

 SPARC-CS-12/007
 08 Giugno 2012

LabVIEW software per driver Technosoft IDS-IDM 240-640

Sandro Fioravanti

INFN-LNF

Abstract

Di seguito verrano spiegate le principali funzioni utilizzate nel sistema di controllo di
SPARC per movimentare i motori stepper con i driver della Technosoft IDS-IDM 240 e 640.

 1. Introduzione

 I driver della Technosoft sono dei controllori di
movimento molto performanti in grado di comunicare con
PC e PLC in RS232. Ogni driver ha una sua memoria
programmabile e un indirizzo fisico configurabile per la
comunicazione in CANopen la quale, una volta stabilita la
comunicazione con il driver principale (detto MASTER)
si può accedere alla catena di driver formata dal
CANopen.

Fig.1 Driver Technosoft IDM

— 2 —

 2. Installazione librerie e funzioni LabVIEW

 Per poter comunicare tramite un PC con un driver della Technosoft è necessario
installare il programma "Easy Motion studio" il quale installerà (in un sistema operativo
Windows) nella cartella "C:\WINDOWS\system32" la libreria "tmlcomm.dll". Le funzioni
necessarie per comunicare e comandare attraverso le funzioni LabVIEW, sono contenute e
installate dal programma "TML_Lib Lybrary for Labview", la sua installazione creerà una
cartella chiamata "TML_LIB_LabVIEW" dove al suo interno troveremo le funzioni, gli
esempi e i vari file di configurazione. Tutti i VI installati sono proprietari della Technosoft, in
quanto non è possibile modificarli perché costituiti da una "Call Library Function Node" che
non può è essere in alcun modo alterata, perché ogni VI richiama la libreria "tmlcomm.dll".

Fig.2 Block Diagram del VI "TS_OpenChannel.vi"

— 3 —

 3. Inizializzazione driver e VI di lettura errore.

 Per inizializzare la porta di comunicazione, come primo VI viene utilizzato
"\TML_LIB_LabVIEW\Functions\TS_OpenChannel.vi"

Fig.3 Spiegazione VI "TS_OpenChannel.vi"

Come spiegato in figura 3, il "Device name" è una stringa dove scrivere il numero della porta
seriale, il "Type" definisce il tipo di protocollo seriale (0 = RS232 | 1 = RS485), "HostID"
definisce l'ID del driver (MASTER) al quale il PC è collegato direttamente (da 1 a 255) e
nella voce "Baud Rate" verrà passato il numero di caratteri al secondo.

Dopo l'apertura del canale, è necessario caricare le impostazioni di sistema dal file
"\TML_LIB_LabVIEW\Setups\IBL2403 - CAN - ID1.t.zip" passando il percorso del file
direttamente nella funzione "TS_LoadSetup.vi"

Fig.4 Spiegazione VI "TS_LoadSetup.vi"

— 4 —

Dopo aver carico in memoria le informazione contenenti nei file "setup.cfg" e "variables.cfg",
si devono associare al driver che vogliamo movimentare, quindi utilizzeremo la funzione
"TS_SetupAxis.vi" al quale passeremo il numero ID del driver da controllare.

Fig.5 Spiegazione VI "TS_SetupAxis.vi"

In figura 6 è rappresentata la funzione "TS_SelectAxis.vi" la quale seleziona il driver che
andremmo a controllare. Tramite l'input "Axis ID" (da 1 a 255) viene richiamato il driver
"Master" o uno qualsiasi dei driver collegati in catena tramite CANopen.

Fig.6 Spiegazione VI "TS_SelectAxis.vi"

Per verificare se tutte le funzioni di inizializzazione sono andate a buon fine, utilizziamo la
funzione "TS_DriveInitialisation.vi" che esegue il comando ENDINIT e verifica se il driver è
stato inizializzato correttamente, restituendo un Output di conferma.

Fig.7 Spiegazione VI "TS_DriveInitialisation.vi"

— 5 —

Ogni funzione possiede un output di "Return" dove il VI restituisce un valore di tipo numerico
o booleano. Per sapere che tipo di errore è stato rilevato, dobbiamo utilizzare la funzione di
"TS_GetLastErrorText.vi" che semplicemente restituirà l'ultimo messaggio di errore rilevato
sottoforma di una stringa.

Fig.8 Spiegazione VI "TS_GetLastError.vi"

 4. Funzioni di controllo dello stato del driver
 Le funzioni che la Technosoft mette a disposizioni, sono più di 90. Di seguito elencherò
solo le funzioni utilizzate dal sistema di controllo che necessitano di una più dettagliata
spiegazione.
La funzione "TS_ReadStatus.vi" permette di leggere i registri interni al driver, in particolar
caso noi abbiamo bisogni di leggere lo stato di funzionamento del motore. Grazie ai registri
"REG_SRH" "REG_SRL" e "REG_MER" possiamo accedere a delle word di 16bit che
rilevano lo status del driver e del motore. Oltre ai registri di errore, è molto importante lo
status dei bit presenti nel registro "SRL" i quali rilevano se il motore è ON (bit 15) o se il
motore è in stato di attesa o di running (bit 10).

Fig.9 Spiegazione VI "TS_ReadStatus.vi"

— 6 —

Fig.10 Elenco e significato dei bit presenti nei registri

Per rilevare lo stato dei fine corsa, oltre a poterli leggere dallo stato dei registri, usiamo la
funzione "TS_GetInput.vi", la quale restituisce lo stato degli input presenti sulla scheda.

Elenco input:
Port[2] = IN INVERT "2/LSP"
Port[5] = IN "5/CAPI"
Port[16] = IN INVERT "16/ENABLE"
Port[24] = IN INVERT "24/LSN"
Port[29] = IN INVERT "29/GPIN1"
Port[30] = IN INVERT "30/GPIN2"
Port[34] = IN "34/H1"
Port[35] = IN "35/H2"
Port[36] = IN "36/H3"
Port[37] = IN "37/DIR"
Port[38] = IN "38/PULSE"

Fig.11 Spiegazione VI "TS_GetInput.vi"

— 7 —

Le funzioni "TS_GetIntVariable.vi" , "TS_GetLongVariable.vi" e "TS_GetFixedVariable.vi"
restituiscono tutte quelle variabili che necessitano di word da 16 o 32 bit. Nel manuale
(sezione TML Variables) sono descritte molteplici variabili, quelle da noi più utilizzate sono
"TPOS" (Long) che rileva la posizione relativa ai passi eseguiti dal motore, e le due variabili
AD2 e AD5 (Int) che restituiscono i valori "reference e feedback" corrispondenti alle tensioni
del potenziometro esterno.

Fig.12 Tabella dei formati di rappresentazione variabili.

