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Abstract 
 

Low emittance beams are required for high brightness beam 
applications. Contributions to emittance degradations come 
from electromagnetic fields’ non-linearity which can be 
reduced using a transversally and longitudinally uniform beam. 
Concerning the transverse analysis of a beam, statistical 
concept as mean and standard deviation are usually used. They 
describe non-uniformity of a beam without describing how 
non-uniformity is distributed: spatial correlation, developed in 
early 1960s for geostatistics studies, can be used at this 
purpose. The paper describes the meaning of spatial correlation 
applying it to few simple examples. Finally the concept is 
applied to the analysis of real images of a laser or of an 
electron beam. 
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1.   Introduction 

A high brightness beam is required in a lot of fields as for example free 
electron laser [Ref.1]. The state of the art points out that the best way to produce 
such a beam is using a photo-injector [Ref.2]. It is a device where a cathode 
illuminated by a laser generates electrons by photo-emission; the cathode is 
embedded in a radiofrequency (RF) cavity followed by a solenoid and by a 
booster which accelerates the beam. 

High brightness means a high current and a low emittance beam [Ref.3]. 
Concerning the emittance its degradation is due to RF fields, space charge. 
Theoretical studies [Ref.4] demonstrated that a proper choice of a magnetic 
solenoid, placed outside the RF cavity, can completely compensate the emittance 
degradation due to longitudinal correlation of space charge and RF fields. On the 
contrary contributions due to non linearities of these fields cannot be corrected.  

For these reasons a transverse and longitudinal uniform beam has been 
chosen world wide for high brightness beam applications to reduce non 
linearities. Such a choice means a laser longitudinally and transversally uniform 
where, because of the natural longitudinal and transverse Gaussian profile, 
sophisticated manipulations of the laser intensity [Ref.5] are applied before it 
hits the cathode surface.  

Beam’s non uniformity is anyway possible due to non perfect laser 
uniformity and different quantum efficiency of the cathode surface; so the 
evaluation of the laser and the extracted beam quality is indeed very important. 

In this paper the concept of spatial correlation for transverse beam quality 
studies is analyzed.  

2.   Spatial correlation 

Concepts such as mean, variance and standard deviation can be used to 
evaluate uniformity of a set of data distributed on a surface, as in the case of the 
transverse spot of an electron beam or of the laser itself.  

The mean describes the central value of the data. In the case of a laser or of 
a beam cross section analysis, a matrix of pixel of certain intensity is given (each 
pixel representing the electrons or photons charge). For a matrix of elements the 
mean is obviously calculated as: 
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where N and M are the matrix dimensions, T=NM is the number of pixel 
involved, and aij  the matrix element representing the generic sample, that is the 
pixel intensity.  

The variance represents the distance from the central value, that is the 
spread, and for a 2D matrix it is calculated as follows:  
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The obtained quantity is always positive so that the standard deviation can 
be defined as:  

 )var(aa =σ  (3)  

which is a quantity whose dimensions are comparable to the mean. The 
argument (aij-<a>) defines a new matrix where every element represents the 
distance from the mean and (aij-<a>)2 is the variance matrix. It is obtained as a 
distance squared so that bigger differences are emphasized respect to the smaller 
ones. 

For a perfectly uniformly charged beam cross section, normalized to the 
higher sample, <a>=1 and σa=0. Of course more the cross section is non-
uniform more the mean and the standard deviation will be far from the ideal 
values. The above parameters (but one could extend the analysis using other 
statistical parameters), describe non-uniformity without describing the way non-
uniformity is distributed. It has been shown [Ref.6] and [Ref. 7] the importance 
of the distribution of the non-uniformity because it can give different results 
concerning the emittance degradation.  

Spatial correlation describes such a property. The concept comes from 
spatial statistics, a subject developed to solve problems related to geo-statistical 
studies during early 1960s [Ref.8] and [Ref.9]; the problem was to predict the 
ore grades from a limited number of peripheral samples within an area to be 
mined. Anyway it can be applied to any kind of subject such as population 
density, rainfall, temperature that is where a sample value is expected to be 
affected by its position and its relationships with its neighbours. 

It is necessary to introduce the covariance for a matrix point to define the 
spatial correlation. The quantity covariance answers the question whether a 
sample and its neighbour are at the same time different or not from the mean and 
it’s defined as:  



 4 

 ∑∑
= =

><−⋅><−=
N

i

M

j
ijhij aaaa

T
ha

1 1
)()(1),cov(  (4) 

where aijh is the mean of the samples localized around the main sample aij. 
The argument (aij-<a>)(aijh-<a>) is called the covariance matrix.  

