
2FSR

M
(1)
ISR J

(1)
FSR

A2γ
∗

ISR A2γ
∗

FSR

Fig. 7. Typical subamplitudes describing virtual and real cor-
rections to the reaction e+e− → hh̄ + γ(γ), where h = π−,
µ−. The superindices (0) and (1) denote tree-level and one-
loop quantities, respectively. ISR and FSR indicate that real
photons are emitted from the initial or final state. The last
two diagrams, with exchange of two virtual photons are non-
factorizable. Permutations are omitted.

divergences. These are canceled by adding to the one-loop
corrections the two photon contributions. There are sev-
eral well established methods to perform this cancellation.
The slicing method, where amplitudes are evaluated in di-
mensional regularization and the two photon contribution
is integrated analytically in phase space for one of the pho-
ton energies up to an energy cutoff Eγ < w

√
s far below√

s, was used in [25,26] to calculate the NLO corrections to

ISR. The sum of the virtual and soft contributions is finite
although depends on the soft photon cutoff. The contribu-
tion from the emission of the second photon with energy
Eγ > w

√
s, which is evaluated numerically, completes the

calculation and cancels this dependence.
The size and sign of the NLO corrections do depend on

the particular choice of the experimental cuts. Hence, only
using a Monte Carlo event generator one can realistically
compare theoretical predictions with experiment. This is
the main motivation behind PHOKHARA [25–32,35,135].

The full set of scattering amplitudes at tree-level and
one-loop can be constructed from the subamplitudes de-
picted in Fig. 7. The one-loop amplitude with emission of
a single photon is given by

A
(1)
1γ = A

(1)
ISR + A

(1)
FSR

+ M (1) · J (0)
FSR +M

(0)
ISR · J (1)

+ A
2γ∗

ISR + A
2γ∗

FSR , (31)

where

A
(1)
ISR = M

(1)
ISR · J (0) , A

(1)
FSR = M (0) · J (1)

FSR . (32)

While the amplitude with emission of 2 real photons reads

A
(0)
2γ = A

(0)
2ISR + A

(0)
2FSR

+
(

M
(0)
ISR(k1) · J (0)

FSR(k2) + (k1 ↔ k2)
)

, (33)

where

A
(0)
2ISR = M

(0)
2ISR · J (0) , A

(0)
2FSR = M (0) · J (0)

2FSR . (34)

PHOKHARA includes the full LO amplitudes and the
most relevant C-even NLO contributions:

dσ = dσ(0) + dσ
(1)
ISR + dσ

(1)
IFS , (35)

where dσ(0) is the LO differential cross-section (Eq.(20)),

dσ
(1)
ISR =

1

2s

[

2Re

{

A
(1)
ISR

(

A
(0)
ISR

)†}

dΦ3(p1, p2; q1, q2, k1)

+
∣

∣

∣
A

(0)
2ISR

∣

∣

∣

2

dΦ4(p1, p2; q1, q2, k1, k2)

]

, (36)

is the second order radiative corrections to ISR, and

dσ
(1)
IFS =

1

2s

[

2Re

{

M
(0)
ISR · J (1)

(

A
(0)
ISR

)†

+M (1) · J (0)
FSR

(

A
(0)
FSR

)†}

dΦ3(p1, p2; q1, q2, k1)

+

(

∣

∣

∣
M

(0)
ISR(k1) · J (0)

FSR(k2)
∣

∣

∣

2

+ (k1 ↔ k2)

)

× dΦ4(p1, p2; q1, q2, k1, k2)

]

, (37)

is the contribution of events with simultaneous emission of
one photon from the initial state and another one from the
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final state, together with ISR amplitudes with final state
one-loop vertex corrections, and FSR amplitudes with ini-
tial state one-loop vertex corrections.

Vacuum polarization corrections are included in the
hadronic currents multiplicatively:

J (i) → CVP(Q2)J (i) ,

J
(i)
FSR(kj) → CVP((Q+ kj)

2)J
(i)
FSR(kj) ,

J
(0)
2FSR → CVP(s)J

(0)
2FSR . (38)

The virtual photon propagator is included by definition in

the leptonic subamplitudes M (i) and M
(i)
ISR, and M

(0)
2ISR:

M (i) ∼ 1

s
,

M
(i)
ISR(kj) ∼

1

(p1 + p2 + kj)2

M
(0)
2ISR ∼ 1

Q2
. (39)

Neither diagrams where two photons are emitted from
the final state nor final-state vertex corrections with as-
sociated real radiation from the final state are included.
These constitute radiative corrections to FSR and will give
non-negligible contributions only for those cases, where at
least one photon is collinear with one of the final state par-
ticles. Box diagrams with associated real radiation from
the initial- or the final-state leptons, as well as pentagon
diagrams, are also neglected. As long as one considers
charge symmetric observables only, their contribution is
neither divergent in the soft nor the collinear limit and
thus of order α/π without any enhancement factor. One
should stress that PHOKHARA includes only C-even gauge
invariant sets of diagrams at NLO. The missing contribu-
tions are either small, or do not contribute for charge sym-
metric cuts. Their implementation is, however, underway.

The calculation of the NLO corrections to ISR, dσ
(1)
ISR,

is independent of the final state. These corrections are
included by default for all the final state channels imple-
mented in PHOKHARA, and can be easily implemented
for any other new channel, with the sole substitution of
the tree-level final state current. The radiative corrections
of the IFS process depend on the final state. The latest
version of PHOKHARA (version 6.0 [35]) includes these
corrections for two charged pions, kaons and muons.

Virtual and soft corrections to ISR
The virtual and soft QED corrections to ISR in e+e−

annihilation were originally implemented in PHOKHARA
through the leptonic tensor. For future applications, how-
ever, it will be more convenient to implement those cor-
rections directly at the amplitude level (in preparation).
In terms of subamplitudes, the leptonic tensor is given by

Lµν
ISR = L

(0),µν
ISR +M

(1), µ
ISR

(

M
(0), ν
ISR

)†
+M

(0), µ
ISR

(

M
(1), ν
ISR

)†

+
1

2(2π)d−1

∫ w
√

s

0

Ed−3 dE dΩM
(0), µ
2ISR

(

M
(0), ν
2ISR

)†
,

(40)

where E and Ω are the energy and the solid angle of the
soft photon, respectively, and d = 4 − 2ǫ is the number
of dimensions in dimensional regularization. The leptonic
tensor has the following general form:

Lµν
ISR =

(4πα)2

Q4

[

a00 g
µν + a11

pµ
1p

ν
1

s
+ a22

pµ
2p

ν
2

s

+ a12
pµ
1p

ν
2 + pµ

2p
ν
1

s
+ iπ a−1

pµ
1p

ν
2 − pµ

2p
ν
1

s

]

, (41)

where the scalar coefficients aij and a−1 allow the follow-
ing expansion:

aij = a
(0)
ij +

α

π
a
(1)
ij , a−1 =

α

π
a
(1)
−1 . (42)

The imaginary antisymmetric piece, which is proportional
to a−1, appears for the first time at second order, and is
particularly relevant for those cases where the hadronic
current receives contributions from different amplitudes
with non-trivial relative phases. This is possible, e.g. for
final states with three or more mesons or for pp̄ produc-
tion.

The LO coefficients a
(0)
ij can be read directly from Eq.(4)

a
(0)
00 =

2m2q2(1 − q2)2

y2
1y

2
2

− 2q2 + y2
1 + y2

2

y1y2
,

a
(0)
11 =

8m2

y2
2

− 4q2

y1y2
, a

(0)
22 = a

(0)
11 (y1 ↔ y2) ,

a
(0)
12 = −8m2

y1y2
. (43)

The NLO coefficients a
(1)
ij and a

(1)
−1 are obtained by

combining the one-loop and the soft contributions. It is

convenient to split the coefficients a
(1)
ij into a part that

contributes at large photon angles and a part proportional
to m2

e and m4
e which is relevant only in the collinear re-

gions. These coefficients are denoted by a
(1,0)
ij and a

(1,m)
ij

respectively:

a
(1)
ij = a

(0)
ij

[

− log(4w2)[1 + log(m2)]

− 3

2
log(

m2

q2
) − 2 +

π2

3

]

+ a
(1,0)
ij + a

(1,m)
ij . (44)

The factor proportional to the LO coefficients a
(0)
ij con-

tains usual soft and collinear logarithms. The quantity w
denotes the dimensionless value of the soft photon energy
cutoff: Eγ < w

√
s. It is enough to present four out of the

five coefficients because exchanging the positron with the
electron momenta leads to the symmetric relationship

a
(1)
22 = a

(1)
11 (y1 ↔ y2) . (45)
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The large-angle contributions have been calculated in
Ref. [25]. The coefficient proportional to gµν reads

a
(1,0)
00 =

1

y1 y2

[

− q2(1 − q2)

2
− y1y2 −

[

q2 +
2y1y2
1 − q2

]

log(q2)

+

{

y1
2

[

4 − y1 −
3(1 + q2)

1 − y2

]

log(
y1
q2

)

−
[

1 + (1 − y2)
2 +

y1q
2

y2

]

L(y1) + (y1 ↔ y2)

}]

.

(46)

The coefficient in front of the tensor structure pµ
1p

ν
1 , is

given by

a
(1,0)
11 =

1

y1 y2

[

(1 + q2)2
(

1

1 − y1
− 1

1 − q2

)

− 4(1 − y2)y1
1 − q2

− 2q2

1 − q2

[

(1 − y2)

(

1

y2
+
q2

y1
+

2y1
1 − q2

)

+
2q2

1 − q2

]

log(q2) − q2
[

1 +
2

y2

]

log(
y1
q2

)

− q2
[

(2 − 3y1)(1 − y2)
2

y1(1 − y1)2

]

log(
y2
q2

)

− 2q2
[

1 +
1

y2
2

]

L(y1) − 2q2
[

3 +
2q2

y1
+
q4

y2
1

]

L(y2)

]

.

