

Beam handling devices

L. Poletto
INFM - LUXOR Laboratory
Padova
poletto@dei.unipd.it

EXPERIENCE AT SYNCHROTRON Realization of beamlines at ELETTRA

ALOISA: Advanced Line for Overlayer, Interface and Surface Analysis

- Wiggler-ondulator source
- •Crystal monochromator Energy 3-8 keV, resolving power 7500
- •Grating monochromator
 Energy 150-2000 eV, resolving Power 8000
- Plane-grating design

BEAR: Bending magnet for Emission Absorption and Reflectivity

- Bending-Magnet source
- •Plane-grating design
- •Photon Energy range: 4 eV-1400 eV
- •Resolving power: >3000
- Polarization selection

LAB EXPERIENCE

Realization of lab facilities in the visible, UV and soft X-ray spectral region (6-500 nm)

Detector and optics characterization

Multilayer development

(collaboration with INFN and Sincrotrone Trieste)

HIGH-ORDER HARMONIC Spectrometer-monochromator for HHG

Resolution: 1000 – 2500

Spectrograph: toroidal mirror and VLS plane grating

• Detector: MCP + phosphor screen + CCD camera $(1024 \times 1024 \text{ pixel, pixel size } 32 \times 32 \text{ } \mu\text{m}^2)$

L. Poletto et al, Rev. Sci. Instr. 75, 4413 (2004)

HIGH-ORDER HARMONIC Polychromatic interaction

spectrometer

EXPERIENCE WITH FEL RADIATIONSpectral monitoring of the DESY-FEL at 30 minutes

A grazing-incidence flat-field EUV spectrometer has been designed and realized at LUXOR.

The instrument is installed at **DESY** for the spectral monitoring of the **FEL emission in the 25-45 nm** spectral region.

EXPERIENCE WITH FEL RADIATIONThe instrument for the DESY-FEL

Spectrometer

Optics

Entrance slit

Detector

EXPERIENCE WITH FEL RADIATION Present situation at DESY

Spectra with the hollow-cathode lamp

The spectrometer has been calibrated within 0.02 nm

- The LUXOR spectrometer has been installed and aligned at the end of the LINAC tunnel in July, 2004
- The instrument will be used for the spectral monitoring of the FEL beam during the commissioning phase

First lasing at 30 nm of the VUV-FEL at the TESLA Test Facility was obtained in January, 2005

OPTICAL STUDIES FOR FEL RADIATION

FOCUSING SYSTEMS

BEAM-SPLITTING AND RECOMBINING

FOCUSING WITH MIRRORS (1/2)

General requirements

- Focusing at the **DIFFRACTION LIMIT**
 - ⇒ the FEL beam is highly collimated
 - \Rightarrow demagnification to reduce the diffraction limit (e.g. a 10 μ m diff. lim. spot @4 nm requires f/1000 \Rightarrow 1 mrad)
- Grazing-incidence optics (high reflectivity and low power density)
- Aberrations (configuration and slope errors) lower than diffraction

FOCUSING WITH MIRRORS (2/2)

Variable focusing on the sample

- sample movement
- mirror rotation and translation
- •bendable mirror

Power density on the optics

The power density on the mirror must be below the damaging threshold

Sample/thickness		damage threshold [J/cm ²]	
Cu	bulk	0.5	
Au	$10 \ \mathrm{nm}$	0.04	Andrejczuk A. et al. DESY annual report 2001
Si	bulk	0.03	
Graphite 40 nm		0.06	
YAG	bulk	0.07	

SPECTRAL SELECTION OF ULTRA-SHORT PULSES THE PROBLEM OF TIME-COMPENSATION (1/3)

Grating monochromators

The design of grating monochromators for the selection of a spectral band of a short pulse gives problems related to the **preservation of the pulse time** duration

For a grating, the optical path of a ray differs from that of the neighbor by the quantity $\delta=m\lambda$, where m is the diffraction order. The total difference between the paths on first to last groove is $\Delta=N$ $m\lambda$

Es: λ =40 nm, 500 gr/mm, 10 mm illuminated area, first order $\Rightarrow \Delta$ = 200 μ m, Δ T = 660 fs

The time broadening is irrelevant for ps pulses but devastating for fs pulses

The mechanism which originates the path difference must be canceled

- equalization of path lengths for different spectral components
- combination of two diffractive elements in negative dispersion
- correction of the optical aberrations

SCHEMES FOR PATH LENGTHS EQUALIZATION: COMPENSATED MONOCHROMATOR (2/3)

TWO GRATINGS in COMPENSATED CONFIGURATION / SUBTRACTIVE DISPERSION

Spectral selection

An intermediate focus is formed between the two gratings, where a slit carries out the spectral selection of the harmonics

Wavelength scanning

The wavelength scanning is performed by grating rotation

Normal-incidence time-compensated monochromator Grazing-incidence time-compensated monochromator

TIME-COMPENSATED MONOCHROMATOR IN CONICAL DIFFRACTION (3/3)

A time-compensated monochromator in conical diffraction is being realized at LUXOR

BEAM SPLITTING AND RECOMBINING @40 nm (1/3)

