

SPARC-ME-07/001 2 March 2007

MECHANICAL AND MAGNETIC QUALIFICATION OF THE FOCUSING SOLENOIDS FOR SPARC

B. Bolli, S. Ceravolo, M. Esposito, P. Iorio, F. Iungo M. Paris, C. Sanelli, F. Sardone, F. Sgamma, M. Troiani, *(INFN/LNF)*

G. Bazzano, I. De Cesaris, (Fondazione CNAO)

Abstract

Mechanical and magnetic measurements have been carried out to determine the geometric and magnetic characteristics of the focusing solenoids that will be mounted on the first two accelerating sections of the SPARC LINAC. This paper describes the procedure used and provides the geometrical and magnetic data necessary for the alignment of these solenoids in the SPARC hall [1].

1 INTRODUCTION

A linear accelerator is under construction at the Frascati National Laboratories of INFN for the SPARC project [2]. The main goal of this project is the promotion of an R&D activity oriented to the development of a high brightness photoinjector to drive SASE-FEL experiments. The main components of the SPARC linear accelerator are: a 1.6 cell RF gun, 3 S-band SLAC-type accelerating sections, and a 6-module 12-m long undulator. A layout of the machine is shown in Fig. 1, where also the so called "by pass transfer line", to be dedicated to an experiment of magnetic compression of the beam, and the "seeding" experiment are shown.

FIG. 1: Layout of the SPARC linear accelerator

Two of the three accelerating sections of the SPARC LINAC have been delivered to LNF by Mitsubishi, while the third one comes from SLAC as part of a collaboration agreement. Each one of the first two sections is embedded in an array of 13 solenoids, required to produce a magnetic field for additional focusing in order to comply with the Ferrario working point matching conditions for emittance compensation [3].

FIG. 2: The three accelerating sections

In addition to the 26 solenoids, two spare solenoids have been realized and are ready to be assembled on the LINAC in the case that a malfunctioning one should be substituted. The total number of coils is therefore 28, and all of them have been measured in order to define their geometrical and magnetic features.

2 MEASUREMENTS

For a proper and correct accelerator functioning it is important to align the focusing solenoids on the machine with their magnetic axes precisely coincident with the beam axis. Preliminary operations are therefore the geometrical characterization, to determine the geometrical axis, and the magnetic measurements, to determine the magnetic axis position with respect to the geometrical one. The concept of the solenoid's "magnetic axis" will be explained later on when the plotting of the magnetic field variation will be analyzed and described.

2.1 Coordinate measuring techniques

Different coordinate measuring techniques have been used for this job. For the first set of coils the measurements have been performed with two theodolites (Leica T3000 [4]), both connected to a PC and controlled by a specific software (Leica Axyz). For the second set it has been possible to use a laser tracker (Leica LTD840), newly purchased by the INFN Frascati Laboratories.

FIG. 3: Leica Theodolites

FIG. 4: Leica Laser Tracker

The laser tracker is a versatile instrument that requires less human effort and allows precisions of approximately the same magnitude as the theodolite system (angles: ± 0.2 ''; distances: ± 0.02 mm), but with a quicker measuring process. Another difference between the two measuring systems is that the laser tracker needs necessarily a Corner Cube Reflector (CCR) as a target, while a theodolite collimation may use any visible target. A third important difference is that the laser tracker allows to keep the target under control even during

movement. In both cases the data may be collected and treated by means of Leica Axyz. This software not only gives the possibility to control the instruments (Laser Tracker or Theodolites), and to read and store data from them, but it also offers tools for nearly every type of geometrical analysis.

2.2 Geometrical Characterization

The characterization consists in determining the geometrical axis and referring to it three reference points, fixed to the solenoid, that have to be visible during the alignment on the machine. In order to do this the coils have been supplied with special supports, on which precision holes have been machined, where targets can be positioned (FIG.5).

