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Abstract 
 
In the paper we illustrate the procedure to design couplers for traveling wave (TW) structures 
with 3D electromagnetic codes in frequency domain. Simple equivalent circuit models of TW 
structures with input and output couplers and related properties are discussed. An example of 
coupler design of 3/2!  X band structure is illustrated. 
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1 INTRODUCTION 
 
TW structures coupler design can be performed using 3D electromagnetic (e.m.) codes in 
frequency domain. The technique can be applied to both accelerating [1] and deflecting [2] 
devices. In the first paragraph of the paper we introduce a simple equivalent circuit model of 
TW structures with input and output couplers and we discuss some important related 
properties. In the second paragraph we illustrate the procedure to design couplers with 3D 
e.m. codes. In particular we will refer to the e.m. code HFSS [3] and we will illustrate the 
case of an X band 3/2!  mode accelerating structure. 
 
2 CIRCUIT MODEL OF TW STRUCTURE 
 
The sketch of a disc loaded TW structure is shown in Fig. 1. The cells of the TW section have 
to be designed in order to have phase velocity of the working mode equal to the beam velocity 
[1]. The coupler cell dimensions have to be designed in order to minimize the reflected power 
at the waveguide input/output ports.  
Since it is not possible to consider an infinite number of TW cells (or, equivalently, a 
boundary condition that perfectly matches the traveling wave with a finite number of cells), 
one possible strategy to design the couplers is to consider a TW structure with input and 
output couplers and few cells (Fig. 1). In this case it is possible to design the couplers by 
changing their dimensions minimizing the reflection coefficient at the waveguide input port. 
However, this not necessarily corresponds to a minimization of the coupler reflection 
coefficient. At a given frequency, in fact, one can have zero reflection coefficient at the 
waveguide input port because of cancellation between the reflected waves generated by the 
input and output couplers [4]. If this is the case, some backward wave is present in the 
structure, perturbing the cell-to-cell, phase advance. Therefore, one also has to verify that also 
the phase advance per cell in the TW structure is constant and equal to the nominal one 
( 3/2! , as example). This procedure is, in general, very time consuming and we will not 
consider it in the following. 
In the following of the paper we propose a different design approach based on the simple 
circuit model of the structure with input and output couplers shown in Fig. 2. The two port 
networks with scattering matrix [S] correspond to the coupling cells regions that match the 
input/output waveguides to the disc loaded structure. Each cell of the TW structure is 
modeled by a two port networks, as discussed in [5]. 
 

 
FIG. 1: sketch of a TW structure. 
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FIG. 2: equivalent circuit model of the TW structure with couplers. 

 
 
 
From the circuit model it is easy to demonstrate the following properties. 
 
Property 1 
 
If we consider the short circuited structure without losses, shown in Fig. 3a whose equivalent 
circuit is shown in Fig. 3b, we have that (see Appendix 1): 
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where ( )n

s
!  is the reflection coefficient at the coupler waveguide (n is the position of the 

short circuited cell), S11 is the first element of the coupler scattering matrix and !"  is the 
phase advance per cell in the TW structure. 
 

 

FIG. 3: (a) traveling wave structure with short circuited cells; (b) circuital model. 
 
 
Property 2 
 
Let us consider the two following quantities that represent the phase distortions at the 
waveguide input port due to the non ideal coupler: 
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where [ ]x!  indicates the phase of the complex number x. We have that (see Appendix 2): 
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with: 
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The procedure gives two solutions for |S11|. As shown in Appendix 2, to select the correct 
solution it is necessary, first of all, to calculate the following angle: 
 

( )( )[ ] ( )[ ]!"!"# njnj
eSeS

2

11

22

11

*

20

22 1212
+$++$ +%$+%=    (5) 

 
where: 
 

!"
#

$"

% &+

'
'
'
'
'

(

)

*
*
*
*
*

+

,

''
(

)
**
+

,
&+

= 2
2

sin

sinsin2
1

1

arccos

2

21

2

2

11

112

S
S    (6) 

 
The correct solution is the one that verify the following equality: 
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Property 3 
 
From previous formulae it is easy to verify that in the “standard” cases of TW structures 
(with, for example, 6/5 ,3/2 ,3/ !!!" = ), we have that: 
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As example the plot of 
11
S  as a function of 

10
!  for different values of 

21
!  is reported in 

Fig. 4 for 3/2!" = . 
Under this condition we have that (see Appendix 3):  
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where ( )n

c
!  is the reflection coefficient at the input port of a complete n-cell structure (with 

input and output couplers) while ( )n
s
!  is the reflection coefficient of the short circuited 

structure of Fig. 3. In the first case n is the number of TW cells, in the other one the position 
of the short circuited cell.  
 