 5. Funzioni di comando motore
 Anche le funzioni di comando e di configurazione del driver sono molteplici. Si può,
oltre a comandare il motore, gestire lo stato degli output digitali (con il VI "TS_SetOutput.vi")
e settare le variabili per la movimentazione del motore. Le funzioni essenziali per
movimentare un motore sono tre.
 - TS_Power.vi
 Questa funzione abilita il passaggio di corrente
 verso il motore (1 = ON | 0 = OFF)

 - TS_MoveRelative.vi
 Questa funzione permette di muovere il motore
 passandogli come parametri principali, il valore dei
 passi da compiere (Position) la velocità (Speed)
 l'accelerazione (Acceleration) e varie variabili
 settabili a seconda del caso e delle necessità.

 - TS_Stop.vi
 Questa funzione ferma immediatamente il motore

Nel caso della funzione di stop, esistono 4 varianti. Queste varianti possono essere attivate
con un "TML command" LSACT STOPx, dove la x è uguale a 0,1,2 o 3.
STOP0 ferma il motore con il tasso di decelerazione preventivamente programmato
STOP1 imposta la velocità a 0
STOP2 imposta la corrente a 0
STOP3 imposta la tensione del motore a 0.

Per inviare un qualsiasi comando (TML command) al driver, si utilizza il VI "TS_Execute.vi"
che, come mostrato in figura 13, deve essere inviato sotto forma di stringa.

— 8 —

Fig.13 Spiegazione VI "TS_Execute.vi"

Bibliografia
- Manuale delle funzioni LabVIEW Versione 2.0
P091.040.LabVIEW.v20.UM
http://www.oemmotor.se/Archive/FilesArchive/245387_1_812.pdf

- Manuale tecnico IDM240 IDM640 Version 1.1
IDM240_640-User-Manual
http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFMQFjAA&u
rl=http%3A%2F%2Fftp.ruigongye.com%2Fdownloadfile.aspx%3Fpath%3D%252F200808%
252FIDM240_640-User-Manual.pdf&ei=OwjfT7uMC-
mk4gTF8aCvCg&usg=AFQjCNErIwdAdl1Uftdls35-qGssk6O9hA

IDM240
IDM640

Version 1.1

Intelligent Servo Drive

 for DC, Brushless DC

and AC Motors

Intelligent Servo Drives

Technical
Reference

! Technosoft 2003

TECHNOSOFT

IDM240/640 v1.1
Technical Reference

P091.048.051.IDM.UM.0803

August 2003

Technosoft S.A.
Rue des Courtils 8A

CH 2035 Corcelles - NE

Switzerland

Tel.: +41 (0) 32 732 5500

Fax: +41 (0) 32 732 5504

contact@technosoftmotion.com

http://www.technosoftmotion.com/

Read This First

About This Manual

This book is a technical reference manual for the IDM240/640 intelligent servo drive. It describes
the IDM240/640 operation and provides basic information needed to program the IDM240/640 in

the Technosoft Motion Language (TML) environment.

Notational Conventions

 This document uses the following conventions:

!" The Technosoft Motion Language will be referred to as TML

!" TML variables, parameters or instructions are shown in special italic typeface.
Here is a sample:

SETIO#4 IN;
UPD;

Information about Cautions

This book may contain caution statements.

CAUTION ! This is an example of a caution statement.

A caution statement describes a situation that could potentially
cause harm to you or to the IDM240/640 intelligent servo drive unit

Related Documentation from Technosoft

Technosoft MotionChip User Manual, parts 1 and 2 (parts no. UMMCp1, UMMCp2),
describes in detail the Technosoft Motion Language and how to use it to program motion
applications on products like IDM240/640 supporting this high-level language interface

IPM Motion Studio User Manual (part no. UMMS) describes how to use the IPM Motion Studio –
the complete development platform for IDM240/640 including: motion system setup & tuning
wizard, motion sequence programming wizard, testing and debugging tools like: data logging,
watch, control panels, on-line viewers of TML registers, parameters and variables, etc.

If you Need Assistance …

If you want to … Contact Technosoft at …

Visit Technosoft online World Wide Web: http://www.technosoftmotion.com/

Receive general information
or assistance (see Note)

Ask questions about product
operation or report suspected
problems (see Note)

Make suggestions about,
or report errors in
documentation.

World Wide Web: http://www.technosoftmotion.com/

Email: contact@technosoftmotion.com

Fax: (41) 32 732 55 04

Email: hotline@technosoftmotion.com

Mail: Technosoft SA

 Case postale 52

 Rue des Courtils 8A

 CH-2035 Corcelles - NE

 Switzerland

Note: You need to register your IDM240 or IDM640 system in order to get free
assistance and support. Use the License no. of your IPM Motion Studio.

Trademarks

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

PC is trademark of International Business Machines Corporation.

Contents

1. IDM240/640 Overview

1.1 Key Features

1.2 Functional Overview

1.2.1 Block diagram

1.2.2 Motion Application Configurations

1.2.3 Sensors

1.2.4 Controlled Loops

1.2.5 Special Features

1.2.6 PWM Frequency and Sampling Rates

1.2.7 Motion Modes

1.2.8 Operating Modes

1.2.9 Memory Map

2. Technical Specifications

2.1. Key Features

2.2. Drive Drawings

2.3. Connector Specifications

2.3.1 Analog & 24V Digital I/O - J9 Connector

2.3.2 Motor & Supply - J2 Connector

2.3.3 Serial - J4 Connector

2.3.4 CAN - J10, J11 Connectors

2.3.5 SW1 - DIP-Switch

2.3.6 Feedback - J13A Connector (IDM240-5EI and IDM640-8EI)

2.3.7 Feedback - J13B Connector (IDM240-5RI and IDM640-8RI)

2.4 Electrical Specifications

2.5 IDM240/640 LEDs

3. IDM240/640 Programming in the TML Environment

3.1 How to Access IDM240/640 I/O pins from TML

3.1.1 General-purpose Digital Inputs

3.1.2 General-purpose Digital Outputs

3.1.3 Encoder Signals

3.1.4 Hall Signals

3.1.5 Analog Inputs

3.1.6 Limit Switch Inputs LSP, LSN

3.1.7 ENABLE Input

3.1.8 CAPI Capture Input

3.1.9 READY Output

3.2 PWM Voltage Command Scaling

3.3 Error Signal

3.4 Supply / DC-bus Voltage Measurement Scaling

3.5 Motor Currents Scaling

3.6 Motor Speed Scaling

3.7 Motor Position Scaling

4. Technosoft Motion Language

4.1. TML Environment

4.2. Motion Modes

4.3. Application Programming

4.4. Event Triggers

4.5. Conditional Jump and Functions

4.6. TML Interrupts

4.7. Arithmetic and Logic Operations

4.8. Multiple-Axis Programming

Appendices

A. Serial Communication Protocol

B. CAN Communication Protocol

C. TML Data Components

D. TML Instruction Set Summary

E. IDM240/640 Dimensions

F. Connectors Type and Mating Connectors

IDM240 / 640 Overview

@ Technosoft IDM240 / 640 Technical Reference 1-1

1. IDM240/640 Overview

This chapter describes the IDM240/640 key features along with a block diagram and provides a
functional overview.