(47)

For the symmetric tensor structure (pµ
1p

ν
2 +pµ

2p
ν
1), one gets

a
(1,0)
12 =

1

y1 y2

[

− 4q2 + (y1 − y2)
2

1 − q2

− 2q2
[

q2

y1y2
+

1 + q2 − 2y1y2
(1 − q2)2

]

log(q2) +

{

q2

1 − y1

− 2q2

1 − y2

[

1 − y1 +
q2

y2
− q2

2(1 − y2)

]

log(
y1
q2

)

− 2q2
[

1 +
q2

y2
+
q2

y2
2

]

L(y1) + (y1 ↔ y2)

}]

. (48)

Finally, the antisymmetric coefficient a−1, accompanying
(pµ

1p
ν
2 − pµ

2p
ν
1), reads

a
(1,0)
−1 =

q2

y1 y2

[

2 log(1 − y1)

y1
+

1 − q2

1 − y1
+

q2

(1 − y1)2

]

− (y1 ↔ y2) . (49)

The mass-suppressed coefficients a
(1,m)
ij are given by [26]

a
(1,m)
00 =

m2q2

y2
1

[

log(q2) log(
y4
1

m4q2
) + 4Li2(1 − q2)

+ Li2(1 − y1
m2

) − π2

6

]

− m2(1 − q2)

y2
1

[

1 − log(
y1
m2

)

+
m2

y1

(

Li2(1 − y1
m2

) − π2

6

)]

+
q2

2
n(y1,

1 − 3q2

q2
)

+ (y1 ↔ y2) , (50)

and

a
(1,m)
11 =

q2

1 − q2

{

4m2

y2
1

[

1 − log(
y1
m2

)

+
m2

y1

(

Li2(1 − y1
m2

) − π2

6

)]

− n(y1, 1)

+
2m2q2

y1(m2(1 − q2) − y1)

[

1

q2
log(

y1
m2

) +
log(q2)

1 − q2

+

(

1 +
m2

m2(1 − q2) − y1

)

N(y1)

]}

+

+
1

1 − q2

{

4m2(1 − q2)

y2
2

[

log(q2) log(
y4
2

m4q2
)

+ 4Li2(1 − q2) + 2

(

Li2(1 − y2
m2

) − π2

6

)]

+
4m2q2

y2
2

[

1 − log(
y2
m2

) +

(

1 +
m2

y2

)(

Li2(1 − y2
m2

)

− π2

6

)]

− 1 − 2q4

q2
n(y2,

3 − 8q2 + 6q4

1 − 2q4
)

+
2m2

y2(m2(1 − q2) − y2)

[

1

q2
log(

y2
m2

) +
log(q2)

1 − q2

+

(

3 +
m2

m2(1 − q2) − y2

)

N(y2)

]}

, (51)

and

a
(1,m)
12 =

q2

1 − q2

{

4m2

y2
1

[

1 − log(
y1
m2

)

+

(

1

2
+
m2

y1

)(

Li2(1 − y1
m2

) − π2

6

)]

− 1 − q2

q2
n(y1,

1

1 − q2
) +

2m2

y1(m2(1 − q2) − y1)

×
[

1

q2
log(

y1
m2

) +
log(q2)

1 − q2

+

(

2 +
m2

m2(1 − q2) − y1

)

N(y1)

]}

+ (y1 ↔ y2) .

(52)

The asymmetric coefficient does not get mass corrections:

a
(1,m)
−1 = 0 . (53)

These results are written in terms of the function

L(yi) = Li2(−
yi

q2
) − Li2(1 − 1

q2
)

+ log(q2 + yi) log(
yi

q2
) , (54)

where Li2 is the Spence or dilogarithm function, and the
functions n(yi, z) and N(yi), which are defined through

n(yi, z) =
m2

yi(m2 − yi)

[

1 + z log(
yi

m2
)

]

+
m2

(m2 − yi)2
log(

yi

m2
) , (55)
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and

N(yi) = log(q2) log(
yi

m2
) + Li2(1 − q2)

+ Li2(1 − yi

m2
) − π2

6
. (56)

The apparent singularity of the function n(yi, z) inside
the limits of phase space is compensated by the zero in
the numerator. In the region yi close to m2 it behaves as

n(yi, z)
∣

∣

yi→m2 =
1

yi

[

1 + z log(
yi

m2
)

]

− 1

m2

∑

n=0

(

1

n+ 2
+

z

n+ 1

)

(

1 − yi

m2

)n

.

(57)

Similarly, the function N(yi) guaranties that the coeffi-

cients a
(1)
ij are finite in the limit yi → m2(1 − q2):

m2N(yi)

m2(1 − q2) − yi

∣

∣

∣

∣

yi→m2(1−q2)

= − log(1 − q2)

q2
− log(q2)

1 − q2
.

(58)

Virtual and soft corrections to IFS

The virtual plus soft photon corrections of the initial-
state and final-state vertex (see Eq.(37)) to FSR and ISR,
respectively, can be written as [137,138]

dσV+S
IFS =

α

π

[

δV+S(w) dσ
(0)
FSR(s)

+ ηV+S(s′, w) dσ
(0)
ISR(s′)

]

, (59)

where dσ
(0)
FSR and dσ

(0)
ISR are the leading order FSR and ISR

differential cross sections, respectively, w = Ecut
γ /

√
s, with

Ecut
γ the maximal energy of the soft photon in the e+e−

c.m. rest frame, and s′ corresponds to the squared mass
of the hh̄γ system. The function δV+S(w) is independent
of the final state. In the limit m2

e ≪ s:

δV+S(w) = 2

[

(L − 1) log (2w) +
3

4
L− 1 +

π2

6

]

, (60)

where L = log(s/m2
e). For two pions in the final state, the

function ηV+S(s′, w) is given by

ηV+S(s′, w) = −2

[

1 + β2
π

2βπ
log(tπ) + 1

]

×
[

log(2w) + 1 +
s′

s′ − s
log
( s

s′

)

]

+ log

(

m2
π

s′

)

− 1 + β2
π

βπ

[

2Li2(1 − tπ) + log(tπ) log(1 + tπ) − π2

2

]

− 2 + β2
π

βπ
log(tπ) − 2 , (61)

where

βπ =

√

1 − 4m2
π

s′
, tπ =

1 − βπ

1 + βπ
. (62)

The function ηV+S(s′, w) is equivalent to the familiar
correction factor derived in [139] for the reaction e+e− →
π+π−γ in the framework of sQED (see also [140]) in the
limit s→ s′:

log(2w) + 1 +
s′

s′ − s
log
( s

s′

)

∣

∣

∣

∣

s→s′

= log(2w′) (63)

with w′ = Ecut
γ /

√
s′. The factor in the right hand side

of Eq.(63) for s 6= s′ arises from defining the soft photon
cutoff in the e+e− laboratory frame.

Correspondingly, the function ηV+S(s′, w) for two muons
in the final state reads

ηV+S(s′, w) = −2

[

1 + β2
µ

2βµ
log(tµ) + 1

]

×
[

log(2w) + 1 +
s′

s′ − s
log
( s

s′

)

]

+ log

(

m2
µ

s′

)

−
1 + β2

µ

2βµ

[

4Li2(1 − tµ) − 2 log(tµ) log

(

1 + βµ

2

)

− π2

]

− 1

βµ

[

3

3 − β2
µ

+ β2
µ

]

log(tµ) − 2 , (64)

where

βµ =

√

1 −
4m2

µ

s′
, tµ =

1 − βµ

1 + βµ
. (65)

Real corrections

Matrix elements for the emission of two real photons

e+(p1) + e−(p2) → hadrons (Q) + γ(k1) + γ(k2) , (66)

are calculated in PHOKHARA following the helicity am-
plitude method with the conventions introduced in [141,
142]. The Weyl representation for fermions is used where
the Dirac matrices

γµ =

(

0 σµ
+

σµ
− 0

)

, µ = 0, 1, 2, 3 , (67)

are given in terms of the unit 2 × 2 matrix I and the
Pauli matrices σi, i = 1, 2, 3, with σµ

± = (I,±σi). The
contraction of any four-vector aµ with the γµ matrices
has the form

a/= aµγ
µ =

(

0 a+

a− 0

)

, (68)

where the 2 × 2 matrices a± are given by

a± = aµσ±
µ =

(

a0 ∓ a3 ∓(a1 − ia2)
∓(a1 + ia2) a0 ± a3

)

. (69)
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The helicity spinors u and v for a particle and an
antiparticle of four-momentum p = (E,p) and helicity
λ = ±1/2 are given by

u(p, λ = ±1/2) =

(√

E ∓ |p| χ(p,±)
√

E ± |p| χ(p,±)

)

≡
(

uI

uII

)

,

v(p, λ = ±1/2) =

(

∓
√

E ± |p| χ(p,∓)

±
√

E ∓ |p| χ(p,∓)

)

≡
(

vI

vII

)

.

(70)

The helicity eigenstates χ(p, λ) can be expressed in terms
of the polar and azimuthal angles of the momentum vector
p as

χ(p,+) =

(

cos (θ/2)
eiφ sin (θ/2)

)

,

χ(p,−) =

(

−e−iφ sin (θ/2)
cos (θ/2)

)

. (71)

Finally, complex polarization vectors in the helicity basis
are defined for the real photons:

εµ(ki, λi = ±) =
1√
2

(

0,∓ cos θi cosφi + i sinφi,

∓ cos θi sinφi − i cosφi,± sin θi

)

, (72)

with i = 1, 2.

Phase space

One of the key ingredient of any Monte Carlo simula-
tion is an efficient generation of the phase-space. The gen-
eration of the multiparticle phase space in PHOKHARA
is based on the following Lorentz-invariant representation:

dΦm+n(p1, p2; k1, ·, km, q1, ·, qn) =

dΦm(p1, p2;Q, k1, ·, km)dΦn(Q; q1, ·, qn)
dQ2

2π
, (73)

where p1 and p2 are the four-momenta of the initial par-
ticles, k1 . . . km are the four momenta of the emitted pho-
tons and q1 . . . qn, with Q =

∑

qi, label the four-momenta
of the final state hadrons.

When two particles of the same mass are produced in
the final state, q2i = M2, their phase space is given by

dΦ2(Q; q1, q2) =

√

1 − 4M2

Q2

32π2
dΩ , (74)

where dΩ is the solid angle of one of the final state parti-
cles at, for instance, the Q2 rest frame.

One single photon emission is described by the corre-
sponding leptonic part of phase space

dΦ2(p1, p2;Q, k1) =
1 − q2

32π2
dΩ1 , (75)

with q2 = Q2/s and dΩ1 the solid angle of the emitted
photon at the e+e− rest frame. The polar angle θ1 is de-
fined with respect to the positron momentum p1. In order

to make the Monte Carlo generation more efficient, the
following substitution is performed:

cos θ1 =
1

β
tanh(β t1) , t1 =

1

2β
log

1 + β cos θ1
1 − β cos θ1

, (76)

with β =
√

1 − 4m2
e/s, which accounts for the collinear

emission peaks

d cos θ1
1 − β2 cos2 θ1

= dt1 . (77)

Then, the azimuthal angle and the new variable t1 are
generated flat.