Property 4 
 
Under the condition (8) we have that (see Appendix 4): 
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FIG. 4: 
11
S  as a function of 

10
!  for different values of 

21
!  assuming 3/2!" = . 

 
 
3 COUPLERS DESIGN USING 3D E.M. CODES IN FREQUENCY DOMAIN 
 
We consider, as an example, the case of a TW accelerating structure working on the 3/2!  
mode at 11.424 GHz. The dimensions of the single TW cell are reported in Fig. 5 and they 
have been found (using HFSS) in order to have the phase velocity of the fundamental 
harmonic equal to c at 11.424 GHz. The phase and amplitude of the longitudinal electric field 
on axis are reported in Fig. 6. 
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Considering the previous discussed properties related to the short circuited structure, it is 
possible to design the coupler according to the procedure discussed in detail in the following. 
 

 
FIG. 5: TW single cell dimensions of the structure working on the 3/2!  mode at 

11.424 GHz. 
 
 

 

FIG. 6: phase and the amplitude of the longitudinal electric field on the axis of the single cell 
(HFSS results). 

 
Let us consider the short circuited structures shown in Fig. 8 that correspond to n=0, n=1 and 
n=2 short circuited cells. The optimum coupler dimensions are those satisfying eq. (1). 
Starting from a non-optimized design it is possible to calculate the reflection coefficient of the 
coupler using (3) and change the coupler dimensions to minimize |S11| in a step-by-step 
iterative procedure. Since, as eq. (3) shows, the coupler reflection coefficient depends on the 
two parameters 

10
!  and 

21
! , it is enough to vary only two of the input coupler dimensions 

until the residual |S11| value is within the specified range. Referring to the Fig. 1 sketch, 
simulations have shown that the most sensitive parameters are w and Rc while the length Lc 
and the thickness tc can be kept fixed. This procedure can be also included in an optimization 
algorithm to find the optimum value in a faster way as illustrated in [4]. 
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FIG. 8: short circuited structures for coupler optimization. 

 

 
The values of 

10
!  and 

20
!  as functions of the geometrical parameter Rc near its optimum 

values (Rc=10.335 mm) are reported in Fig. 9a. The optimum value for w is 9.57 mm. The 
corresponding amplitudes of the reflection coefficient, calculated by eqs. (3) and (10), are 
reported in Fig. 9b. From this plot is easy to verify that eq. (10) can be applied only under the 
condition expressed by (8). Moreover from these calculations it is possible to evaluate the 
sensitivity of the input coupler reflection coefficient to Rc. Similar plots can be done 
considering the other coupler dimensions. 
The amplitude of the reflection coefficient as a function of frequency, assuming the optimum 
values of Rc and w, is reported in Fig. 11a. It has been calculated by eq. (3) including the 
different single cell phase advances of the TW structure at the different frequencies given by 
the dispersion curve of Fig. 10. The details of the amplitude of the reflection coefficients near 
the working frequency 11.424 GHz calculated by eqs (3) and (10) are reported in Fig. 11b. 
From the plot it is easy to verify that the input coupler has reflection coefficient below 0.05 in 
a bandwidth of MHz 10±  near the working frequency. Outside this bandwidth the reflection 
coefficient grows and over a certain threshold eq. (10) is no more usable and we have to 
consider the more general expression (3). 
Finally in Figs. 12 and 13 we report the simulation results of a 7 cell structure in term of 
electric field profiles (amplitude and phase) and reflection coefficient at the input port in the 
hypothesis of no losses. The finite number of reflection coefficient minima is given by the 
resonant SW patterns generated in the structure by the reflections at the input and output 
couplers. In fact, as previously observed, the coupler has a finite bandwidth and, over this, 
there are reflections of the traveling wave. The minima are located in the pass-band of the 
periodic structure shown in Fig. 10 and their number is equal to the number of cells. 
Increasing the number of cells we progressively increase the number of minima in the pass-
band. 
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FIG. 9: (a) value of the phases 
2110

,!!  as a function of the coupler parameters Rc 
(w=9.55mm); (b) amplitude of the reflection coefficient. 