The IDM240/640 is a fully digital intelligent servo drive based on the latest DSP controller

technology. Embedded with the high level Technosoft Motion Language (TML) the IDM240/640
offers a flexible, compact and easy to implement solution for single or multi-axis applications with

• brushless DC motors

• permanent magnet synchronous motors (PMSM)

• DC brush motors

The IDM240/640 can operate stand-alone, with the motion sequences stored in the internal
E

2
ROM, or under the supervision of a master controller that can send motion commands through

RS-232, RS-485 or CAN communication channels. Limit switches; capture inputs or general
purpose I/Os may also be used to trigger the execution of pre-stored motion sequences.

The powerful TML offers the possibility of programming various motion modes, like position or
speed profiles, contouring, electronic gearing, electronic cam, external references, including 2 test
modes for hardware setup validation.

The configuration, tuning and programming of the IDM240/640 intelligent servo drive can be

easily done using the Technosoft IPM Motion Studio - an integrated development platform for
digital motion control applications that offers a set of high level graphical tools:

• Setup Wizard that provides a quick way to:

• Describe the system structure like motor and sensors types, control mode, etc.

• Enter the basic system parameters

• Perform tests to validate the system hardware

• Identify the motor and load parameters

• Tune the controllers

• Motion Wizard for motion application programming

• Data logging and watch facilities enabling the graphical or numerical display of the status of
various motion system variables during tests.

IDM240 / 640 Overview

@ Technosoft IDM240 / 640 Technical Reference 1-2

1.1 Key Features

• Fully digital servo drive with embedded intelligence

• Suitable for brushless DC, PMSM and DC brush motors

• Vector (field-oriented) control of AC motors (PMSM)

• High level quick setup, tuning and motion programming with Technosoft IPM Motion
Studio

• Powerful TML instruction set for definition and execution of motion sequences, enabling:

o Single or multi axis control

o Standalone operation with motion sequences stored in E
2
ROM

o Different control modes: open-loop, torque, speed or position close-loop control

o External variables control capabilities (pressure, flow, temperature, …)

o Various motion modes:

#" Electronic cam, gearing, contouring, profiling: position or speed (jogging)

#" External digital or analogue reference inputs

#" Test modes for hardware setup validation

o 18 programmable event triggers when motion modes can be changed on-the-fly

o Automatic subroutines (TML interrupts) for monitoring up to 12 conditions like
protections triggered, communication or control error, etc.

o Motion sequences triggered by digital inputs

o On-line motion parameterization and adjustment using analogue inputs

o Precise position capture on CAPI encoder Index input

• Emergency shutdown

• RS-232 and RS-485 serial interface

• CAN interface

• 32K×16 zero-wait state SRAM memory

• 4K×16 E
2
ROM to store TML programs (16Kx16 optional)

• Compact design: 136 x 95 x 26mm

• Nominal PWM switching frequency: 20kHz
1

• Nominal update frequency for torque loop: 10kHz
1

• Nominal update frequency for speed/position loop: 1kHz
1

• Minimal load inductance: 50µH @12V, 200µH @48V, 330µH @80V

• Operating ambient temperature: 0-50°C

1
 Nominal values cover all cases. Higher values may be programmed for configurations with brushless DC

and with DC brush motors

IDM240 / 640 Overview

@ Technosoft IDM240 / 640 Technical Reference 1-3

1.2 Functional Overview

1.2.1. Block Diagram

Figure 1.1 presents the block diagram of the IDM240/640 intelligent servo drive with its main
components.

Figure 1.1. The block diagram of the IDM240/640 intelligent servo drive

R
S

-4
8

5

TML Commands

E
2
R

O

R
A

M

TML
PROGRAM

SC TC PWM

Enco
der

td
d

I/O Control

+

-

+

-

Enabl
e

Analo
g

Digi
tal

LS
P

LS
N

Res
et

Rea
dy

Error

R
S

-2
3

2

3-phase

inverter

6

Refere
nce

PC

Positio
n

Speed

Contro

Torqu
e Hall

Sens

C
A

N

IDM240 / 640 Overview

@ Technosoft IDM240 / 640 Technical Reference 1-4

1.2.2. Motion Application Configurations

Tables 1.1 and 1.2 show the motion application configurations selectable with the IDM240/640.

In bold typeface are the recommended configurations, for the available sensors. In normal
typeface are the possible configurations. These may be covered by a recommended one. In italic
typeface are technically possible configurations. In these cases the performances have to be
evaluated prior to selection.

Table 1.1. Motion application configurations with DC brush and brushless DC motors

Controlled Loops Sensors RequiredNo Application Configuration

Pos Spd Crt User Pos Spd Crt

1 Open loop, Voltage mode

2 Torque control √ √

3 Speed control, Voltage mode * √ Anyone

4 Speed control, Current loop √ √ Anyone √

5 Position control, Speed & Current loop √ √ √ √ √

6 Position control, Voltage mode * √ √

7 Position control, Current loop * √ √ √ √

8 Position control, Speed mode * √ √ √

9 User specific control, Voltage mode * √ √

10 User specific control, Current loop * √ √ √ √

11 User specific control, Speed loop, Voltage mode * √ √ √ Anyone

12 User specific control, Speed & Current loop √ √ √ √ Anyone √

Table 1.2. Motion application configurations with brushless AC motors (PMSM)

Controlled Loops Sensors Required No Application Configuration

Pos Spd Crt User Pos Spd Crt

1 Open loop, Voltage mode (√)

2 Torque control, FOC √ √ √

3 Speed Control, Voltage mode * √ √

4 Speed control, Current loop, FOC √ √ √ √

5 Position control, Speed & Current loop, FOC √ √ √ √ √

6 Position control, Voltage mode * √ √

7 Position control, Current loop, FOC* √ √ √ √

8 Position control, Speed mode * √ √ √

9 User specific control, Voltage Mode * √ √ (√)

10 User specific control, Current loop, FOC * √ √ √ √

11 User specific control, Speed loop, Voltage mode * √ √ √ √

12 User specific control, Speed & Current loop, FOC √ √ √ √ √ √

Legend:

* – Special mode, an outer loop is closed in the absence of an inner one. Lower performances
may be expected than in the case when the inner loop is closed

(√) – Sensor is optional. 2 different approaches: a) sensor present, b) sensor not present

Controlled Loops: Pos – Position or user external, Spd – Speed, Crt – Current/Torque

IDM240 / 640 Overview

@ Technosoft IDM240 / 640 Technical Reference 1-5

1.2.3. Sensors

Table 1.3 presents the categories of sensors accepted by the IDM240/640, and their connections.