Considering the emission of two real photons in the
c.m. of the initial particles, the four-momenta of the positron,
the electron and the two emitted photons are given by

p1 =

√
s

2
(1, 0, 0, β) , p2 =

√
s

2
(1, 0, 0,−β) ,

k1 = w1

√
s(1, sin θ1 cosφ1, sin θ1 sinφ1, cos θ1) ,

k2 = w2

√
s(1, sin θ2 cosφ2, sin θ2 sinφ2, cos θ2) , (78)

respectively. The polar angles θ1 and θ2 are defined again
with respect to the positron momentum p1. Both photons
are generated with energies larger than the soft photon
cutoff: wi > w with i = 1, 2. At least one of these exceeds
the minimal detection energy: w1 > Emin

γ /
√
s or w2 >

Emin
γ /

√
s. In terms of the solid angles dΩ1 and dΩ2 of the

two photons and the normalized energy of one of them,
e.g. w1, the leptonic part of phase space reads

dΦ3(p1, p2;Q, k1, k2) =
1

2!

s

4(2π)5

× w1w
2
2

1 − q2 − 2w1
dw1 dΩ1 dΩ2 , (79)

where the limits of the phase space are determined from
the constraint

q2 = 1 − 2(w1 + w2) + 2w1w2(1 − cosχ12) , (80)

with χ12 being the angle between the two photons

cosχ12 = sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2 . (81)

Again, the matrix element squared contains several
peaks, soft and collinear, which should be softened by
choosing suitable substitutions in order to achieve an ef-
ficient Monte Carlo generator. The leading behaviour of
the matrix element squared is given by 1/(y11 y12 y21 y22),
where

yij =
2ki · pj

s
= wi(1 ∓ β cos θi) . (82)

In combination with the leptonic part of phase space, we
have

dΦ3(p1, p2;Q, k1, k2)

y11 y12 y21 y22
∼ dw1

w1(1 − q2 − 2w1)

× dΩ1

1 − β2 cos2 θ1

dΩ2

1 − β2 cos2 θ2
. (83)
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The collinear peaks are then flattened with the help of
Eq.(76), with one change of variables for each photon polar
angle. The remaining soft peak, w1 → w, is reabsorbed
with the following substitution

w1 =
1 − q2

2 + e−u1
, u1 = log

w1

1 − q2 − 2w1
, (84)

or

dw1

w1(1 − q2 − 2w1)
=

du1

1 − q2
, (85)

where the new variable u1 is generated flat. Multi-channeling
is used to absorb simultaneously the soft and collinear
peaks, and the peaks of the form factors.

NLO cross-section and theoretical uncertainty

The LO and NLO predictions for the differential cross
section of the process e+e− → π+π−γ(γ) at DAΦNE ener-
gies,

√
s = 1.02 GeV, are presented in Figure 8 as a func-

tion of the invariant mass of the hadronic system Mππ.
We choose the same kinematical cuts as in the small an-
gle analysis of KLOE [68]; pions are restricted to be in
the central region, 50o < θπ < 130o, with |pT | > 160 MeV
or |pz| > 90 MeV, the hard photon is not tagged and the
sum of the momenta of the two pions, which flows in the
opposite direction to the photon’s momenta, is close to the
beam (θππ < 15o or θππ < 165o). The track mass, which
is calculated from the equation

(√
s−

√

|pπ+ |2 +M2
trk −

√

|pπ− |2 +M2
trk

)2

−(pπ+ + pπ−)2 = 0 , (86)

lies within the limits 130 MeV< Mtrk < 220 MeV and
Mtrk < (250− 105

√

1 − (M2
ππ/0.85)2) MeV, with Mππ in

GeV, in order to reject µ+µ− and π+π−π0 events. The
cut on the track mass, however, do not have any effect for
single photon emission, as obviously Mtrk = mπ for such
events.

The lower plot in Figure 8 shows the relative size, with
respect to the LO prediction, of FSR at LO, ISR correc-
tions at NLO, and IFS contributions. The NLO ISR radia-
tive corrections are almost flat and of the order of −8%,
FSR is clearly below 1%, while IFS corrections are also
small although they become of the order of a few per cent
at high values of Mππ.

To estimate the systematic uncertainty of the NLO
prediction, we observe that leading logarithmic two-loop
O(α2) corrections and the associate real emission are not
included. For samples with untagged photons the process
e+e− → e+e−π+π− might also become a sizable back-
ground. This process, however, can be simulated with the
Monte Carlo event generator EKHARA [143,144]. Its con-
tribution ranges from 0.2− 0.8% and has been taken into
account in the KLOE analysis [68].

From näıve exponentiation one expects that LL correc-
tions at next-to-next-to-leading order (NNLO) are of the
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Fig. 8. Differential cross section for the process e+e− →
π+π−γ at LO and NLO for

√
s = 1.02 GeV. The cuts are

the same as in the small angle analysis of KLOE, including the
cut on the track mass. The lower plot shows the relative size
of FSR at LO, ISR at NLO and IFS contributions with respect
to the full LO prediction.

order of 1
2 (3

2 (α/π) log(s/m2
e))

2 ≈ 0.1–0.2% for inclusive
observables. For less inclusive distributions, a larger error
is expected. The conservative estimate of the accuracy of
PHOKHARA from ISR is 0.5%. This has been confirmed
by comparisons with KKMC [145,146], where the biggest
observed difference is about 0.3% in the invariant mass
regions, which are not close to the nominal energies of the
experiments. Improving the accuracy of PHOKHARA be-
low 0.5%, however, will be required to meet the growing
experimental requirements in the near future.

4.2.4 FSR beyond sQED∗VMD model

The model of the FSR emission from pions described in
details in Sections 4.2.1 and 4.2.3 will be called for short
the sQED∗VMD model. A question arises how well it
can reflect the data. As it is shown in [10], the first two
terms in the expansion of the FSR amplitude as a func-

tion of k0/
√

Q2 (i.e. the divergence and the constant)



14 P. Beltrame et al.: Quest for understanding hadrons at low energies: Monte Carlo tools vs. experimental data

are fully given by the pion form factor. Thus only for
a hard photon emission one could expect that going be-
yond this approximation is necessary. Moreover the pion
form factor is extremely big in the ρ resonance region
and thus the validity of this approximation is further ex-
tended. In the kinematical regions, where there are reso-
nance contributions not contained in the pion form fac-
tor and also near the π+π− threshold, where the emit-
ted photon is hard and the pion form factor is relatively
small, going beyond the sQED∗VMD model is necessary
and one needs more general description of the amplitude
M(γ∗(Q) → γ(k) + π+(q1) + π−(q2)).

In the general case the amplitude of the reaction
γ∗(Q) → γ(k) + π+(q1) + π−(q2) depends on three 4-
momenta, which can be chosen asQ, k, and l ≡ q1−q2. The
second-rank Lorentz tensor Mµν(Q, k, l), that describes
the FSR amplitude, can be decomposed through 10 inde-
pendent tensors [147,148]. Taking into account the charge
conjugation symmetry of the S-matrix element
(〈γ(k), π+(q1)π

−(q2)|S|γ∗(Q)〉 =
〈γ(k), π−(q1)π

+(q2)|S|γ∗(Q)〉),
the photon crossing symmetry (Q ↔ −k and µ ↔ ν)
and the gauge invariance conditions QµM

µν(Q, k, l) = 0
and Mµν

F (Q, k, l)kν = 0, the number of the independent
tensors decreases to five. For the final real photon, i.e.
k2 = 0 and kνǫν = 0 (ǫν is the polarization vector of the
final photon) and the initial virtual photon produced in
e+e− annihilation ( Q2 ≥ 4m2

π), the FSR tensor can be
rewritten in the terms of three gauge invariant tensors[147,
148]

Mµν(Q, k, l) = τµν
1 f1 + τµν

2 f2 + τµν
3 f3, (87)

where the gauge invariant tensors τµν
i read

τµν
1 = kµQν − gµνk ·Q,
τµν
2 = k · l(lµQν − gµνk · l) + lν(kµk · l − lµk ·Q),

τµν
3 = Q2(gµνk · l − kµlν) +Qµ(lνk ·Q−Qνk · l).(88)

It thus follows that the evaluation of the FSR tensor
amounts to the calculation of the scalar functions

fi(Q
2, Q · k, k · l) (i = 1, 2, 3).

As it is clear from the above discussion, the extrac-
tion of the pion form factor from radiative return exper-
iments is a demanding task. The main problem is that
in the same experiments one has to test the models de-
scribing the pion-photon interactions (see Section 4.3) and
to extract the pion form factor needed for the evaluation
of the muon anomalous magnetic moment. Fortunately,
there are event selections, which naturally suppress the
FSR contributions, independently on their nature. These
were already discussed in Section 4.2.1 in the context of
sQED∗VMD model.

Extensive theoretical studies of the role of the FSR
emission beyond sQED∗VMD model were performed [31,
41,43,45,44]. They are important mainly for the KLOE
measurements at DAPHNE as at B- meson factories the
FSR is naturally suppressed and the accuracy needed in
its modeling is by far less demanding than for the KLOE
purposes.

For DAPHNE, running on or near the φ resonance,
the following mechanisms of the π+π− final state photon
emission have to be considered:

bremsstrahlung process

e+ + e− → π+ + π− + γ , (89)

which is modelled by sQED∗VMD;
φ direct decay

e+ + e− → φ→ (f0; f0 + σ)γ → π+ + π− + γ , (90)

and double resonance process

e+ + e− → (φ;ω′) → ρπ → π+ + π− + γ . (91)

The resonance chiral theory (RχT) [149,150] was used in
[43,44] to estimate the contributions beyond sQED∗VMD.
They were implemented at the leading order into an event
generator FASTERD [45]. Having in mind that at present
the models still await accurate experimental tests, in the
event generator FASTERD other models [151,152] were
also implemented. To include both next-to-leading-order
radiative corrections and the discussed mechanisms of the
FSR production, a part of the FASTERD code, based on
models [151,152], was implemented by O. Shekhovtsova in
PHOKHARA6.0 (PHOKHARA6.1 [153]) and the studies
presented below are based on this code. The model used
there, even if far from an ideal, is the best tested model
available in literature.

We shortly describe main features of the models used
to describe processes contributing to FSR photon emis-
sion listed above. For more detailed description and the
calculation of the function fi we refer the reader to [31,
41,45] (see also references therein).

The sQED∗VMD part gives contributions to f1 and
f2.

The φ direct decay is assumed to proceed through the
intermediate scalar meson state: φ → (f0 + σ)γ → ππγ.
Various models are proposed to describe the φ-scalar-γ
vertex: either it is the direct decay φ → (scalar)γ or the
vertex is generated dynamically through the loop of the
charged kaons. As shown in [41], in the framework of any
model the φ direct decay affects only the form factor f1
of Eq. (87).

The double resonance contribution consists of the off-
shell φ meson decay into (ρ±π∓) and subsequent decay
ρ→ πγ. In the energy region around 1 GeV the tail of the
excited ω meson can also play a role and γ∗ → ω′ → ρπ
has to be considered. The double resonance mechanism
affects all three form factors fi of Eq. (87).

Assuming isospin symmetry, this part can be deduced
from the measurement of the neutral pion pair production.
Various models [151,152] were confronted with data by
KLOE [154] for the neutral mode. The model, which was
reproducing the data in the best way was adopted to be
used for the charged pion pair production relying on the
isospin symmetry [153].

In [31] it was shown that an important tool for testing
of the various models of the FSR emission is the charge
asymmetry. At the leading order it originates from the
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fact that the pion pair couples to even (odd) number of
photons if the final state photon is emitted from the final
(initial) state. The interference diagrams do not give con-
tribution to the integrated cross section for C–even event
selections but produce asymmetry in the angular distri-
bution. The definitions and experimental studies based on
the charge asymmetry are presented in Section 4.3.2

Few strategies can be adopted how to profit in the
best way from the KLOE data taken on and off peak. The
’easiest’ part is to look for the event selections, where the
FSR contributions are negligible. This was performed by
KLOE [68] (see Section 4.4.1), giving important informa-
tion on the pion form factor relevant for the prediction of
the hadronic contributions to the muon anomalous mag-
netic moment aµ. Typical contributions of the FSR (1%-
4%) to the differential cross section (Fig. 8 and 9) allow for
excellent control on the accuracy of these corrections. One
disadvantage of using this event selection is that it does
not allow to perform measurements in the pion production
threshold region.
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Fig. 9. Relative contribution of the FSR to the differential
cross section of the reaction e+e− → π+π−γ(γ) for

√
s = mφ

and low invariant masses of pion pairs. KLOE small angle event
selection [68] was used and for this event selection the relative
contribution of the FSR is almost identical also for off peak
cross section. The effect of mass track cut (see Section 4.4.1)
is shown. ISRNLO refers to initial state correction at next to
leading order (NLO). IFSNLO cross section contains the final
states emission at NLO.