The samples can be taken in different ways depending also from the distance 
h from aij as represented in Figure 1: 
 

 
 
Figure 1.The aij is the generic sample whose variance is compared with the other samples’ variance 
at a certain distance h. 

 
As can be easly seen it results:  
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which is the mean of the samples around aij. 
The distance h and the matrix dimensions N, M define the resolution of the 

spatial autocorrelation investigation: thus to make the spatial correlation for 
different matrix comparable, the ratio h/N or h/M has to be chosen about the 
same value. 

The index Λ, which describes the spatial correlation, can be defined as the 
the covariance normalized to the standard deviation σa squared:  
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which is a quantity whose value is between -1 and 1. The minus sign simply 
means most samples are lower than the mean. 

The spatial correlation meaning is shown in the following examples. Let’s 
consider the matrix represented in Figure 2:  
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Figure 2.Two different samples distribution giving the same mean and standard deviation but 
different spatial correlation (N/h=20). 

 
The results underline that, given the same mean and the same standard 

deviation, the spatial correlation maybe different: the matrix on the left hand side 
has a unique big spot whilst the matrix on the right hand side has two distributed 
spots of intensity, resulting in more distributed spots; in the first case it gives 
Λ=0.92 whilst in the second case, as expected, the spatial correlation is smaller 
(Λ=0.84). 

It’s worth noting that, as represented in Figure 3, the mean can be enhanced 
keeping the same spots distribution: in this case spatial correlation remains 
unchanged no matter of the intensity of the distribution.  

 

 
 
Figure 3.The media is increased, standard deviation decreased whilst the spatial correlation remains 
unchanged, compared to Figure 2 right hand side (N/h=20). 

 
The calculation of the Λ for a uniform distribution of samples with a hole of 

intensity in the center and a hole of reversed intensity in the center are compared 
in Figure 4. As expected the mean changes whilst the standard deviation, which 
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takes account of the contrast, doesn’t change. The spatial correlation doesn’t 
change either since it describes how spots are distributed.  

 

 
 
Figure 4.Examples of a uniform distribution with a hole of reverse intensity in the center (N/h=20). 

 
Spatial correlation anyway decreases as the spots of intensity become more 

random. This is shown in Figure 5 where on the right hand side is depicted a 
completely random distribution of samples.  

 

 
 
Figure 5.Matrix with spots of intensity and a random distribution of spots. The Λ decreases as the 
distribution becomes more random (N/h=20). 
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3.   Application of the spatial correlation concept to beam quality 
studies 

Concerning the evaluation of the beam quality, it is clear from the previous 
examples that a well-behaving beam has a high mean and a low standard 
deviation while the spatial correlation has to be as low as possible. This property 
has been verified studying the effects of beam charge in-homogeneities on the 
emittance[Ref.7]. 

The charge distribution extracted from the cathode has been modeled as a 
sine and cosine function having a frequency n and a charge intensity δ. For there 
are no particular differences between the sine and cosine case, the latter will be 
presented in details here. Figure 6 shows the matrix representing a non-uniform 
beam as the frequency n increases. The generic matrix element is represented by 
the following function: 

 )cos1)(cos1(),( 0 jkikji nn δδρρ ++=  (7) 

where kn=2πn/rp and rp is the beam radius.  

 
 
Figure 6.Matrix representation of eq.8 showing non-uniform distribution versus n and for different δ 
(δ=40% and δ=20%). In this case ρ0=1, rp=100. 

 
Such distributions have been analyzed, concerning the emittance 

degradation with the Parmela code where the accelerator machine set up is the 
one used for the SPARC project [Ref.10]. The emittance degradation as a 
function of n and for different δ is represented on the left hand side of Figure 7. 
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The right hand side represents the emittance degradation versus the 
calculated index Λ for different σa being the standard deviation a measure of δ. 
As explained earlier Λ doesn’t change increasing or decreasing the intensity δ, 
anyway it changes as the frequency n increases. It’s interesting to note also that 
all the distributions with the same δ have the same mean and standard deviation ( 
σa=0.21 for a δ=40%, σa=0.14 for a δ=20%) underling the spatial correlation is 
the only parameter able to distinguish different distributions. 
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Figure 7.On the left hand side emittance behaviour vs n at z=1.25 (that is on the first emittance 
minimum in its evolution along z). On the right hand side emittance behaviour vs spatial correlation 
Λ (N/h=M/h=20). 
 

Table 1 and Table 2 show the obtained spatial correlation for different 
frequency n and the standard deviation for different intensity of non uniformity 
δ. The best situation is obtained when both spatial autocorrelation and standard 
deviation are low that is below 0.4 for the Λ and below 0.14 for the σa. 