Table 1.3. IDM240/640 accepted sensors

Cat Usage Type Connections

Incremental encoder single-
ended or

differential

A1+ for A, (A1- for A)

B1+ for B, (B1- for B)

Z1+ for Z, (Z1- for Z)

Analogue sensor +Tach, -Tach

Positi
on

Position
feedback

Sent on-line by a host RS-232/RS-485 communication channel

Computed from position The position sensor connections

Tachometer (analogue) +Tach, -Tach

Computed from time

between Hall edges,

single-ended or

differential Hall

H1/B2/DT+ for Hall1, (H1/B2/DT- for

Hall1)

H2/Z2+ for Hall2, (H2/Z2- for Hall2)

H3/A2/CK+ for Hall3, (H3/A2/CK- for

Hall3)

Speed Speed
feedback

Sent on-line by a host RS-232 / RS-485 / CAN communication
channel

Curre
nt

Current
feedback

2 shunts in inverter legs On-board

Torqu
e

Torque
feedforward

Sent on-line by a host RS-232 / RS-485 / CAN communication
channel

Analogue sensor +Tach, -Tach User
specifi
c

External-loop
sensor
feedback

Sent on-line by a host RS-232 / RS-485 / CAN communication
channel

Hall
senso
rs

Commutation 120° apart,

single-ended or

differential

H1/B2/DT+ for Hall1, (H1/B2/DT- for

Hall1)

H2/Z2+ for Hall2, (H2/Z2- for Hall2)

H3/A2/CK+ for Hall3, (H3/A2/CK- for

Hall3)

Voltag
e

Over and
under- voltage
protection VDC

compensation

Analogue sensor On-board

Drive over-
temperature
protection

Analogue sensor On-board Temp.

Motor over-
temperature
protection

Analogue sensor Therm, GND

IDM240 / 640 Overview

@ Technosoft IDM240 / 640 Technical Reference 1-6

1.2.4. Controlled Loops

As Figure 1.1 shows, the IDM240/640 control unit includes 3 control loops.

The outer loop is used for motor position control. It can be also used to control an external signal
if user specific control mode is selected. In this case, the IDM240/640 can perform for example a
temperature, pressure or flow control. The outer loop controller is a PID with filter on the
derivative term. The PID output can be used as speed, torque or voltage command for the motor.

The middle loop implements the speed control. The speed loop controller is a PI with speed,
acceleration and torque feedforward. The speed loop controller output can be used as torque or
voltage command for the motor. A limit for torque command can be set from an analogue input.

The inner loop performs the current/torque control. For AC motors, torque control is performed
using a field oriented control (FOC) scheme. The inner loop uses 2 PI controllers one for torque
control (Q axis controller) and the other for flux control (D axis controller). The inner loop provides
a voltage vector command, which is translated into PWM commands.

1.2.5. Special Features

The IDM240/640 control unit includes a set of programmable special features. These offer the
possibility to select different strategies according with the application specific. The next table
summarizes these features.

Table 1.4. Special features of the IDM240/640 control unit

Function Options

Automatic, with motor supplied (PWM outputs active)

Automatic, without motor supplied (PWM outputs inactive)

Current Offset Detection

Automatic detection is disabled. User provides the offset

Motor is aligned on phase A, by injecting a current in phases B and A

Motor is aligned on phase A, by applying a voltage on phases B and A

Motor starts as a brushless DC using Hall commutation. After first Hall
transition, commutes to brushless AC mode (FOC, sinusoidal currents)

Motor is moved with a rotary current vector, till encoder index pulse is
reached. Index offset to motor position when aligned on phase A
should be known

Motor is moved with a rotary voltage vector, till encoder index pulse is
reached. Index offset to motor position when aligned on phase A
should be known

Motor is aligned on phase A, by injecting a currents in phases in a way
that moves the motor only in the programmed direction

Motor is aligned on phase A, by applying voltages on phases in a way
that moves the motor only in the programmed direction

Start method for the
brushless AC (PMSM)
motors

Direct, using an absolute position sensor. The sensor offset to motor
position aligned on phase A should be known.

IDM240 / 640 Overview

@ Technosoft IDM240 / 640 Technical Reference 1-7

 Automatic detection of an absolute position sensor offset. Motor is
aligned on phase A with one of the above methods and computes the
offset.

With compensation of DC-bus voltage variation

With compensation of dead-time

With 3
rd

 harmonic injection to increase maximum applicable voltage

PWM command

Techniques

With PWM frequency wobbling around programmed value to reduce
EMI (electromagnetic interference)

1.2.6. PWM Frequency and Sampling Rates

The IDM240/640 uses a fast loop for current/torque control and a slow loop for position/speed
sampling. The sampling rates of these loops are synchronized and linked in a fixed ratio with the
PWM frequency in order to eliminates the beat-frequency problems. The maximum sampling
frequency on the fast loop can be half of the PWM frequency. The PWM frequency and the
divider ratios for fast and slow loops are user programmable in a wide range. The maximum
values for PWM frequency and sampling rate frequencies depend on the application
configuration. Table 1.5 shows the typical (default) values, which cover all motion application
configurations.

Table 1.5. Typical values for PWM frequency and sampling rates

PWM Fast loop (current/torque) Slow loop (position/speed)

20kHz 10kHz 1kHz

1.2.7. Motion modes
The IDM240/640 provides 35 motion modes. Each motion mode designates a reference mode
and a control structure. Table 1.6 summarizes for each type of control the reference modes
accepted.

Table 1.6. Motion Modes

1.1.1.1.2 Control Type
1.1.1.1.1 Reference

Modes Position /
User Specific

Speed
orque oltage

Profiles (trapezoidal speed) √ √
Contouring (point to point

with linear interpolation)
√ √ √ √

Electronic Gearing Master √ √
Electronic Gearing Slave √

Electronic Cam Master √ √
Electronic Cam Slave √

External, reference read √ √ √ SL √ SL

IDM240 / 640 Overview

@ Technosoft IDM240 / 640 Technical Reference 1-8

from the analogue input

(+Ref, -Ref)
√ FL √ SL

√ SL √ SL External, reference sent

on-line through RS-232/RS-
485

communication channel

√ √
√ FL √ FL

Test (limited ramp) √ FL √ FL

Stop √ √ √ √

Legend

SL – Reference update is done on the slow (position/speed) loop

FL – Reference update is done on the fast (current/torque) loop

In all the cases where SL or FL is not mentioned, the reference update is done on the slow loop

1.2.8. Operating Modes

The IDM240/640 can operate in 2 modes: Autorun (stand-alone) and External (slave).