FIG. 5: The focusing solenoid

Once the geometrical axis has been identified, as the axis of the coil internal cylindrical surface, it is used to build a coordinate system fixed to the solenoid having (FIG.6):

- the origin in the solenoid midplane
- the x-axis coincident with the coil geometrical axis
- the y-axis conveniently placed on the midplane of hydraulic and electric connection block

The 3D coordinates of the three coil reference points can be measured and stored as the "geometrical coordinates"

FIG. 6: The Coordinate system fixed to the solenoid

2.3 Magnetic Measurements

Once the characterization is done, the magnetic field intensity inside each coil is measured by a Hall Effect Teslameter [5], whose Hall plate is mounted on a 3D movement machine (FIG. 7). Four out of five movement axes are motorized. By scanning the volume inside the solenoid it is possible to map the magnetic field in the zone of interest.

FIG. 7: The 3D movement machine holding the Hall probe

In order to evaluate the offset between the geometrical and the magnetic axis the coil must be placed in front of the magnetic measuring machine with its coordinate system coincident with the machine one, defined as follows: (FIG. 8):

- the origin in the center of the probe (in an arbitrarily assigned position)
- the x, y, and z axis parallel to the three main device movements

FIG. 8: The Coordinate system fixed to the probe

A complete 3D magnetic field scan may be time consuming: in some cases a single 2D study on the midpoint cross-section is convenient and for short solenoids, as SPARC ones are, it is also enough accurate. The midpoint cross-section in the solenoid coordinate system (FIG.6) is the plane x=0. The magnetic field analysis has been performed on this plane, studying the variation of B along the two principal radial directions (y-axis and z-axis).

2.3.1 The magnetic field produced by the solenoid

The SPARC focusing solenoids are quite atypical from a geometrical point of view. Unlike classical solenoids they have a large diameter and a short length. For this reason the magnetic field in the core is not essentially uniform, as it is in long solenoids, but it is strongly influenced by border effects. The variation of the magnetic field as a function of the radial position, on a plane perpendicular to the solenoid axis, is shown in FIG.9 and has a parabolic behavior.

FIG. 9: The magnetic field variation

The vertex of this parabola is the point with null derivative (?B/?r=0). In a small area around this point the variation of the B field is very low. In other words the field is approximately homogeneous. The condition of maximum field homogeneity is important for the beam stability.

The magnetic center is the point $C_M=(0,y_M, z_M)$ on the plane x=0, that satisfies both conditions $B(0,y_M, z_M)/2y=0$ and $B(0,y_M, z_M)/2z=0$. It is then an acceptable approximation to consider the magnetic axis as the vector parallel to the coil's geometrical axis intersecting the center of the magnetic field on the midpoint cross-section.

The magnetic offsets Δy and Δz are the translation components necessary to move the solenoid from the condition of geometrical axis aligned on the SPARC beam axis to the condition of magnetic axis aligned.

FIG. 10: Geometrical axis aligned with the beam axis

As it is possible to see in FIG.10 the magnetic offsets are:

- $\Delta y = -y_M$
- $\Delta z = z_M$

FIG. 11: Magnetic axis aligned with the beam axis

3 GEOMETRICAL AND MAGNETIC DATA FOR ALIGNMENT

The geometrical coordinates $(X_0\ ,Y_0\ ,Z_0)$, the magnetic offsets (Δy and Δz), and the consequent magnetic coordinates (X ,Y , Z) are listed in tables 1 and 2. All the values are expressed in millimeters.