The next step, partly discussed in Section 4.3.2, is to
confront the models based on the isospin symmetry and
the neutral channel data with charged pion data taken
off peak, where the contributions from models beyond
sQED∗VMD approximation is relatively small (Fig. 10).
For the off peak data [155] the region below Q2 = 0.3GeV2

can be covered experimentally, however, the small statis-
tics in this region makes it difficult to perform high-precision
tests of the models. For this analysis an accurate knowl-
edge of the pion form factor at the nominal energy of the
experiment is important as it defines the sQED∗VMD pre-
dictions and the FSR corrections (Fig. 11) are sizable.
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√
s = 1GeV.

The last step, which allows for the most accurate FSR
model testing and profits from the knowledge of the pion
form factor from previous analysis, is the on peak large an-
gle measurement. The large FSR corrections coming from
sources beyond sQED∗VMD approximation (Fig. 10 and
11) makes these data [156] the most valuable source of in-
formation on these models. In this case the accumulated
data set is much larger then the off peak data and one is
able to cover also the region below Q2 = 0.3GeV2.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q2 (GeV2)

d
σ
(I

F
S
N

L
O

(T
O

T
))

d
Q

2
/

d
σ
(I

S
R

N
L
O

)
d
Q

2
−

1

50o < θπ± < 130o

50o < θγ < 130o

s = m2
φ GeV2

s = 1 GeV2
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and for
√
s = 1GeV. KLOE large angle event selection [155,

156] was used.
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4.3 Experiment confronting theory

4.3.1 Study of the process e+e− → π+π−γ with FSR with
CMD-2 detector at VEPP-2M

The study of the process e+e− → π+π−γ with photon
radiation in the final state from the pions can be used to
answer the question whether one can treat pions as point-
like particles and apply scalar QED in the calculation of
the radiative corrections to the cross section. In particular,
one can compare the photon spectra obtained using scalar
QED with the ones found in data.

The radiative corrections due to photon emission in
the final state contribute about 1% to the cross section.
The hadronic contribution to (g-2)/2 of the muon from
the process e+e− → π+π− amounts to 50 ppm, while
the anomalous magnetic moment of the muon was mea-
sured in the E821 experiment at BNL with an accuracy of
0.5 ppm [73]. Therefore the theoretical uncertainty on the
cross section calculation of the process e+e− → π+π−γ
should be better than 1% to be able to neglect the error
of this contribution with respect to the 0.5 ppm. These
facts are the main motivation to study this process.

In the following, the preliminary results of the analysis
of the process e+e− → π+π−γ with final state radiation
are presented. The analysis is based on an integrated lu-
minosity about 1.2 pb−1. The data were collected in the
c.m. energy range from 720 MeV to 780 MeV. Pions were
considered as point-like objects and scalar QED was ap-
plied to describe the photon radiation in the final state.
The main conclusion of this analysis is that one can indeed
treat pions as point-like objects, and that this approach
is giving sufficient accuracy for many applications.

Event selection

For the analysis, the data were taken in a c.m. en-
ergy range from 720 MeV to 780 MeV, with the pho-
ton detected in the CsI calorimeter of the CMD-2 experi-
ment. Events from the processes e+e− → e+e−γ, e+e− →
µ+µ−γ have a very similar signature in the detector com-
pared to e+e− → π+π−γ events. In addition the cross
section of the process e+e− → π+π−γ with a final state
photon is more than ten times smaller than the one for
the similar process with a photon radiated in the initial
state. On the other hand, the cross section of the process
e+e− → π+π−γ has a resonant shape in the studied en-
ergy region due to the presence of the ρ-meson. This allows
to enhance significantly the fraction of events e+e− →
π+π−γ with final state photons. Selecting events below
the ρ-resonance, the photon radiation from the initial state
will decrease the cross section, whereas the process with
a final state photon practically has no energy dependance.
Several curves describing the ratio σFSR+ISR

π+π−γ /σISR
π+π−γ plot-

ted against the c.m.energy are presented in Fig. 12 for
different energy thresholds for photon detection in the
calorimeter. It is clearly visible that the optimal energy
range to be used in this study goes from 720 MeV up to
780 MeV.

It can also be seen that the cross section ratio increases
with the energy threshold for photons. The fraction of
π+π−γ events with a final state radiation photon increases
with photon energy. This allows to enrich the spectrum of
π+π−γ events with FSR. Of special interest is the part of
the photon spectra in which the photon energy is of the
same order as the pion mass or larger.
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Fig. 12. (a) Ratio σISR+F SR/σISR vs c.m.energy. The set
of curves indicates how this ratio depends on the detection
threshold energy for photons. The threshold energy in MeV is
stated over the curves.

Fig. 13. (b) Distributions of the parameter W for events of
the processes e+e− → π+π−γ, e+e− → µ+µ−γ and e+e− →
e+e−γ, for a c.m.-energy of 780 MeV.

A typical π+π−γ event in the CMD-2 detector has two
tracks in the drift chamber with two ascociated clusters
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in the CsI calorimeter and a third cluster representing the
radiated photon. To suppress multiphoton events and sig-
nificantly cut off the collinear π+π− events the following
requirements were applied: The angle between the pho-
ton direction and the missing momentum must be larger
than 1 rad and the angle between anyof the tracks and the
photon direction must be larger than 0.2 rad.

To suppress e+e−γ events, a parameter W = p/E was
used, in which the particle momentum p (measured in the
drift chamber) is divided by the energy E (measured in
the CsI calorimeter). Simulation results are presented in
Fig. 13. The condition W < 0.4 reduces the electron con-
tribution to the level of ∼ 1%. The squared invariant mass
for electrons, muons and pions is plotted in Fig. 14. The
condition M2 > 10000 MeV2 rejects additional electrons
and muons by a factor of 1.5. About 1% of pion events are
lost.

(a)

(b)

Fig. 14. (a) Distributions of the parameter M2 for events of
the processes e+e− → π+π−γ, e+e− → µ+µ−γ and e+e− →
e+e−γ for a c.m.-energy of 780 MeV.

Fig. 15. (b) Distribution of the events π+π−γ vs photon
energy in relative units. The fraction of the π+π−γ events with
final state radiation is stated for each vertical zone.

Preliminary results of the analysis

The histogram of the photon spectrum from the CMD-
2 experimental data is presented in Fig. 15. The histogram
represents the simulation, while the points with error bars
represent the experimental result. Vertical dotted lines di-
vide the plot area into three zones. The inscription inside
each zone indicates the fraction of π+π−γ events with final
state radiation with respect to the total number of events.
The number of the simulated events was normalized to the
experimental one. The average deviation between the two
distributions was found to be (−2.1 ± 2.3)%. As a result
one can conclude that there are no indications that pho-
ton radiation by pions needs to be described beyond the
scalar QED framework. Pions can be treated as point-like
objects and the application of the scalar QED is found to
be valid within the stated accuracy. Unfortunately the lack
of statistics in the energy range under study does not allow
to check this assumption with better accuracy. Forthcom-
ing results from VEPP-2000 will significantly improve the
statistical error.

4.3.2 Study of the process e+e− → π+π−γ with FSR with
KLOE detector

As has been explained in Sec. 4.2, the forward-backward
asymmetry

AFB(Q2) =
N(θπ+ > 90◦) −N(θπ+ < 90◦)

N(θπ+ > 90◦) +N(θπ+ < 90◦)

(

Q2
)

(92)

can be used to test the validity of the description of the
various mechanisms of the π+π− final state photon emis-
sion by confronting the output of the Monte Carlo gener-
ator with data. In the following studies, the Monte Carlo
generator PHOKHARA6.1 [153] was used. The parame-
ters for the pion form factor were taken from [157] based
on the parametrization of Kühn and Santamaria [158].
The parameters for the description of the φ direct decay
and the double resonance contribution were taken from
the KLOE analysis of the neutral mode [154].

To suppress higher order effects, for which the interfer-
ence and thus the asymmetry is not implemented in the
Monte Carlo generator, a rather tight cut on the track
mass variable (see Sec. 4.4.1 and Fig. 23) of |Mtrk−Mπ± | <
10 MeV has been applied in the data in addition to the
large angle selection cuts described in Sec. 4.4.1. This
should reduce events with more than one hard photon
emitted and enhance the contribution of the final state
radiation processes under study over the dominant ISR
process.

The data sets used in the analysis were taken in two
different periods:

• The data taken in 2002 was taken with DAΦNE oper-
ating at the φ-peak, at

√
s = Mφ

• The data taken in 2006 was collected with DAΦNE
operating 20 MeV below the φ-peak, at

√
s = 1000

MeV
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Since the 2006 data were taken more than 4σ below the
resonant peak (Γφ = 4.26 MeV, one expects the contribu-
tions from the φ direct decay and the double resonance
contribution to be suppressed compared to the data taken
on the peak in 2002. In fact, one observes a very differ-
ent shape of the forward-backward asymmetry for the two
different data sets, as can be seen in Fig. 16 and Fig. 17.
Especially in the region below 0.4 GeV2 and in the vicinity
of the f0(980) at 0.96 GeV2 one observes different trends
in the asymmetries for the two data sets.

One can also see that qualitatively, the theoretical de-
scription used to model the different FSR contributions
agree well with the data, although especially at low M2

ππ

the data statistics becomes poor and the data asymmetry
points have large errors. In particular the off-peak data
in Fig. 17 shows very good agreement above 0.35 GeV2.
In this case, the asymmetry is dominated fully by the
bremsstrahlungs-process, as the other processes do not
contribute outside the φ-resonance. The assumption of
pointlike pions (sQED) used to describe the bremsstrahlung
in the Monte Carlo generator seems to be valid above 0.35
GeV2, while below it is difficult to make a statement due
to the large statistical errors of the data points.

However, to obtain a solid quantitative statement on
the validity of the models, as it is needed e.g. in the radia-
tive return analyses at the KLOE experiment, one needs
to understand how a discrepance between theory and data
in the forward-backward asymmetry reflects on the cross
section, as it is the cross section one wants to measure.
This requires further work which at the moment is still in
progress.

It should also be mentioned that the KLOE experi-
ment has taken almost 10 times more data in the years
2004-2005 than is shown in Fig. 16, with DAΦNE oper-
ating at the φ-peak energy. This is unfortunately not the
case for the off-peak data, which is restricted to the dataset
shown in Fig. 17. In future, the larger dataset from 2004-
2005 may be used to determine with high precision the pa-
rameters of the φ direct decay and the double resonance
contribution, together with the results from the neutral
channel and the assumption of isospin symmetry.