In Autorun (stand-alone) mode, the IDM240/640 executes motion sequences, stored in the
E

2
ROM. There are no restrictions to motion modes or application configurations. The IDM240/640

enters in this operation mode automatically if:

Auto / Ext position of DIP Switch is ON immediately after power-on

The code of the TML instruction BEGIN is detected in first location from the E
2
ROM at the

address 4000h (see Par. 1.2.9. Memory)

In External (slave) mode, the IDM240/640 wait commands from an external device (PC or master
controller) through communication channels. There are no restrictions to motion modes or

application configurations. The IDM240/640 enters in slave mode if Auto / Ext position of DIP
Switch is OFF immediately after power-on.

In External mode, the commands sent by the master have higher priority, acting like “interrupts” if
in the moment of reception a TML program is executing from the local memory.

The possibility to execute both commands sent by a master and TML programs or functions from
the local memory with or without automatic execution after power-on, offer the flexibility required
for multiple-axis applications with distributed intelligence. For example, each axis can store in the
local memory the start-up initialization procedure plus a set of functions performing different
motion sequences. After power-up, with Auto / Ext position of DIP Switch in ON state, the axis
automatically executes the initialization sequence, and then waits for master commands. These
can resume to “call homing procedure”, “call motion sequence no. 1” etc. Once the command
issued it is the slave axis job to execute it.

IDM240 / 640 Overview

@ Technosoft IDM240 / 640 Technical Reference 1-9

1.2.9. Memory Map

The IDM240/640 has 2 types of memory: a 32K×16 zero-wait-state SRAM and an 8K×8 serial
E

2
ROM.

The SRAM memory is mapped both in the program space and in the data space in the address
range 8000h to 0FFFFh. The data memory can be used for real-time data acquisition and to
temporary save variables during a TML program execution. The program space can be used to
download and execute TML programs. It is at user choice to decide how to split the 32K SRAM in
data and program memory.

The E
2
ROM is seen as 4K×16 program memory mapped in the address range 4000h to 4FFFh. It

offers the possibility to keep TML programs in a non-volatile memory. Read and write accesses to
the E

2
ROM locations as well as TML programs downloading and execution are done from the

user point of view similar with those in the SRAM program memory. The E
2
ROM SPI serial

access is completely transparent for the user.

 TML Program E2ROM

4000h

E2ROM

Program
memory

4FFFh

SRAM Data SRAM Program

5000h

Not available

7FFFh

0000h

8K x 8

serial SPI-E2ROM

1FFF

 8000h

Data memory

for data
acquisition

8000h

Not used as

Program
memory

8000h

SRAM

Data memory

Not used as

Data memory

FFFFh

Program
memory

for TML
programs

FFFFh

SRAM

Program
memory

FFFFh

Figure 1.2. IDM240/640 Memory Map

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-1

2. Technical specifications

The following paragraphs present in detail all the technical specifications of the IDM240 / 640
family of Intelligent Servo Drives.

Please read this chapter before starting to work with the drive. Carefully observe the
specifications and compare them with your motor / sensor specifications.

2.1 Key Features

• Single-ended, open-collector or differential encoder interface (IDM240-5EI

• and IDM640-8EI)
1

• Resolver interface (IDM240-5RI and IDM640-8RI)
2
 :

o Differential outputs for resolver excitation

o Excitation signal: sinusoidal, f = 10KHz

o Amplitude of the output signal, adjustable in 0-8Vpp

o Output current: max 50 mARMS

o Differential inputs (from resolver Sin & Cos)

o Input voltage: Vin = 4 Vpp

• Single-ended, open collector or differential Hall sensor interface

• Second encoder input (single-ended, open-collector or differential) used for master
reference

• 24V opto-isolated IO:

o 8 digital inputs: 6 general purpose, RESET and ENABLE

#" All digital inputs active high (24V): connected to 24V => DSP pin = 1

#" 2 digital inputs available as 24V and 5V:

#" Maximum input frequency signal = 5MHz

o 6 digital outputs 24V compatible:

#" All 6 digital outputs at 24V and 80mA

#" All active low: 0 on DSP pin => IO in 24V; 1 on DSP pin or HighZ => IO in
HighZ

#" Maximum output frequency signal = 30KHz

o 2 differential analog inputs+/-10V (reference and tacho)

• Compact design: 136 x 95 x 26 mm

• RS-232, RS-485 serial communication

• CAN-Bus 2.0B up to 1Mbit/s

1
 The IDM240-5EI and IDM640-8EI can support the SSI and EnDat position sensors. For more information,

please contact Technosoft.
2
 The IDM240-5RI and IDM640-8RI can support the SSI, EnDat, SinCos and Linear Hall position sensors.

For more information, please contact Technosoft.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-2

• Hardware Axis ID selection

• Motor sensor thermal interface

• On-board temperature sensor

• Nominal PWM switching frequency: 20kHz
1

• Nominal update frequency for torque loop: 10kHz
1

• Nominal update frequency for speed/position loop: 1kHz
1

• Logic power supply: 12-48VDC

• Motor power supply:

o (IDM240 – 5EI and IDM240 – 5RI): 12-48V; 5A; 16A peak

o (IDM640 – 8EI and IDM640 – 8RI): 12-80V; 8A; 16A peak

• Minimal load inductance: 50µH @12V, 200µH @48V, 330µH @80V

• Operating ambient temperature: 0-50°C

1
 Nominal values cover all cases. Higher values may be programmed for configurations with brushless DC

and DC brush motors.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-3

2.2 Drive Drawings

IDMx40-xEI
Intelligent Servo Drive

C
A

N
_

G
N

D

C
A

N
_

L

C
A

N
_

H

C
A

N
_

V
+

4
8
5

A
+

T
x
D

R
x

D

N
.C

.

G
N

D

4
8

5
B

-

N
.C

.

N
.C

.