Solenoid Serial Number		Geometrical Coordinates			Magnetic Offsets		Magnetic Coordinates		
		XO	Y0	Z0	?Y	?Z	х	Y	Z
1	Ref 1 Ref 2 Ref 3	-0.595 -0.698 -0.567	-144.686 146.394 341.947	311.137 309.402 23.844	-1.314	-0.153	-0.595 -0.698 -0.567	-146.000 145.080 340.633	310.984 309.249 23.691
2	Ref 1 Ref 2 Ref 3	-1.741 -0.759 1.286	-148.501 149.725 355.254	323.042 322.385 24.532	-1.550	-0.570	-1.741 -0.759 1.286	-150.051 148.175 353.704	322.472 321.815 23.962
3	Ref 1 Ref 2 Ref 3	-0.483 -0.347 -0.201	-145.464 144.582 342.238	311.209 311.249 24.525	-1.231	-0.720	-0.483 -0.347 -0.201	-146.695 143.351 341.007	310.489 310.529 23.805
4	Ref 1 Ref 2 Ref 3	-0.958 -0.387 -1.098	-143.257 145.808 342.971	311.574 310.346 23.380	-1.399	-0.126	-0.958 -0.387 -1.098	-144.656 144.409 341.572	311.448 310.220 23.254
5	Ref 1 Ref 2 Ref 3	-1.431 -0.069 -0.980	-144.633 145.650 342.309	310.744 310.519 23.062	-1.790	-0.803	-1.431 -0.069 -0.980	-146.423 143.860 340.519	309.941 309.716 22.259
6	Ref 1 Ref 2 Ref 3	-0.059 1.332 -0.628	-144.147 146.032 343.039	310.860 310.389 22.302	-1.836	-0.577	-0.059 1.332 -0.628	-145.983 144.196 341.203	310.283 309.812 21.725
7	Ref 1 Ref 2 Ref 3	-0.443 -0.122 0.133	-143.959 146.085 343.116	311.381 310.340 23.923	-1.690	-0.230	-0.443 -0.122 0.133	-145.649 144.395 341.426	311.151 310.110 23.693
8	Ref 1 Ref 2 Ref 3	0.262 -0.324 -1.538	-145.443 145.665 342.548	310.424 310.944 25.451	-2.050	-0.618	0.262 -0.324 -1.538	-147.493 143.615 340.498	309.806 310.326 24.833
9	Ref 1 Ref 2 Ref 3	-0.322 -0.368 0.307	-145.099 143.627 342.072	310.393 311.255 24.838	-2.089	-0.221	-0.322 -0.368 0.307	-147.188 141.538 339.983	310.172 311.034 24.617
10	Ref 1 Ref 2 Ref 3	-0.737 -0.163 -0.673	-145.728 145.297 342.168	310.947 310.722 24.572	-1.538	-0.600	-0.737 -0.163 -0.673	-147.266 143.759 340.630	310.347 310.122 23.972
11	Ref 1 Ref 2 Ref 3	-0.830 -1.083 -0.592	-144.660 145.823 342.256	311.132 310.335 22.553	-1.289	-0.268	-0.830 -1.083 -0.592	-145.949 144.534 340.967	310.864 310.067 22.285
12	Ref 1 Ref 2 Ref 3	-0.703 -0.485 0.782	-142.614 148.612 342.473	312.093 309.726 21.169	-1.521	-0.573	-0.703 -0.485 0.782	-144.135 147.091 340.952	311.520 309.153 20.596
13	Ref 1 Ref 2 Ref 3	-0.586 -0.123 0.583	-144.014 146.400 342.306	311.104 310.801 22.669	-1.144	-0.442	-0.586 -0.123 0.583	-145.158 145.256 341.162	310.662 310.359 22.227
14	Ref 1 Ref 2 Ref 3	-0.158 -0.493 -1.142	-146.145 145.566 342.242	310.794 310.571 24.447	-1.200	-0.480	-0.158 -0.493 -1.142	-147.345 144.366 341.042	310.314 310.091 23.967

TAB. 1: First section solenoids: geometrical coordinates, magnetic offsets, magnetic coordinates