4.4 The use of the radiative return as an experimental
tool

4.4.1 Radiative return at KLOE

The KLOE experiment, in operation at the DAΦNE e+e−

collider in Frascati between 1999 and 2006, utilizes the ra-
diative return to obtain precise measurements of hadronic
cross sections in the energy range below 1 GeV. As the
DAΦNE machine was designed to operate as a meson fac-
tory with collision energy equal to the mass of the φ-meson
(mφ = 1.01946 GeV), with limited possibility to change
the energy of the colliding beams while maintaining sta-
ble running conditions, the use of events with initial state
radiation of hard photons from the e+ or the e− is the
only way to access energies below DAΦNE’s nominal col-
lision energy. These low-energy cross sections are impor-
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Fig. 16. (a) Forward-Backward asymmetry for data taken at√
s = Mφ in 2002, and the corresponding Monte Carlo predic-

tion using the PHOKHARA 6.1 generator. (b) Absolute dif-
ference between the asymmetries from data and Monte Carlo
prediction.

tant in the theoretical evaluation of the muon magnetic
moment anomaly aµ = (gµ − 2)/2 [159], and high preci-
sion is needed since the uncertainty on the cross section
data enters the uncertainty of the theoretical prediction.
The channel e+e− → π+π− gives the largest contribution
to the hadronic part ahad

µ of the anomaly, therefore so far
KLOE efforts have concentrated on the derivation of the
pion pair-production cross section σππ from measurements

of the differential cross section
dσππγ(γ)

dM2
ππ

, in which M2
ππ is

the invariant mass squared of the di-pion system in the
final state.

The KLOE detector (shown in Fig. 18), which con-
sists of a high resolution drift chamber (σp/p ≤ 0.4%) and
an electromagnetic calorimeter with excellent time (σt ∼
54 ps/

√

E [GeV] ⊕100 ps) and good energy (σE/E ∼
5.7%/

√

E [GeV]) resolution, is optimally suited for this
kind of analyses.

The KLOE ππγ analyses
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Fig. 17. (a)Forward-Backward asymmetry for data taken at√
s ≃ 1000 MeV in 2006, and the corresponding Monte Carlo

prediction using the PHOKHARA 6.1 generator. (b) Absolute
difference between the asymmetries from data and Monte Carlo
prediction.

The KLOE analyses to obtain σππ use two different
sets of acceptance cuts:

• In the small angle analysis, photons are emitted within
a cone of θγ < 15◦ around the beamline (narrow cones
in Fig. 18), and the two charged pion tracks have 50◦ <
θπ < 130◦. The photon is not explicitly detected, its
direction is reconstructed from the tracks’ momenta by
closing kinematics: pγ ≃ pmiss = −(pπ+ + pπ−). The
separation of pion- and photon selection regions in this
analysis greatly reduces the contamination from the
resonant process e+e− → φ → π+π−π0 in which the
π0 mimicks the missing momentum of the photon(s)
and from the final state radiation process e+e− →
π+π−γFSR. Since ISR-photons are mostly collinear with
the beam line, a high statistics for the ISR signal events
remains. On the other hand, a high energy photon
emitted at angles close to the incoming beams forces
the pions also to have a small angle with respect to
the beamline (and thus outside the selection cuts),
resulting in a kinematical suppression of events with
M2

ππ < 0.35 GeV2.

Fig. 18. KLOE detector with the selection regions for small
angle photons (narrow cones) and for pion tracks and large
angle photons (wide cones).

• The large angle analysis requires both photons and pi-
ons to be emitted at 50◦ < θπ,γ < 130◦ (wide cones in
Fig. 18), allowing for a detection of the photons in the
barrel calorimeter. This analysis allows to reach the
2π threshold region, at the price of higher background
contributions from the π+π−π0 final state and events
with final state radiation. In addition, events from the
decays φ → f0γ → π+π−γ and φ → π±ρ∓ → π±π∓γ,
which need to be described by model-dependent pa-
rameterisations, contribute to the spectrum of selected
events.

Two analyses based on the small angle acceptance cuts
have been carried out. The first one using 140 pb−1 of
data taken in the year 2001 was published in 2005 [67],
the second one, based on 240 pb−1 of data taken in 2002
was published in 2008 [160].

The differential cross section is obtained from the spec-
trum of selected eventsN sel subtracting the residual back-
ground (mostly µµγ(γ), πππ and radiative Bhabha events)
and dividing by the selection efficiencies and the inte-
grated luminosity:

dσππγ(γ)

dM2
ππ

=
N sel −Nbkg

∆M2
ππ

· 1

εsel
· 1
∫

Ldt
(93)

∆M2
ππ is the bin width used in the analysis (typically 0.01

GeV2), and
∫

Ldt is the integrated luminosity obtained
from Bhabha events detected at large angles (55◦ < θe <
125◦) and compared to the reference cross section from
the BABAYAGA generator [161,162] (discussed in Sec. 2).
The total cross section is then obtained from the formula

σππ(M2
ππ) = s · dσππγ(γ)

dM2
ππ

1

H(s,M2
ππ)

(94)
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In this formula, s is the squared energy at which the
DAΦNE collider is operated during the data taking, and
H(s,M2

ππ) is the radiator function describing the emis-
sion of photons from the e+ or the e− in the initial state.
Note that Eq. 94 does not contain the effects from pionic
final state radiation. These effects complicate the analy-
sis, since the KLOE detector can not distinguish whether
photons in an event were emitted in the initial or the fi-
nal state. The PHOKHARA Monte Carlo generator [29],
which includes final state radiation at next-to-leading or-
der in the pointlike-pion approximation, is used to prop-
erly take into account final state radiation in the analyses.
This is important because the bare cross section used to
evaluate ahad

µ via an appropriate dispersion integral should
be inclusive with respect to final state radiation, and also
needs to be undressed from vacuum polarisation effects
present in the virtual photon produced in the e+e− an-
nihilation. For the latter, we use a function provided by
F. Jegerlehner [163], and correct the cross section via

σbare
ππ (M2

ππ) = σdressed
ππ (M2

ππ)

(

α(0)

α(M2
ππ)

)2

(95)

Here α(0) is the fine structure constant in the limit q = 0,
and α(M2

ππ) represents its effective value at the specific
value of the squared invariant mass of the di-pion system.
Since the hadronic contribution to α(M2

ππ) comes from a
dispersion integral which includes the hadronic cross sec-
tion itself as the integrand (see Sec. 5), the correct pro-
cedure has to be iterative and it should include the same
data that must be corrected. However, since the correction
is at the few percent level, the inclusion of the new KLOE
data will not change α(M2

ππ) at a level which would sig-
nificantly affect the analyses. We therefore have used the
values for α(M2

ππ) derived from the existing hadronic cross
section database. As an example, Fig. 19 shows the KLOE
result for dσππγ(γ)/dM

2
ππ obtained from data taken in the

year 2002 [160]. Inserting this differential cross section into
Eq. 94 and the outcome into Eq. 95, one derives σbare

ππ .
Using the bare cross section to get the ππ-contribution to
ahad

µ between 0.35 and 0.95 GeV2 then gives the value (in

units of 10−10)

aππ
µ (0.35 − 0.95GeV 2) = (387.2 ± 0.5stat ± 2.4exp ± 2.3th)

Table 1 shows the contributions to the systematic errors
on aππ

µ (0.35 − 0.95 GeV2).

Radiative corrections and Monte Carlo tools

The radiator function is a crucial ingredient in this
kind of radiative return analyses, it is obtained using the
relation

H(s,M2
ππ) = s · 3M2

ππ

πα2β3
π

·
dσISR

ππγ(γ)

dM2
ππ

∣

∣

∣

∣

∣

|F2π|2=1

, (96)

in which
dσISR

ππγ(γ)

dM2
ππ

∣

∣

∣

∣

|F2π|2=1

is evaluated using the PHOK-

HARA Monte Carlo generator in next-to-leading order
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Fig. 19. Differential radiative cross section dσππγ(γ)/dM
2
ππ,

inclusive in θπ and with 0o < θγ < 15o or 165o < θγ < 180o

measured by the KLOE experiment [160].

Reconstruction Filter negligible
Background subtraction 0.3 %
Trackmass 0.2 %
Particle ID negligible
Tracking 0.3 %
Trigger 0.1 %
Unfolding negligible
Acceptance (θππ) 0.2 %
Acceptance (θπ) negligible
Software Trigger (L3) 0.1 %
Luminosity (0.1th ⊕ 0.3exp)% 0.3 %√
s dep. of H 0.2 %

Total exp systematics 0.6 %

Vacuum Polarization 0.1 %
FSR resummation 0.3 %
Rad. function H 0.5 %
Total theory systematics 0.6 %

Table 1. List of systematic errors on the ππ-contribution to
ahad

µ between 0.35 and 0.95 GeV2 when using the σππ cross sec-
tion measured by the KLOE experiment in the corresponding
dispersion integral [160].

ISR-only configuration, with the squared pion form factor

|F2π|2 set to 1. βπ =
√

1 − 4m2
π

M2
ππ

is the pion velocity. While

Eq. 96 provides a convenient mechanism to extract the
dimensionless quantity H(s,M2

ππ) also for specific angu-
lar regions of pions and photons by applying the relevant

cuts to
dσISR

ππγ(γ)

dM2
ππ

∣

∣

∣

∣

|F2π|2=1

, in the published KLOE analyses,

H(s,M2
ππ) is evaluated fully inclusive for pion and pho-

ton angles: 0◦ < θπ,γ < 180◦. Fig. 20 shows the radiator
function in the range of 0.35 < M2

ππ < 0.95 GeV2. As can
be seen from Table 1, the 0.5% uncertainty of the radiator
function quoted by the authors of PHOKHARA translates
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Fig. 20. The dimensionless radiator function H(s,M2
ππ), in-

clusive in θπ,γ . The value used for s in the Monte Carlo pro-
duction was s = (Mφ)2 = (1.019456 GeV)2.

into an uncertainty of 0.5% in the ππ-contribution to ahad
µ

between 0.35 and 0.95 GeV2, giving the largest individual
contribution and dominating the theoretical systematic er-
ror.