+
5

V

C
A

N
_

G
N

D

C
A

N
_

L

C
A

N
_

H

C
A

N
_

V
+

Auto / Ext
ID-Bit0

ID-Bit1

FU / Norm
485 / 232

ID-Bit4
ID-Bit3

ID-Bit2
H2/Z2-
H2/Z2+
Z1-
Z1+
Therm

H1/B2/DT+
H3/A2/CK+
+5VDC

B1+
A1+

H1/B2/DT-
H3/A2/CK-
GND
B1-
A1-

IN
#
3

9
IN

#
3

8
/P

IN
#
3

7
/D

IN
#
3

6
IN

#
1

6
/E

N

0
V

P
L

C
IN

#
2

4
/L

S
N

IN
#
2

/L
S

P

2
4
V

P
L

C

+
R

e
f

IN
#

3
8

/P
5
V

IN
#

3
7

/D
5

V
R

E
S

E
T

+
L

O
G

V

G
N

D
-T

a
c

h
+

T
a

c
h

-R
e
f

O
U

T
#

2
9

O
U

T
#

2
8

O
U

T
#

2
5

/R
D

O
U

T
#

1
2

/E
R

2
4
V

P
L

C

0
V

P
L

C
O

U
T

#
3
1

O
U

T
#

3
0

1

18 10

26 19

9

J2 - Motor & Supply Connector

J13A - Feedback Connector

SW1 - DIP Switch

J4 - Serial Communication
 Connector

J10, J11 - CAN Connectors

J9 - Analog & 24V Digital I/O
 Connector

26 mm 136 mm

9
5
 m

m

Figure 2.1. IDM240-5EI and IDM640-8EI drawings

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-4

IDMx40-xRI
Intelligent Servo Drive

C
A

N
_

G
N

D

C
A

N
_

L

C
A

N
_

H

C
A

N
_

V
+

4
8
5

A
+

T
x
D

R
x

D

N
.C

.

G
N

D

4
8

5
B

-

N
.C

.

N
.C

.

+
5

V

C
A

N
_

G
N

D

C
A

N
_

L

C
A

N
_

H

C
A

N
_

V
+

Auto / Ext
ID-Bit0

ID-Bit1

FU / Norm
485 / 232

ID-Bit4
ID-Bit3

ID-Bit2
EXC-
EXC+
H2/Z2-
H2/Z2+
Therm

SIN+
COS+

+5VDC

H3/A2/CK+
H1/B2/DT+

SIN-
COS-
H1/B2/DT-
H3/A2/CK-
GND

IN
#
3

9
IN

#
3

8
/P

IN
#
3

7
/D

IN
#
3

6
IN

#
1

6
/E

N

0
V

P
L

C
IN

#
2

4
/L

S
N

IN
#
2

/L
S

P

2
4
V

P
L

C

+
R

e
f

IN
#

3
8

/P
5
V

IN
#

3
7

/D
5

V
R

E
S

E
T

+
L

O
G

V

G
N

D
-T

a
c

h
+

T
a

c
h

-R
e
f

O
U

T
#

2
9

O
U

T
#

2
8

O
U

T
#

2
5

/R
D

O
U

T
#

1
2

/E
R

2
4
V

P
L

C

0
V

P
L

C
O

U
T

#
3
1

O
U

T
#

3
0

1

18 10

26 19

9

J2 - Motor & Supply Connector

J13B - Feedback Connector

SW1 - DIP Switch

J4 - Serial Communication
 Connector

J10, J11 - CAN Connectors

J9 - Analog & 24V Digital I/O
 Connector

26 mm 136 mm

9
5
 m

m
Figure 2.2. IDM240-5RI and IDM640-8RI drawings

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-5

2.3 Connector’s Specifications

2.3.1. Analog & 24V Digital I/O – J9 Connector

Pin Name on the
Drive cover

TML
name

Typ
e

Function / Alternate function / Comments

1 24VPLC - I 24 V power supply (+) terminal for all opto-isolated I/O

2 IN#16/EN IN#16 /
ENABLE

I 24V compatible input. Opto-isolated

Connect to +24V to disable the PWM outputs

3 IN#36 IN#36 I 24V compatible input. Opto-isolated.

4 IN#37/D IN#37 /
DIR

I 24V compatible input. Opto-isolated. Shared with pin 12
(IN#37/D5V)

Can be used as DIRECTION input in Pulse & Direction
motion mode

5 IN#38/P IN#38 /
PULSE

I 24V compatible input. Opto-isolated. Shared with pin 13
(IN#38/P5V)

Can be used as PULSE input in Pulse & Direction
motion mode

6 IN#39 IN#39 I 24V compatible input. Opto-isolated

7 IN#2/LSP IN#2 /
LSP

I 24V compatible input. Opto-isolated

Positive limit switch

8 IN#24/LSN IN#24 /
LSN

I 24V compatible input. Opto-isolated

Negative limit switch

9 0VPLC - I 24 V power supply (-) terminal for all opto-isolated I/O

10 +VLOG - O + VLOG. Logic supply voltage (as applied on J2, pin 7)

11 RESET - I RESET pin – connect to +24V for reset the board

12 IN#37/D5V IN#37 /
DIR

I 5V compatible input. Opto-isolated. Shared with pin 4
(IN#37/D)

Can be used as DIRECTION input in Pulse & Direction
motion mode

13 IN#38/P5V IN#38 /
PULSE

I 5V compatible input. Opto-isolated. Shared with pin 5
(IN#38/P)

Can be used as PULSE input in Pulse & Direction
motion mode

14 +Ref I

15 -Ref

AD5

I

+/-10V differential analog input. May be used as
analogue position, speed or torque reference

16 +Tach I

17 -Tach

AD2

I

+/-10V differential analog input. May be used as analog
position or speed feedback (from a tachometer).
Internally filtered (3.4KHz).

18 GND - O Ground of the +5VDC.power supply output

19 24VPLC - I 24 V power supply (+) for all opto-isolated I/O

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-6

20
OUT#12 /ER OUT#12 /

ERROR
O 24V compatible output. Opto-isolated

TML instruction ROUT#12 force this pin to +24V and
set light to the red LED

21
OUT#25 /RD OUT#25 /

READY
O 24V compatible output. Opto-isolated

TML instruction ROUT#25 force this pin to +24V and
set light to the green LED

22
OUT#28

OUT#28 O 24V compatible output. Opto-isolated

TML instruction ROUT#28 force this pin to +24V

23
OUT#29

OUT#29 O 24V compatible output. Opto-isolated

TML instruction ROUT#29 force this pin to +24V

24
OUT#30

OUT#30 O 24V compatible output. Opto-isolated

TML instruction ROUT#30 force this pin to +24V

25
OUT#31

OUT#31 O 24V compatible output. Opto-isolated

TML instruction ROUT#31 force this pin to +24V

26 0VPLC - I 24 V power supply (-) for all opto-isolated I/O

case SHIELD - - Shield

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-7

+Tach

LOAD

-Ref

LOAD

+/-10V

IN#16/EN

LOAD

RESET
11

2

22

23

25

24

14

15

17

16

-Tach
+Ref

-

+

+3.3V

LOAD

80mA max

0 - 3.3V

Connected
to case

24VPLC

IN#37/DIR

J9

4

5

12

13

O
p

to
is

o
la

te
d

o
u
tp

u
ts

 2
4

V
O

p
to

is
o

la
te

d
in

p
u

ts
 2

4
V

SHIELD

Power logic output
18

10 + LOG V (from J2 / pin 7)