 

FIG. 10: TW structure dispersion curve (HFSS results). 

 

FIG. 11: amplitude of the reflection coefficient as a function of frequency. 



— 9 — 

 
FIG. 12: Electric field on axis (amplitude and phase) as a function of the longitudinal 

coordinate in a 7 cell structure (HFSS results). 
 

 
FIG. 13: Reflection coefficient at the coupler waveguide as a function of frequency in the 

case of a 7 cell structure (HFSS results). 
 
This design procedure can be extended to the cases of structures with losses and/or constant 
gradient instead of constant impedance. In the first case the power losses in the first cells of 
the structure are, in general, so small [1] that it is possible to design the couplers considering 
the ideal structure without losses. It is easy to verify with simulations of the real structure 
(still considering few cells) that the results are correct. In the second case the cell dimension 
variations after the coupler are, in general, so small [1] that it is possible to design the 
couplers considering a constant impedance structure with few equal cells. In this case input 
and output couplers have to be designed separately to match the initial and final values of the 
cell irises.  
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4 CONCLUSIONS 
 
We have illustrated the procedure to design couplers of TW structures with 3D 
electromagnetic codes working in frequency domain. The procedure is based on a proper 
analysis of the phase of the reflection coefficient for different length of the short circuited 
structures. This design procedure is based on a simple circuit model that has been presented 
and solved. An example of input coupler design of an X band structure, using this technique 
implemented with the electromagnetic code HFSS, has been finally illustrated. 
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APPENDICES 
 
Appendix 1 
 
Let us consider the first implication: 
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The reflection coefficient at the input port is simply given by: 
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If we suppose that the structure has no losses, we have that [4]: 
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where !  is a real number 1!  and 

1221
,, !!!  are the phases of the scattering coefficients S11, 

S22 and S12 respectively. 
Substituting (2A) in (1A) it follows: 
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Let us now consider the other implication: 
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By absurd let us consider 0

11
!S . From (2A) and (3A) we have: 
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the magnitude of the reflection coefficient is always equal to 1. Concerning the phase1 it is 
equal to: 
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and therefore: 

                                                
1 The symbol [ ]x!  means the phase of the complex number x. 
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the complex numbers ( )( )!"# hnj

h ec
++$+= 2

21  can be easily plotted for h=0,1,2 and are shown in 
Fig. 1A. It is straightforward to verify that, except in the singular case of 2/!" =  and 

!" ,0
2
= , the complex numbers 

210
,, ccc  cannot have the same phases if 0!" and therefore: 
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that is in contraddiction with the hypothesis. 
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FIG 1A 
 
 
Appendix 2  
 
Figure 1A has been replotted as Fig. 2A where: 
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By applying the sine theorem to the triangle ABO and BCO we obtain: 
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Considering the polygon ABCO we have that: 
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From the two equations (8A) and (9A) it is easy to derive: 
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From the Carnot theorem applied to the triangle BOW we have: 
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Moreover since from (8A) we have: 
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we obtain: 
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From this equation it is easy to obtain eq. (3). 
Concerning the choice between the two possible solutions we can apply the Carnot theorem to 
the triangle BOW obtaining the value of  

2
! : 
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with these values of 
2

!  it is possible to calculate the phase distortions at the waveguide input 
port due to the non ideal coupler using (6A). The correct solution for !  is the one that 
reproduces for one of the two values of 

2
!  the initial phase distortions or its sum as expressed 

in (7). 
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If 1

11
<<S  it follows from (4A) that: 
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substituting this expression in (9) we have immediately that the equality is satisfied for 

s
! . 

In a similar way we have that: 
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substituting this expression in (9) we have immediately that the equality is satisfied also for 
c
! . 
 
Appendix 4 
 
Considering the expression (5A) if 1

11
<<=!S we have: 
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from this last equality it is easy to derive eq. (10). 
 