 
Table 1. Spatial autocorrelation Λ for different frequency n of the non-
uniformity distribution. The ratio is N/h=M/h=20. 

 
n 1 2      3 4 

Λ 0.92 0.71 0.45 0.18 

 
Table 2.Standard deviation σ for different intensity δ of the non-
uniformity distribution. 

 
δ 10% 20%    30% 40% 

σ 0.08 0.14 0.18 0.21 
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It is interesting to show in Figure 8 a plot of the spatial autocorrelation as a 

function of the frequency n for different distances h: when h is small (or the ratio 
N/h=M/h is high) the Λ variation is so small that the frequency n=1 and n=4 
cannot be distinguished. It means the aij and aijh are so far from the mean <a> 
(see eq.4) that the Λ is always high. Anyway aijh can be chosen as obtained from 
a bigger number of samples (that is choosing a bigger h) thus the distance aijh 
from the <a> decreases, decreasing the overall covariance. This gives the 
possibility to distinguish between the frequency n=1 and n=4. The distance h 
has to be high enough with an upper limit given by the frequency n to be 
investigated that is:  

 π<hkn   

or substituting kn 

 n
h
N 4>  (8) 

In this case eq.8 leads to h=10. 

 
 
Figure 8.Spatial autocorrelation vs n for different distances h. 
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eliminating the bias and those pixels which haven’t a physical meaning: this is 
the filtered matrix. The algorithm normalizes the matrix and calculates the radius 
of the beam choosing those values which are above a certain threshold.  

The threshold is chosen making the mean of the pixels around the 
barycentre of the filtered distribution and lowering it of a percentage: in this way 
the beam boundary are established.  

The spatial correlation calculation is executed simply applying the formulas 
mentioned at the beginning of this paper on the filtered matrix where the pixels 
inside the spot of the beam are untouched. In this way the spatial correlation 
depends on the threshold chosen only because the threshold is responsible of the 
chosen radius. Because of boundary problems, elements outside the established 
radius of the beam are treated as being equal to the mean of the distribution. The 
distance h is automatically chosen by the algorithm keeping the ratio N/h fixed 
and equal to 20 as shown earlier. Finally the mean and the standard deviation are 
calculated, as well as the barycentre of the obtained beam, the standard deviation 
of the radius and the eccentricity.  

The situation described in Figure 6 has been further on studied by evolving 
the n=1 and δ=40% case with the Parmela code (Figure 9 beam spot at z=0 and 
Figure 10 beam spot along z) and calculating the obtained index Λ.  

 
 
Figure 9.Image of the beam evolved along z with Parmela (SPARC configuration: radius=1 mm, 
Q=1 nC, flat top pulse with FWHM=10 psec and rise time=1 psec, εth=0., number of particles used= 
300000). 
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Figure 11 shows the calculated spatial correlation versus z and the obtained 
rms beam spot size compared with the Parmela one. The index Λ first oscillates 
because the space charge spreads the spots intensity; on the contrary the solenoid 
increases the spots intensity. Finally far from the waist the propagation is 
dominated by space charge and the index Λ decreases. 

 

 
 
Figure 10.Samples of the beam images evolving along z.  
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Figure 11.On the left hand side spatial correlation vs z. On the right hand side the beam radius vs z  
as calculated by the program and as obtained from Parmela.  

 
One more example is analyzed: the evolution along the horizontal dimension 

z of a uniform beam. Figure 12 shows the beam spot at z=0. The standard 
deviation σa is below 0.14 and the spatial correlation is about zero as well 
because the distribution shows a random distribution of intensity as can been 
seen looking at Figure 12.  

Figure 13 shows samples of the beam spot evolution and Figure 14 shows 
the beam spot size calculated by the program and Parmela. Again the spatial 
correlation oscillates because the beam itself oscillates. Finally Λ decreases due 
to the spread induced by the space charge.  
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Figure 12.Image of a uniform beam as obtained from Parmela (SPARC configuration: radius=1 mm, 
Q=1 nC, flat top pulse with FWHM=10 psec and rise time=1 psec, εth=0.6 mm mrad, number of 
particles used= 150000). 

 
 

 
 
Figure 13.Samples of the beam images evolving along z.  
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Figure 14.On the left hand side spatial correlation vs z. On the right hand side the beam radius vs z  
as calculated by the program and as obtained from Parmela.  

 
Figure 15 shows an example of a real laser beam analysis. The image taken 

on the cathode and the processed image with the proper radius are shown 
together with the matrix representing the distance from mean and the variance 
matrix that is the distance squared. 