F = 3.4KHz-3dB

+/-10V

50K

-

+ 0 - 3.3V50K

IDMx40-xxIJ9 - Analog & 24V Digital I/O Connector

+3.3V

24VPLC +3.3V

24VPLC +3.3V

IN#38/PULSE +3.3V

High speed (5MHz)

IN#36
3

6

7

8

IN#39

IN#2/LSP

IN#24LSN

IN#37/D5V

IN#38/P5V

OUT#30

LOAD

LOAD

21

20

0VPLC

OUT#12/ER

OUT#25/RD

Green and
Red LEDs

24V
(0.5A)

0VPLC

0VPLC

0VPLC

1

9

26

24VPLC
24VPLC

0VPLC

+

24VPLC
19

5V

+

2K5

2K5

250R

80mA max

+VLOG

GND

D
S

P
 C

o
n

tr
o

ll
e
r

OUT#29

OUT#28

OUT#31

Figure 2.3. J29 – I/O connections

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-8

IDMx40-xxIJ9 - Analog & 24V Digital I/O Connector
- 24V Pulse & Direction connection -

D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.4. J9 – 24V Pulse & Direction connection

Note1: When using 24V Pulse & Direction connection, leave open pins 12 (IN#37/D5V) and 13
(IN#38/P5V).

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-9

12

13

IN#37/D5V

IN#38/P5V

5V
+

250R

IDMx40-xxIJ9 - Analog & 24V Digital I/O Connector
- 5V Pulse & Direction connection -

+3.3VConnected
to case

J9

9

26 0VPLC

+3.3V

High speed (5MHz)

Incr.

Decr.

DIRECTION
Switch

0VPLC D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.5. J9 – 5V Pulse & Direction connection

Note1: When using 5V Pulse & Direction connection, leave open pins 4 (IN#37/D) and 5
(IN#38/P).

Note2: When IN#38/P or IN#38/P5V is used as PULSE input in Pulse & Direction motion mode,
on each rising edge the reference (or feedback) is incremented / decremented.

Note3: When IN#37/D or IN#37/D5V is used as DIRECTION input in Pulse & Direction motion
mode, the reference (or feedback) is incremented if this pin is pulled low.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-10

2.3.2. Motor & Supply – J2 Connector

Pin Name Type Function

1 A O Phase A for 3-phase motors, Motor+ for DC brush motors

2 B O Phase B for 3-phase motors, Motor- for DC brush motors

3 C O Phase C for 3-phase motors, unconnected for DC brush motors

4 Brake O Brake output for external brake resistor

5 Earth - Earth connection

6 +VMOT I Positive terminal of the motor supply: 12 to 48VDC for IDM240-5EI

12 to 80VDC for IDM640-8EI

7 +VLOG I Positive terminal of the logic supply: 12 to 48VDC

8 GND - Negative terminal of the +VMOT and +VLOG external power supplies

Connected
to case

VLOG +3.3V

R (Optional)BR

J2

DC

DCGND

IDMx40-xxIJ2 - Motor & Supply Connector

For DC Brush Motors
use only Phases A & B

D
S

P
 C

o
n

tr
o

ll
e
r

GND

+VLOG12...48V

12...80V

IDM640-8EI

IDM240-5EI +
12...48V

+

+VMOT

VMOT

Figure 2.6. J2 – Motor and supply connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-11

Note: EARTH signal is internally connected to the metal case and to all SHIELD signals, but
completely isolated from all electric signals of IDM240/640. This feature may facilitate avoiding
ground loops. It is recommended to connect Earth with GND at only 1 point, preferably close to
the VDC supply output.

2.3.3. Serial – J4 Connector

Pin Name Type Function

1 485A+ I/O RS-485 line A (positive during stop bit)

2 TxD O RS-232 Data Transmission

3 RxD I RS-232 Data Reception

4 N.C. Not Connected

5 GND Ground

6 485B- I/O RS-485 line B (negative during stop bit)

7 N.C. Not Connected

8 N.C. Not Connected

9 +5V O Supply for RS-485 terminator and/or supply for handheld terminal
(internally generated)

2

3

5

9

GND

TxD

RxD

3

RS-232
Transceiver

RS-485
Transceiver

+5V

1

6

+3.3V

232Rx

232Tx

485Rx

485Tx

SHIELD

- RS-232 Connection -

J4

IDMx40-xxIJ4 - RS-232 / RS-485 Connector

R
S

-2
3
2

 s
e
ri
a
l
c
a
b
le

1

 t
o
 1

,
m

a
le

-f
e
m

a
le

D
S

P
 C

o
n

tr
o

ll
e
r

SW1

485 / 232

OFF

ON

G
N

D

T
X

2
3
2

R
X

2
3
2

2 1345

6789

Figure 2.7. J4 – Serial RS-232 connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-12

2

3

5

9

485B-

485A+

GND

RS-232
Transceiver

RS-485
Transceiver

+5V

1

6

+3.3V

232Rx

232Tx

485Rx

485Tx

- RS-485 Connection -

J4

IDMx40-xxIJ4 - RS-232 / RS-485 Connector

RS-232

RS-232/RS-485
Adapter

3

120R

1K2

1K2

+5V

120R

RS-485

D
S

P
 C

o
n

tr
o

ll
e
r

SW1

485 / 232

OFF

ON

Figure 2.8. J4 – Serial RS-485 connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-13

GND

+485A

-485B

1K2

+5V

IDMx40
AXISID = 1

Node
A

1K2

1K2

IDMx40
AXISID = 2

Node
B

IDMx40
AXISID = 254

Node
Z

RS-232/RS-485
Adapter

Node
N

PC
Host Address = 255

1K2

GND

+485A

-485B

GND

+485A

-485B

GND

+485A

-485B

+5V

120R
5%, 0.25W

120R
5%, 0.25W

Figure 2.9. Multiple-Axis RS-485 Network connection

Note1: For the PC, parameter Host Address can have values between 1 and 255 and this value
must be different from parameter Axis ID for the IDMs in the network. For example, if the Host
Address is set to 255, then none of the IDMs in the network can have Axis ID set to 255.