The presence of events with final state radiation in the
data sample affects the analyses in several ways:

• Passing from M2
ππ to (M0

ππ)2 The presence of final
state radiation shifts the observed value ofM2

ππ (evalu-
ated from the momenta of the two charged pion tracks
in the events) away from the value of the invariant
mass squared of the virtual photon produced in the
collision of the electron and the positron, (M0

ππ)2. The
transition from M2

ππ to (M0
ππ)2 is performed using

a modified version of the PHOKHARA Monte Carlo
generator, which allows to (approximately) determine
whether a generated photon comes from the initial
or the final state [164]. Fig. 21 shows the probabil-
ity matrix relating M2

ππ to (M0
ππ)2. It can be seen

that the shift is only in one direction, (M0
ππ)2 ≥M2

ππ,
so events with one photon from initial state radiation
and one photon from final state radiation move to a
higher value of (M0

ππ)2. The entries lining up above
(M0

ππ)2 ≃ 1.03 GeV2 represent events with two pions
and only one photon, emitted in the final state. Events
of this type have (M0

ππ)2 = s, there is no hard photon
from initial state radiation present. Since in the KLOE
analyses, the maximum value of (M0

ππ)2 for which the
cross sections are measured (0.95 GeV2) is sufficiently
smaller than s ≃ M2

φ of the DAΦNE collider, these
leading-order final state radiation events need to be
removed. By moving these events to (M0

ππ)2 = s, the
passage from M2

ππ to (M0
ππ)2 automatically performs

this task. Fig. 22 shows the fraction of events from
leading-order final state radiation contributing to the
total number of events, evaluated with the PHOK-
HARA event generator. Since in the small angle anal-
ysis the angular regions for pions and photons are sep-
arated, final state radiation, for which the photons
are emitted preferably along the direction of the pi-
ons, is suppressed to less than 0.5%. Using large angle
acceptance cuts, the effect is much bigger, especially
above and below the ̺-resonance, where it can reach
20-30%. The correction of the shift in M2

ππ depends
on the implementation of final state radiation in the
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Fig. 21. Probability matrix relating the measured quantity
M2

ππ to (M0
ππ)2. To produce this plot, a private version of the

PHOKHARA Monte Carlo generator was used [164]. The pho-
ton angle is restricted to θγ < 15◦ (θγ > 165◦).

Monte Carlo generator in terms of model dependence
and missing contributions. It also relies on the correct
assignment of photons coming from the initial or the
final state, however, in case of symmetrical cuts in θγ ,
interference effects between the two states vanish and
the separation of initial and final state amplitudes is
feasible.

• The acceptance in θγ . Since the direction of the pho-
tons emitted in the final state is peaked along the di-
rection of the pions, and the photons are emitted in the
initial state along the e+/e− direction, the choice of the
acceptance cuts affects the amount of final state radi-
ation in the analyses. Using the small angle analysis
cuts, a large part of final state radiation is suppressed
by the separation of the pion and photon acceptance
regions, and consequently needs to be reintroduced us-
ing corrections obtained from Monte Carlo simulations
to arrive at a result which is inclusive with respect to
final state radiation (as needed in the dispersion inte-
gral for aππ

µ ). Even if in the large angle analysis the
fraction of events with final state radiation surviving
the selection is larger, again the missing part has to be
added using Monte Carlo simulations. The acceptance
correction for the cut in θγ is evaluated for initial and
final state radiation using the PHOKHARA generator,
and the small differences found in the comparison of
data and Monte Carlo distributions contribute to the
systematic uncertainty of the measurement (see Ta-
ble 1 and [165]).

• The distributions of kinematical variables. Cuts on the
kinematical trackmass variable1 Mtrk, introduced in
the analyses to remove background from the process

1 Assuming the presence of one photon in the event
and that the tracks belong to particles of the same mass,
Mtrk is computed from energy and momentum conservation:
“√

s−
p

|p+|2 +M2
trk −

p

|p−|2 +M2
trk

”2

− (p+ + p−)2 = 0

where p± is the measured momentum of the positive (negative)
particle, and only one of the four solutions is physical.
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Fig. 22. (a) Fraction of events with leading order final state
radiation in the small angle selection: 50◦ < θπ < 130◦ and
θγ < 15◦ (θγ > 165◦). (b) Fraction of events with leading
order final state radiation in the large angle selection: 50◦ <
θπ < 130◦ and 50◦ < θγ < 130◦. The PHOKHARA generator
was used to produce the plots.

e+e− → φ → π+π−π0, take out also a fraction of the
events with final state radiation, necessitating a cor-
rection to obtain an inclusive result. Fig. 23 shows the
effect final state radiation has on the distribution of the
trackmass variable. The radiative tail of multi-photon
events to the right of the peak at the π± mass increases
because the additional radiation moves events from
the peak to higher values in Mtrk. The width of the
peak at Mπ± is due to the detector resolution, the plot
was produced using the PHOKHARA event generator
interfaced with the KLOE detector simulation [166].
Between 150 and 200 MeV, a M2

ππ-dependent cut is
used in the event selection to reject the π+π−π0 events
which have a value of Mtrk > Mπ± . In this region, the
cut also acts on the signal events. Missing terms con-
cerning final state radiation in the Monte Carlo simu-
lation or the non-validity of the pointlike-pion approx-
imation used in PHOKHARA may affect the shape of
the radiative tail in the trackmass variable. To over-
come this, in the KLOE analyses, small corrections are
applied to the momenta and the angles of the charged
particles in the event in the simulation to obtain good
agreement in the shape of Mtrk for Monte Carlo simu-
lation and data [165].

• The division by the radiator function H(s,M2
ππ). In

this case, one assumes perfect factorization between
the ISR and the FSR process. This has been tested by

ISR
ISR + FSR

MTrk [MeV]   

a.
u

.  
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Fig. 23. Modification to the distribution of the trackmass vari-
able due to the presence of final state radiation (in red) com-
pared to the one with initial state radiation only (in black).
The arrows indicate the region in which the M2

ππ-dependent
cut is applied in the analysis. The plot was created with the
PHOKHARA generator interfaced to the KLOE detector sim-
ulation [166].

performing the analysis in an inclusive and exclusive
approach with respect to final state radiation, the as-
sumption was found to be valid within 0.2% [67,167].

It has been argued that contributions from events with
two hard photons in the final state, which are not included
in the PHOKHARA generator, may have an effect on the
analyses [75].

The effect of the direct decay φ → π+π−γ on the ra-
diative return analysis has been already addressed in [41].
Running at

√
s ≃ 1.02 GeV, the amplitude for the pro-

cesses φ→ (f0(980)+ f0(600))γ → π+π−γ interferes with
the amplitude for the final state radiation process. Due
to the yet unclear nature of the scalar states f0(980) and
f0(600), the effect on the π+π−γ(γ) cross section depends
on the model used to describe the scalar mesons. The pos-
sibility to simulate φ decays together with the processes
for initial and final state radiation has been implemented
in the PHOKHARA event generator in [31], using two
characteristic models for the φ decays: the “no structure”
model of [168] and the K+K− loop model of [169]. A
refined version of the K+K− loop model [152] and the
double vector resonance φ → π±̺∓(→ π∓γ) have been
included as described in [44]. Using parameter values for
the different φ decays found in the analysis of the neutral
channel φ→ (f0(980)+f0(600))γ → π0π0γ [152,154], one
can estimate the effect on the different analyses. While
in the small angle analysis, there is no significant effect
due to the choice of the acceptance cuts, in the large an-
gle selection, the effect is on the order of several percent,
and can reach up to 20% in the vicinity of the f0(980), as
shown in Fig. 24, (a). While this allows to study the dif-
ferent models for the direct decays of φ-mesons (see also
Sec. 4.3.2), it prevents a precise measurement of σππ until
the model and the parameters are understood with better
uncertainty. An obvious way out is to use data taken at
a value of

√
s outside the narrow peak of the φ resonance

(Γφ = 4.26 ± 0.04 MeV [1]). In 2006, the KLOE experi-
ment has taken ∼ 250 pb−1 of data at

√
s = 1 GeV, 20

MeV below Mφ. As can be seen in Fig. 24 (b), this reduces
the effect due to contributions from f0γ and ̺π decays of
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Fig. 24. (a): dσ
(ISR+F SR+f0+̺π)
ππγ /dσ

(ISR+F SR)
ππγ for

√
s = 1.019

GeV. (b): dσ
(ISR+F SR+f0+̺π
ππγ )/dσ

(ISR+F SR)
ππγ for

√
s = 1.000

GeV. Both plots were produced with the PHOKHARA 6.1
event generator using large angle acceptance regions for pions
and photons, with model parameters for the f0 and ̺π contri-
butions found in [152,154].

the φ-meson to within ±1%.

Normalization with muon events

An alternative method to extract the pion form factor
is to normalize the differential cross section dσππγ(γ)/dM

2
ππ

directly to the process e+e− → µ+µ−γ(γ), dσµµγ(γ)/dM
2
µµ,

in each bin of ∆M2
ππ = ∆M2

µµ. Radiative corrections like
the effect of vacuum polarisation, the radiator function
and also the integrated luminosity

∫

Ldt cancel out in the
ratio of pions over muons, only the effects from final state
radiation (which is different for pions and muons) need to
be taken into account consistently. An approach currently
under way at KLOE uses the following equation to obtain
|F2π |2:

|F2π(s′)|2·(1+η(s′)) =
4(1 + 2m2

µ/s
′)βµ

β3
π

·
(

dσππγ(γ)

dM2
ππ

)ISR+FSR

(
dσµµγ(γ)

dM2
µµ

)ISR

(97)
In this formula, the measured differential cross section
dσππγ(γ)/dM

2
ππ should be inclusive with respect to pio-

nic final state radiation, while the measured cross sec-
tion dσµµγ(γ)/dM

2
µµ should be exclusive for muonic final

state radiation. s′ = M2
ππ = M2

µµ is the squared invari-
ant mass of the di-pion or the di-muon system after the
respective corrections concerning final state radiation. Us-
ing this approach one gets on the left-hand side the pion
form factor times the factor (1 + η(s′)), which describes
the effect of the pionic final state radiation. This bare form

factor is the quantity needed in the dispersion integral for
the ππ-contribution to ahad

µ . While the measurement of

dσππγ(γ)/dM
2
ππ and its corrections for pionic final state

radiation are very similar to the one using the normal-
ization with Bhabha events already performed at KLOE,
the corrections needed to subtract the muonic final state
radiation from the dσµµγ(γ)/dM

2
µµ cross section are pure

QED and can be obtained from the PHOKHARA gener-
ator, which includes final state radiation for muon pair
production at next-to-leading order [30]. Due to the fact
that the KLOE detector does not provide particle IDs, pi-
ons and muons have to be separated and identified using
kinematical variables (e.g. the aforementioned trackmass
variable) [61].