Solenoid Serial Number		Geome	trical Coor	dinates	Magnetic Offsets		Magnetic Coordinates		
		XO	Y0	ZO	?Υ	?Z	х	Y	z
15	Ref 1 Ref 2 Ref 3	-0.784 -0.592 0.707	-149.248 152.088 356.504	323.721 322.444 23.466	-1.230	-0.267	-0.784 -0.592 0.707	-150.478 150.858 355.274	323.454 321.214 22.236
16	Ref 1 Ref 2 Ref 3	0.572 0.320 -0.458	-151.188 151.416 356.069	323.253 323.153 24.201	-1.353	-0.704	0.572 0.320 -0.458	-152.541 150.063 354.716	322.549 321.800 22.848
17	Ref 1 Ref 2 Ref 3	-0.051 -0.190 -0.226	-147.406 153.981 356.238	325.096 321.507 20.229	-0.960	-0.920	-0.051 -0.190 -0.226	-148.366 153.021 355.278	324.176 320.547 19.269
18	Ref 1 Ref 2 Ref 3	0.025 0.073 0.530	-150.121 152.015 357.445	323.783 322.758 22.939	-1.529	-0.846	0.025 0.073 0.530	-151.650 150.486 355.916	322.937 321.229 21.410
19	Ref 1 Ref 2 Ref 3	-0.667 -0.527 0.270	-147.469 154.758 357.290	324.373 321.317 20.613	-1.215	-0.336	-0.667 -0.527 0.270	-148.684 153.543 356.075	324.037 320.102 19.398
20	Ref 1 Ref 2 Ref 3	-0.325 0.098 -0.343	-151.461 150.836 355.960	322.743 323.283 24.883	-1.000	-0.520	-0.325 0.098 -0.343	-152.461 149.836 354.960	322.223 322.283 23.883
21	Ref 1 Ref 2 Ref 3	-0.381 -0.969 0.029	-151.482 149.540 356.179	321.762 323.310 26.859	-1.190	-0.120	-0.381 -0.969 0.029	-152.672 148.350 354.989	321.642 322.120 25.669
22	Ref 1 Ref 2 Ref 3	0.365 0.273 0.618	-148.331 153.825 356.310	324.433 322.079 21.601	-1.250	-0.600	0.365 0.273 0.618	-149.581 152.575 355.060	323.833 320.829 20.351
23	Ref 1 Ref 2 Ref 3	-0.327 0.389 -0.279	-148.036 153.036 356.464	324.401 322.147 22.848	-1.343	-0.733	-0.327 0.389 -0.279	-149.379 151.693 355.121	323.668 320.804 21.505
24	Ref 1 Ref 2 Ref 3	0.410 0.003 0.023	-149.709 152.339 356.293	323.670 322.921 23.743	-1.430	-1.000	0.410 0.003 0.023	-151.139 150.909 354.863	322.670 321.491 22.313
25	Ref 1 Ref 2 Ref 3	-0.225 0.240 -0.326	-150.787 151.786 356.358	323.729 323.253 23.695	-1.020	-1.300	-0.225 0.240 -0.326	-151.807 150.766 355.338	322.429 322.233 22.675
26	Ref 1 Ref 2 Ref 3	-0.289 -0.021 -0.681	-150.932 151.706 355.321	323.448 322.433 26.016	-0.944	-0.790	-0.289 -0.021 -0.681	-151.876 150.762 354.377	322.658 321.489 25.072
27	Ref 1 Ref 2 Ref 3	-0.758 -0.313 0.571	-145.934 155.382 355.866	324.805 320.009 19.082	-1.328	0.000	-0.758 -0.313 0.571	-147.262 154.054 354.538	324.805 318.681 17.754
28	Ref 1 Ref 2 Ref 3	-0.137 0.255 0.094	-148.914 152.931 356.618	324.250 322.398 22.721	-1.220	-0.791	-0.137 0.255 0.094	-150.134 151.711 355.398	323.459 321.178 21.501

TAB. 2: Second section solenoids: geometrical coordinates, magnetic offsets, magnetic coordinates

FIG. 12 shows the magnetic center position distribution, for all the 28 SPARC focusing solenoids, with respect to the geometrical center $C_G(0,0,0)$.

FIG. 12: Magnetic center distribution

4 **REFERENCES**

- [1] F. Sgamma: "The SPARC Project Alignment Procedures", ME-04/001, 22/09/2004
- [2] D. Alesini et al "STATUS OF THE SPARC PROJECT". SLAC-PUB-11650, PAC-2005-RPPT013, Jan 25, 2006. 3pp. Contributed to Particle Accelerator Conference (PAC 05), Knoxville, Tennessee, 16-20 May 2005.
- [3] M. Ferrario et al., Homdyn Studies for the LCLS RF Photoinjector, in The Physics of High Brightness Beams, J.Rosenzweig and L.Serafini ed., World Sci. ISBN 981-02-4422-3, June 2000
- [4] www.leica-geosystems.com
- [5] F. Iungo, M. Modena, Q. Qiao, C. Sanelli "**DAFNE magnetic measurements** systems" $-\Delta A \Phi NE$ Technical Note MM-4 (2/12/94).