 
Figure 15.From up left to right: laser beam image on the cathode, filtered image, distance from the 
mean (left hand side) and the variance. 
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Figure 16 is a coloured version of the beam image with a dot representing 

the calculated barycentre. 
 

 
 
Figure 16.Laser beam image with a central dot representing the barycentre, the mean, standard 
deviation and spatial correlation as calculated by the algorithm. 

 
The high spatial correlation (above 0.4) demonstrates the laser image 

exhibits spots which are not random but quite concentrate. Luckily the standard 
deviation is low (below 0.14) that is there is no much contrast between the mean 
and the spots.  

Next example shows the behavior, in terms of spatial correlation, of the 
same beam evolving along the longitudinal direction z in a photo-injector for 
high brightness beam applications. In particular the analyzed images are the 
results of the emittance meter measurements in the SPARC photo-injector 
[Ref.10]. This is shown in Figure 17 whilst Figure 18 shows also the obtained 
spatial correlation as a function of z and the calculated radius of the beam. As 
previously described spatial correlation oscillates because of focusing (solenoid) 
and defocusing force (space charge); then, because of the only space charge, 
defocusing, spots tend to partially compensate assuming a random aspect and the 
index decreases.  
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Figure 17.Samples of the beam images evolving along z.  
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Figure 18.On the left hand side spatial correlation vs z. On the right hand side the beam radius vs z  
as calculated by the algorithm and as obtained from the measures.  

 

4.   Conclusions 

Quantities like means, variance and standard deviation give details on non-
uniformity of a beam without showing how non-uniformity is distributed. Spatial 
correlation depicts this important property of a laser or of a beam. The paper 
reports and develops the spatial correlation concept with the help of few simple 
examples. Finally spatial correlation is applied to a real beam giving an addition 
tool to evaluate a beam quality.  

As a conclusion a well behaving beam displays a standard deviation and a 
spatial correlation which have to be as low as possible. If the standard deviation 
is high but the spatial autocorrelation is low it means beam non-uniformity is 
distributed randomly and previous studies demonstrated this causes lower 
emittance degradation. Viceversa if the spatial autocorrelation is high but the 
standard deviation is low it means the laser or the beam shows spots of intensity 
nonetheless the contrast between spots is low and the beam can be considered 
good. 

200 400 600

200

400

200 400 600

200

400

200 400 600

200

400

200 400 600

200

400

200 400 600

200

400

200 400 600

200

400

200 400 600

200

400

200 400 600

200

400

200 400 600

200

400

200 400 600

200

400

z=1.0 m 
σa=0.16 
Λ=0.88 

z=1.4 m 
σa=0.24 
Λ=0.93 

z=1.6 m 
σa=0.20 
Λ=0.94 

z=1.8 m 
σa=0.16 
Λ=0.92 

z=2.0 m 
σa=0.12 
Λ=0.91 

Λ 



 16 

 

Acknowledgments 

The authors would like to thank Alessandro Cianchi, Andrea Mostacci and 
Fulvio Pompili for their help and precious advices. 

References 

1. M. Ferrario et al., “Recent Advance and Novel Ideas for High 
Brightness Electron Beam Production Based on Photo-Injector”, Proc. 
Of the ICFA workshop on “The Physics and Application of High 
Brightness Electron Beams”, Sardinia, July 2002, World Scientific 

2. D. T. Palmer et al., “Microwave Measurements of the 
BNL/SLAC/UCLA 1.6 cell Photo-cathode RF Gun”, Proceedings of 
PAC 1995, Dallas, Texas 

3. C.A. Brau, “What Brightness means”, Proc. Of the ICFA workshop on 
“The Physics and Application of High Brightness Electron Beams”, 
Sardinia, July 2002, World Scientific 

4. B. E. Carlsten, Nucl. Instrum. Methods A 285, 313 (1989) 
5. C. Vicario, “High Brightness Electron Source for Coherent Radiation 

Production”, Ph.D thesis 
6. F. Zhou et al., Phys. Rev. ST AB 5, 094203 (2002) 
7. M. Quattromini et al., “Emittance Dilution due to 3D Perturbations in 

RF Photo-injector, Proceedings of EPAC 2004, Lucerne, Switzerland 
8. I. Clark, uk.geocities.com/drisobelclark/practica.htm 
9. E. Vinci, “Ruolo e Funzione dell’autocorrelazione spaziale”, Convegno 

SIS, Parma, Italia (1991) 
10. A. Cianchi et al., “High Brightness Electron Beam Emittance Evolution 

Measurements in SPARC RF Photo-Injector”, submitted to Physical 
Review Special Topics 