4.4.2 Radiative return at BABAR

The BABAR radiative return program aims for the study
of all significant hadronic processes in electron-positron
annihilation e+e− → hadrons for energies from threshold
to about 4.5 GeV. Moreover, hadron spectroscopy of the
initial JPC = 1−− states, which are produced in e+e−

collision, and of their decay products is performed. In this
chapter BABAR results for processes with 3, 4, 5 and
6 hadrons in the final state, as well as measurements of
baryon form factors in the timelike region are reported.
A precision analysis of the pion form factor, i.e. of the
cross section e+e− → π+π−, which is essential for an im-
proved determination of the hadronic contrubution to the
anomalous magnetic moment of the muon, is underway.
The results presented in this chapter are based on a total
integrated luminosity of 230 fb−1, except the 3π and 4
hadrons channels of Ref. [102], which were analyzed using
a data sample of 90 fb−1. The total BABAR data sample
collected between the years 1999 to 2008 amounts to be
530 fb−1. A typical feature common to all radiative return
analyses at BABAR is a wide coverage of the entire mass
range of interest in one single experiment with reduced
point-by-point uncertainties compared to previous exper-
iments.

e+e− → 3 Pions
The π+π−π0 mass spectrum has been measured from 1.05
GeV up to the J/ψ mass region with a systematic er-
ror of ∼ 5% below 2.5 GeV and up to ∼ 20% at higher
masses [101]. The spectrum is dominated by the ω, φ
and J/ψ resonances. The BABAR measurement could im-
prove significantly on the world knowledge of the excited
ω states. The spectrum has been fitted up to 1.8 GeV and
the following results for the masses and widths of the ω′

and ω′′ states have been found: M(ω′) = (1350± 20± 20)
MeV, Γ (ω′) = (450 ± 70 ± 70) MeV, M(ω′′) = (1660 ±
10 ± 2) MeV, Γ (ω′′) = (230 ± 30 ± 20) MeV.

e+e− → 4 Hadrons
The π+π−π+π−, K+K−π+π− and K+K−K+K− exclu-
sive final states have been measured from theshold up to
4.5 GeV with systematic errors of 5%, 15% and 25%, re-
spectively [102]. The K+K−K+K− measurement is the
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Fig. 25. BABAR measurement of the energy dependence of
the e+e− → π+π−π+π− cross section obtaied by radiative
return in comparison with the world data set.

first measurement of this process ever. Fig. 25 shows the
mass distribution of the π+π−π+π− channel. We identify
the typical feature common to all radiative return anal-
yses at BABAR, namely a wide coverage of mass range
in one single experiment with reduced point-by-point un-
certainties. Background is relatively low for all channels
under study (e.g. few percent at 1.5 GeV for π+π−π+π−)
and is dominated by ISR-events of higher multiplicities
and of continuum non-ISR events at higher masses. The
π+π−π+π− final state is dominated by the two-body in-
termediate state a1(1260)π; the K+K−π+π− final state
shows no significant two-body states, but rich three-body
structure, including K∗(890)Kπ, φππ, K∗

2 (1430)Kπ and
ρKK.
Fig. 26 shows BABAR preliminary results for the process
e+e− → π+π−π0π0. The current systematic error of the
measurement varies from 8% around the peak of the cross
section to 14% at 4.5 GeV. BABAR results are in agree-
ment with SND [170] in the energy range below 1.4 GeV
and show a huge improvement for higher energies (> 1.4
GeV). In the energy range above 2.5 GeV this is the first
measurement ever. The e+e− → π+π−π0π0 final state is
dominated by the ωπ0, a1(1260)π and ρ+ρ− intermediate
channels, where the latter channel has been observed for
the first time.
A specific analysis was devoted to the intermediate struc-
tures in the e+e− → K+K−π+π− and e+e− → K+K−π0π0

channels [106]. Of special interest is the intermediate state
φf0(980), where the decays f0(980) → π+π− and f0(980) →
π0π0 have been looked at. A peak is observed in the φf0(980)
channel at a mass M = 2175 ± 18 MeV and a width
Γ = 58 ± 2. The new state is usually denoted as Y(2175)
and is also clearly visible in the K+K−f0 spectrum.

e+e− → 2(π+π−)π0, 2(π+π−)η
The e+e− → 2(π+π−)π0 cross section has been measured
by BABAR from threshold up to 4.5 GeV [108]. A large
coupling of the Jψ and ψ(2S) to this channel is observed.

ND
OLYA

SND

M3N
GG2
DM2

CMD2
BABAR

2Ebeam , MeV

0

5

10

15

20

25

30

35

40

45

50

1000 1200 1400 1600 1800 2000

Fig. 26. Preliminary BABAR data for the e+e− →
π+π−π0π0 cross section in comparison with previous exper-
iments.

The systemaric error of the measurement is about 7%
around the peak of the mass spectrum. In the π+π−π0

mass distribution the ω and η peaks are observed; the
rest of the events have a 3πρ structure.
BABAR performed also the first measurement of the e+e− →
2(π+π−)η cross section. A peak value of about 1.2 nb at
about 2.2 GeV is observed, follwed by a monotonic de-
crease towards higher energies. Three intermediate states
are seen: ηρ(1450), η′ρ(770) and f1(1285)ρ(770).

e+e− → 6 Hadrons
The 6 hadrons final state has been measured in the exclu-
sive channels 3(π+π−), 2(π+π−)2π0 and K+K−2(π+π−)
[104]. The cross section in the last case has never been
measured before; the precision in the first two cases is ∼
20%, which is a large improvement with respect to existing
data. Again, the entire energy range from threshold up to
4.5 GeV is measured in one single experiment. The distri-
butions for the final states 3(π+π−) and 2(π+π−)2π0 are
shown in Fig. 27. A clear dip is visible at about 1.9 GeV
in both pion modes. A similar feature was already seen
by FOCUS [171] in the diffractive photo-production of six
charged pions. The spectra are fitted by BABAR using
the sum of a Breit-Wigner resonance function and a Jacob-
Slansky continuum shape. For the 3(π+π−) (2(π+π−)2π0)
mode, BABAR obtains values of 1880±30 MeV (1860±20
MeV) for the resonance peak, 130±30 MeV (160±20 MeV)
for the resonance width and 21o ± 14o (−3o ± 15o) for the
phase shift between the resonance and continuum.

e+e− → K+K−π0,K+K−η, KSK
±π∓

A recent BABAR ISR-analysis is dedicated to three hadrons
in the final state, including a pair of kaons (K+K−π0,
KKSπ); a peak near 1.7 GeV, which is mainly due to
the φ′(1680) state, is observed. A Dalitz plot analysis
shows that the KK∗(892) and KK∗

2 (1430) intermediate
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section obtained by BABAR (filled circles) by radiative return
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states are dominating the KK̄π channel. A fit to the
e+e− → KK̄π cross section assuming the expected contri-
butions from the φ, φ′, φ′′, ρ0, ρ′, ρ′′ states was performed.
The parameters of the φ′ and other excited vector meson
states are compatible with PDG values.

Timelike proton form factor e+e− → pp̄, hyperon form
factors e+e− → Λ0Λ̄0, Λ0Σ̄0, Σ0Σ̄0

BABAR has also performed a measurement of the e+e− →
pp̄ cross section [103]. This timelike form factor is param-
eterized by the electric and magnetic formfactor GE and
GM .

σe+e−→pp̄(s) =
4πα2C

3s

√

1 −
2m2

p

s

× (|GM (s)|2 +
2m2

p

s
|GE(s)|2),

where the factor C accounts for the Coulomb interac-
tion of the final state particles. The proton helicity an-
gle θp in the pp̄ rest frame can be used to separate the
|GE |2 and |GM |2 terms. Their respective variations are
approximately ∼ sin2 θp and ∼ (1 + cos2 θp). By fitting
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Fig. 28. The e+e− → pp̄ cross section measured by BABAR
(filled circles) in comparison with data from other e+e− collid-
ers (blue points) and from p̄p experiments (red points).

the cos θp distribution to a sum of the two terms, the ra-
tio |GE |/|GM | can be extracted. This is done separately
in six bins of Mpp̄. The results disagree significantly with
previous measurements from LEAR [172] above threshold.
BABAR observes a ratio |GE |/|GM | > 1 above threshold,
while at larger values of Mpp̄ the BABAR measurement
finds |GE |/|GM | ≈ 1. LEAR data on the contrary shows
a behaviour |GE |/|GM | < 1 above threshold.
In order to compare the cross section measurement with
previous data (e+e− and p̄p experiments), the effective

form factor G is introduced: G =
√

|GE |2 + 2m2
p/s|GM |2.

The BABAR measurement of G is in good agreement with
existing results, as can be seen in Fig. 28. The structure of
the form factor is rather complicated; the following obser-
vations can be made: (i) BABAR confirms an increase of
G towards threshold as seen before by other experiments;
(ii) two sharp drops of the spectrum at Mpp̄ = 2.25 and
3.0 GeV are observed; (iii) data at large values Mpp̄ > 3
GeV is in good agreement with the prediction from per-
turbative QCD.
A continuation of the ISR program with baryon final states
is the measurement of the e+e− → ΛΛ̄ cross section [109].
So far only one data point from DM2 [173] was existing
for this channel, which is in good agreement with BABAR
data. About 360 ΛΛ̄ events could be selected using the
Λ→ pπ decay. In two invariant mass bins an attempt has
been made to extract the ratio of the electric to magnetic
form factor |GE |/|GM |. In the mass range below 2.4 GeV
this ratio is above unity - as in the proton case - with
a significance of one standard deviation (|GE |/|GM | =
1.73+0.99

−0.57). Above 2.4 GeV the ratio is consistent with

unity (|GE |/|GM | = 0.71+0.66
−0.71). Also the Λ polarization

and the phase between GE and GM was studied using
the slope of the angle between the polarization axis and
the proton momentum in the Λ rest frame. The following
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limit on Λ polarization is obtained: −0.22 < ζ < 0.28; the
relative phase between the two form factors is measured
as −0.76 < sin(φ) < 0.98, which is not yet significant due
to limited statistics.
Finally the first measurements of the e+e− → Σ0Σ̄0 and
e+e− → Σ0Λ̄(ΛΣ̄0) cross sections were performed. For the
detection of the Σ0 baryon, the decay Σ0 → Λγ → pπγ
was used. About 40 candidate events were selected for the
Σ0Σ̄0, about 20 events for the ΛΣ̄0 reaction. All baryon
form factors measured by BABAR have a similar size and
mass shape, namely a rise towards threshold. The reason
for this peculiar behaviour is not understood.

4.4.3 Radiative return at BELLE

ISR studies at Belle

Until now most of the Belle analyses using radiative re-
turn focused on studies of the charmonium and charmonium-
like states. They can be subdivided into final states with
open and hidden charm.

Final states with open charm

Belle performed a systematic study of various exclu-
sive channels of e+e− annihilation into charmed mesons
and baryons using ISR often based on the so called par-
tial reconstruction to increase the detection efficiency and
suppress background.

In Ref. [115] they measured the cross sections of the
processes e+e− → D∗±D∗∓ and e+e− → D+D∗− + c.c..
The shape of the former is complicated and has several lo-
cal maxima and minima. The first two maxima are close
to the ψ(4040) and ψ(4160) states. The latter shows sig-
nificant excess of events near the ψ(4040).

The cross sections of the processes e+e− → D+D−

and e+e− → D0D̄0 show a signal of the ψ(3770) as well
as hints of the ψ(4040), ψ(4160), and ψ(4415) [118]. There
is also an enhancement near 3.9 GeV, which qualitatively
agrees with the prediction of the coupled channel model [174].

The cross section of the process e+e− → D0D−π+

has a prominent peak at the energy corresponding to the
ψ(4415) [121]. From a study of the resonant substructure
in the decay ψ(4415) → D0D−π+ they conclude that it is
dominated by the intermediate DD̄∗

2(2460) mechanism.
In contrast to expectations of some hybrid models pre-

dicting Y (4260) → D(∗) ¯D(∗)π decays, no clear structures
were observed in the cross section of the process e+e− →
D0D∗−π+ [175]. There is only some evidence (∼ 3.1σ) for
the ψ(4415).