THE SPLITTING IS PERFORMED BY A DIFFRACTION GRATING

- The minimum pulse duration is <=100 fs
- •A grating gives a spread in the optical paths equal to $\Delta = Nm\lambda$

Example: 200 lines/mm, grating size 30 mm, $\lambda = 40$ nm $\Rightarrow \Delta = 240$ um $\Rightarrow \Delta T = 800$ fs

•A grating gives a spectral spread of different spectral components

⇒ TIME-COMPENSATED CONFIGURATION WITH ZERO-DISPERSION

SPLITTING OF THE PRIMARY BEAM IN SECONDARY BEAMS (2/3)

2 secondary beams (zero order, +1 order) ⇒ two blazed gratings

BEAM RECOMBINING IN THE SAME DIRECTION (3/3)

Two plane mirrors

Mirror 1: rotation and translation

Mirror 2: rotation

REFERENCES

- P. Villoresi, Appl. Opt. **38**, 6040 (1999)
- L. Poletto, P. Azzolin, G. Tondello, SPIE Proc. **5194**, 95 (2003)
- L. Poletto, P. Azzolin, G. Tondello, SPIE Proc. **5194**, 105 (2003)
- L. Poletto et al, SPIE Proc. **5534**, 37 (2004)
- L. Poletto et al, SPIE Proc. **5534**, 144 (2004)
- L. Poletto, P. Azzolin, G. Tondello, Appl. Phys. B 78, 1009 (2004)
- L. Poletto, Appl. Phys. B 78, 1013 (2004)

For information

poletto@dei.unipd.it

BEAM DIAGNOSTICS

ON-LINE SINGLE-SHOT DIAGNOSTICS of the photon beam are necessary for the characterization of the source and the definition of the experimental conditions:

- Beam position
- Spectrum
- Intensity

LUXOR HAS THE CAPABILITY IN DESIGN AND REALIZATION OF INSTRUMENTS FOR PHOTON BEAM DIAGNOSTICS.

Spectrum measurement

- The spectrometer that is used at present at DESY for TTF-2 characterization during the commissioning phase, can be refurbished and used also for the characterization of FEL emission in the 5-45 nm spectral region.
- An on-line single-shot spectrometer for the soft X-ray region can be designed

Monitoring the FEL pulse intensity Gas ionization detector (DESY)

Online monitor of single-pulse FEL intensity

- + transparent
- + wide dynamic range
- + independent from beam position
- + 6 nm $< \lambda < 93$ nm
- + absolute calibration (~10%)

Single photoionisation:

$$N = N_{ph} \times n \times s \times l$$

N = number of electrons or ions

 N_{ph} = number of photons

n = target density

s = photoionisation cross section

/ = length of interaction volume

Controlled attenuation of FEL radiation Gas aborber (DESY)

- Controlled attenuation of FEL beam in the region 6-40 nm
- Attenuation of 10⁻⁶ (depends on gas)
- Preserves beam attributes (coherence, statistics, spectrum, etc.)

transmission of gas absorber

Monitoring the FEL spectrum (Hasylab-LUXOR) On-line spectrometer for single pulses

On-line monitoring
Grating spectrometer
with maximum zero order efficiency

Off-line monitoring Grating spectrometer

PROPOSAL FOR OPTICS DEVELOPMENT (1/2)

REALIZATION OF AN UV BEAM-SPLITTER FOR ULTRASHORT PULSES

Many experiments require the **splitting of the FEL beam**. One of the viable solutions for the intense EUV FEL beam is the use of **grazing-incidence gratings**.

LUXOR is interested in the detailed study and realization of a beam-splitter for ultrashort pulses with gratings in compensated configuration.

The beam-splitter will be realized on a lab board with **two plane grazing-incidence gratings** and **three plane mirrors** mounted on manual translators and rotators. It will be operated with **UV radiation (200-300 nm region)**.

The system input is an ultrashort UV pulse (≤ 100 fs), the output two parallel ultrashort beams with variable delay.

PROPOSAL FOR OPTICS DEVELOPMENT (2/2)

PARTNERS, ROLES AND TIME SCHEDULE

LUXOR (INFM, Padova) - ULTRAS (INFM, Milano)

Tasks

LUXOR: Optical design and system realization.

ULTRAS: UV ultrashort source (e.g. low-order harmonic generation from Ti:Sa laser), UV auto-correlator for the measurement of the pulse duration, measurement of the time delay between the two pulses.

LUXOR/ULTRAS: Test of optical performance with the ultrashort UV laser beam.

Request 40-50 kE

Time schedule <=1 year

REALIZATION OF THE SPECTROMETER FOR SPARCE

A normal-incidence spectrometer can be designed and realised by LUXOR for the monitoring of SPARC in the 40-600 nm region.

Characteristics

- large spectral region of operation (40-600 nm with three gratings)
- high spectral resolution ($\lambda/\Delta\lambda > 7000$)
- EUV-enhanced CCD detector for simultaneous acquisition of the spectrum
- ullet the absolute calibration of each element can be performed at LUXOR (\Rightarrow number of emitted photons)