Finally, they measure the cross section of the reac-
tion e+e− → Λ+

c Λ
−
c and observe a significant peak near

threshold that they dub X(4630) [122]. Assuming that
the peak is a resonance, they find that its mass and width
are compatible within errors with those of the Y (4660)
state found by Belle in the ψ(2S)π+π− final state via
ISR [117]. However, interpretations other than X(4630) ≡
Y (4660) cannot be excluded. For example, peaks at the
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Fig. 29. Cross sections of various exclusive processes mea-
sured by Belle: a) e+e− → DD̄, b) e+e− → D+D∗− + c.c.,
c) e+e− → D∗±D∗∓, d) e+e− → D0D−π+, e) e+e− →
D0D∗−π+, and f)e+e− → Λ+

c Λ
−
c . The dashed lines show the

position of the ψ states while the dotted lines correspond to
the Y (4008), Y (4260), Y (4360), and Y (4660) states.

baryon-antibaryon threshold are observed in various pro-
cesses [176]. According to other assumptions, the X(4630)
is a 53S1 [177] or ψ(6S) [178] charmonium state or, for
example, a threshold effect, which is due to the ψ(3D)
slightly below the Λ+

c Λ
−
c threshold [179]. Figure 29 shows

all mentioned above cross sections with the vertical lines
showing positions of both well established states like ψ(3770),
ψ(4040), ψ(4160) and ψ(4415) and new charmonium-like
states Y (4008), Y (4260), Y (4360) and Y (4660) discussed
below.

Summing the measured cross sections and taking into
account not yet observed final states on base of isospin
symmetry they find that until about 4.3 GeV the sum of
exclusive cross sections almost saturates the total inclu-
sive cross section measured by BES [180].

Final states with hidden charm

Studying the J/ψπ+π− final state Belle confirmed the
Y (4260) discovered by BaBar and in addition observed a
new structure dubbed Y (4008) [116], see Fig. 30. They
also observe the reaction e+e− → J/ψK+K− and find
first evidence for the reaction e+e− → J/ψK0

SK
0
S [119].
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Table 2. Summary of ISR studies in the cc̄ region at Belle

Final state
R

L dt, fb−1 Ref.
D∗+D∗− 547.8 [115]

D±D∗∓ 547.8 [115]

D0D̄0, D+D− 673 [118]

D0D−π+ 673 [121]
D0D∗−π+ 695 [175]

Λ+
c Λ

−
c 695 [122]

J/ψπ+π− 548 [116]

ψ(2S)π+π− 673 [117]

J/ψK+K− 673 [119]

Studying the ψ(2S)π+π− final state Belle confirmed
the Y (4360) discovered by BaBar and in addition observed
a new structure dubbed Y (4660) [117], see Fig. 31.

It is worth noting that the resonance interpretation of
various enhancements discussed above is not unambiguous
and can be strongly affected by close thresholds of different
final states and rescattering effects.

Various ISR studies performed at the Belle detector in
the charmonium region are summarized in Table 2.

ISR studies of light quark states

In one case the ISR method was used to study the
light quark states [181]. In this analysis the cross sections
of the reactions e+e− → φπ+π− and e+e− → φf0(980)
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Fig. 32. The cross sections of the processes e+e− → φπ+π−

(a) and e+e− → φf0(980) (b)

are measured from threshold to 3 GeV using a data sam-
ple of 673 fb−1, see Fig. 32(a,b). In the φπ+π− mode the
authors observe and measure for the first time the param-
eters of the φ(1680), they also observe and measure the
parameters of the φ(2170). Also selected in this analysis
is the φf0(980) final state, which shows a clear signal of
the φ(2170). For Monte Carlo simulation they use a ver-
sion of PHOKHARA in which the produced resonance de-
cays into φπ+π− or φf0(980) with the subsequent decays
φ→ K+K− and f0(980) → π+π−. The π+π− system is in
S-wave, the π+π− system and the φ are also in a relative
S-wave. The π+π− mass distribution is generated accord-
ing to phase space. They assign a 0.1% as the systematic
uncertainty of the ISR photon radiator.

In all the ISR studies the Monte Carlo simulation is
performed as follows. First, the kinematics of the initial-
state radiation is generated using the PHOKHARA 5.0
package for simulation of the process e+e− → V γISR(γISR) [32].
Then a qq̄ generator is used to generate V decays.

4.4.4 Prospects for radiative return at VEPP2000

It is well known that the main hadronic contribution to
ahad

µ comes from the energy region below 1 GeV and is

dominated by the π+π− channel. Direct scan experiments
with CMD-3 at VEPP-2000 will deliver huge statistics,
but the accuracy of the cross section determination will be
determined by systematic effects. So, any other possibility
to measure the pion form factor, for example with ISR, will
be a valuable instrument to provide a cross check for better
understanding of the systematics. The main question is
what physics can be done with ISR at VEPP-2000.

The design luminosity ∼ 1032cm−2c−1 is expected at√
s = 2 GeV. As a result the statistics similar to that

of CMD-2 will be collected. Let us recollect that the ISR
method provides a “low energy scan” while data taking
occurs at fixed high energy. The threshold region, 2mπ-
0.5 GeV, gives about 13% of the total contribution to the
muon anomaly. To overcome the lack of data at threshold
energies, the ISR method can serve as very efficient and
unique way to measure the pion form factor.

Trigger and reconstruction efficiencies, detector im-
perfections will be identical for the whole energy range.
As a result, some systematic errors will be canceled out
at least partially and the total systematic error will be
lower. Measurements of the cross section of the process
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e+e− → µ+µ− must confirm the validity of this method
and will allow one to determine an energy scale and some
systematic errors. A fit of the ω and φ resonances will also
provide calibration of the energy scale. The ISR method
provides an aditional instrument to better understand and
estimate the systematics. Let us recollect that we are go-
ing to achieve a systematic accuracy for the pion form
factor of a few pro mille.

In direct scan experiments the data as a rule are col-
lected at fixed energy points. Thus some “empty” regions
without data naturally arise. An important feature of ex-
periments with ISR is that the whole energy scale will be
covered filling any existing gaps.

Currently, the theoretical error for the cross section of
the process e+e− → π+π−γ is dominated by the uncer-
tainty of the radiator function (0.5%) and there is hope
to reduce it to a few pro mille in future by theorists.
In the case of the pion form factor extraction from the
π+π−γ/µ+µ−γ ratio, the dependence on theory will be
significantly reduced since the main uncertainty of the ra-
diator function and vacuum polarization effects cancel out
in the ratio. With the integrated luminosity of several in-
verse femtobarn at 2 GeV one can reach a fractional ac-
curacy on the total error better than 0.5%.

4.4.5 Prospects for radiative return at BESIII

The designed peak luminosity of the BEPCII is 1 × 1033

cm−2s−1 at
√
s = 3.77 GeV, i.e., the ψ(3770) peak. It has

reached 30% of the designed luminosity now and is start-
ing to deliver luminosity to BESIII for physics. Although
the physics programs at BESIII are rather rich [182], most
of the time, the machine will run at

√
s = 3.77 GeV and

4.17 GeV for charm physics, since the cross sections of J/ψ
and ψ(2S) production are large and the required statistics
can be accumulated in short time, say, one year at each
energy point. An estimation of the BEPCII running time
at

√
s = 3.77 GeV and 4.17 GeV will be around 8 years,

corresponds to an integrated luminosity of about 20 fb−1

at each energy point.
Data samples at

√
s = 3.77 GeV and 4.17 GeV can

be used for radiative return study, for the center of mass
energies of the hadron system between π+π− threshold to
above 2.0 GeV. This will allow a measurement of the pion
form factor, the kaon form factor, and the proton form
factor, as well as the cross sections of some multi-hadron
final states. The good coverage of the muon detector at
the BESIII also allows an identification of the µ+µ− final
state, thus supply as a normalization factor to the other
two-body final states.

Figure 33 shows the expected luminosity at low ener-
gies in 10 MeV bin for 10 fb−1 data accumulated on the
ψ(3770) peak. In terms of luminosity at the ρ0 peak, one
can see that 10 fb−1 data at

√
s = 3.77 GeV is equivalent

to 70 fb−1 data at 10.58 GeV, namely, the B-factories.
With Monte Carlo generated e+e− → γISRπ

+π− data
using PHOKHARA [27], after a fast simulation and re-
construction with the BESIII softwares, one found the ef-
ficiency for events at the ρ0 peak is around 5% if one re-
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Fig. 33. Expected luminosity at low energies due to ISR for
10 fb−1 data accumulated on the ψ(3770) peak.

quires the ISR photon is detected, this is higher than the
efficiency at the BaBar experiment [183]. Figure 34 shows
the signal for 10,000 generated π+π− events. One esti-
mates the number of events in each 10 MeV bin is around
20,000 at the ρ0 peak for 10 fb−1 data at

√
s = 3.77 GeV.

This is comparable to the recent BaBar results based on
232 fb−1 data at the Υ (4S) peak [183].
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Fig. 34. Detected γISRπ
+π− in 10000 produced events at the

ψ(3770) peak. The sample is generated with PHOKHARA.
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The most important work related to the pion form
factor measurement is the measurement of the systematic
error. Since the cross section of good events at ψ(3770)
peak is not large (around 30 nb for total hadronic cross
section, with about 400 nb cross section for the QED pro-
cesses) compared to the highest trigger rate energies J/ψ
and ψ(2S) peaks, a loose trigger to allow the ISR events
being recorded is out of question. In principle, the trigger
rate for these events could reach 100% with an allowed
trigger purity of less than 20%.

With enough DD̄ events accumulated at the same en-
ergy, the tracking efficiency and particle ID efficiency can
be measured in high precision (as has been done at the
CLEOc [184]); in addition, huge data sample at ψ(2S) and
the well measured large branching fraction ψ(2S) transi-
tion modes, such as π+π−J/ψ, J/ψ → µ+µ−, can be used
to study the tracking efficiency, µ-ID efficiency and so on.
All these will help greatly in understanding the detector
performance, and in pinning down the systematic errors
in the form factor measurement.

The kaon and proton form factors can be measured as
well since they are even simpler than the measurement of
pion form factor. This will allow us a better understanding
of the structure close to the threshold and the possible
existing high mass structures.

Except for the lowest lying vector states (ρ, ω, and φ),
the parameters of other vector states are poorly known
and further investigation are needed. BESIII ISR analyses
may reach a bit above 2 GeV, while above that, BEPCII
can run directly by setting beam energy there. This allows
BESIII a full reach of the vectors between π+π− threshold
and 4.6 GeV, the highest energy BEPCII can reach, cover-
ing the ρ, ω, φ, as well as the ψ sectors. Here one will have
chance to study the excited ρ, ω, and φ states between 1
and about 2.5 GeV. The final states include π+π−π0,KK̄,
4 pions, ππKK, etc. Final states with more than four par-
ticles will be hard to study using ISR method, since the
DD̄ decay will contribute as background.

5 Vacuum polarization

vacuum polarization

6 Tau physics

tau physics

7 Summary

summary
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