Note2: The PC can be placed in any position in the network.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-14

2.3.4. CAN – J10, J11 Connectors

Pin Name Type Function

1 CAN_V+ I +24VDC (optional +5VDC) isolated supply input

2 CAN_H I/O CAN-Bus positive line (positive during dominant bit) (see Notes)

3 CAN_L I/O CAN-Bus negative line (negative during dominant bit) (see Notes)

4 CAN_GN
D

- Reference ground for CAN_L, CAN_H and CAN_V+ signals

Note1: The CAN network require a 120 Ohms terminator. This is not included on-board.

Note2: All 4 CAN signals are fully isolated from all other IDM’s circuits (system ground - GND, IO
ground – 0VPLC and Earth).

1

2

J10

4
CAN_GND

+3.3V

CAN_V+

CAN_H

CAN_L
3

Optical isolation

IDMx40-xxIJ10, J11 - CAN Connectors

CAN transceiver

1

2

J11

4
CAN_GND

CAN_V+

CAN_H

CAN_L
3

24V

SJ15 = OPEN

5V
+5V

To Previous Node

To Next Node

D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.10. J10, J11 – CAN Connectors

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-15

CAN_GND

CAN_L

CAN_V+

CAN_H

IDMx40
AXISID = 1

Node
A

IDMx40
AXISID = 2

Node
B

RS-232

PC
Host Address = 3

120R
5%, 0.25W

IDMx40
AXISID = 3

Node
C

CAN_GND

CAN_L

CAN_V+

CAN_H

CAN_GND

CAN_L

CAN_V+

CAN_H

CAN_GND

CAN_L

CAN_V+

CAN_H

IDMx40
AXISID = 255

Node
Z

24V (optional 5V)

+

L
 <

 L
m

a
x

120R
5%, 0.25W

Figure 2.11. Multiple-Axis CAN network

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-16

2.3.5. SW1 – DIP-Switch

OFF

ON

A
u

to
 /

 E
x

t

ID
-B

it
0

ID
-B

it
1

F
U

 /
 N

o
rm

4
8
5
 /

 2
3
2

ID
-B

it
4

ID
-B

it
3

ID
-B

it
2

Figure 2.12. SW1 – DIP Switch

o Position 1: FU / Norm

ON: Enable firmware update

• OFF: Normal operation

o Position 2: 485 / 232

ON: IDM240/640 drive communicates in RS-485 mode

OFF: IDM240/640 drive communicates in RS-232 mode

The state of 485 / 232 switch is sampled during power-up, and the communication
protocol is configured accordingly.

o Position 3 … 7: ID-Bitx

These switches are sampled during power-up, and the Axis ID is configured
accordingly. See Table 2.1.

o Position 8: Auto / Ext

ON: IDM240/640 in Autorun (stand-alone) mode. After reset, automatically executes a
program from the internal E2ROM.

OFF: IDM240/640 in External (slave) mode. After reset, waits for commands from an external
device.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-17

Table 2.1. Axis ID / Address configuration

DIP Switch position

3 4 5 6 7

ID – Bit4 ID – Bit3 ID – Bit2 ID – Bit1 ID – Bit0

Axis ID

OFF OFF OFF OFF OFF 255

OFF OFF OFF OFF ON 1

OFF OFF OFF ON OFF 2

OFF OFF OFF ON ON 3

OFF OFF ON OFF OFF 4

OFF OFF ON OFF ON 5

OFF OFF ON ON OFF 6

OFF OFF ON ON ON 7

OFF ON OFF OFF OFF 8

OFF ON OFF OFF ON 9

OFF ON OFF ON OFF 10

OFF ON OFF ON ON 11

OFF ON ON OFF OFF 12

OFF ON ON OFF ON 13

OFF ON ON ON OFF 14

OFF ON ON ON ON 15

ON OFF OFF OFF OFF 16

ON OFF OFF OFF ON 17

ON OFF OFF ON OFF 18

ON OFF OFF ON ON 19

ON OFF ON OFF OFF 20

ON OFF ON OFF ON 21

ON OFF ON ON OFF 22

ON OFF ON ON ON 23

ON ON OFF OFF OFF 24

ON ON OFF OFF ON 25

ON ON OFF ON OFF 26

ON ON OFF ON ON 27

ON ON ON OFF OFF 28

ON ON ON OFF ON 29

ON ON ON ON OFF 30

ON ON ON ON ON 31

Note1: Others Axis ID values (32 - 255) can be set by software with AXISID instruction.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-18

2.3.6. Feedback – J13A Connector (IDM240-5EI and IDM640-8EI)

Pin Name on the
Drive cover

Type Function / Comments

1 A1+ I Positive A for differential encoder or A for single-ended encoder 1*)

2 B1+ I Positive B for differential encoder or B for single-ended encoder 1*)

3 +5VDC O +5VDC Supply (generated internally)

4 H3/A2/CK+ I Positive Hall 3 for differential Hall or Hall 3 for single-ended Hall 2*)

Second encoder positive A for differential encoder or A for single-ended encoder

5 H1/B2/DT+
I

Positive Hall 1 for differential Hall or Hall 1 for single-ended Hall 2*)

Second encoder positive B for differential encoder or B for single-ended encoder

6 Therm I Analog input from motor thermal sensor

7 Z1+ I Positive Z for differential encoder or Z for single-ended encoder 1*)

8 Z1- I Negative Z for differential encoder

9 H2/Z2+
I

Positive Hall 2 for differential Hall or Hall 2 for single-ended Hall 2*)

Second encoder positive Z for differential encoder or Z for single-ended encoder

10 H2/Z2-
I

Negative Hall 2 for differential Hall

Second encode: negative Z for differential encoder

11 A1- I Negative A for differential encoder

12 B1- I Negative B for differential encoder

13 GND - Ground of the encoder supply

14 H3/A2/CK-
I

Negative Hall 3 for differential Hall

Second encoder negative A for differential encoder

15 H1/B2/DT-
I

Negative Hall 1 for differential Hall

Second encoder negative B for differential encoder

case SHIELD - Shield

1
*) In application configurations without encoder feedback, this input may be used as general-purpose inputs.

2
*) In application configurations without Hall or second encoder feedback, this input may be used as general-purpose

inputs.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-19

1

3

2

+5VDC

J13A

13
GND

+3.3V

A1+

B1+

Z1+
7

+5V

3 x 4K7

IDM240-5EI
IDM640-8EI

J13A - Feedback Connector

SHIELD
Connected
to case

- Single-ended / open-collector encoders -

+5V

D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.13. J13A – Single-ended / open-collector encoder connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-20

1

3

11

2

12

+5VDC

- Differential encoder (RS-422) -

J13A

13
GND

8

+3.3V

+1.6V

SJ16A1+

SJ20

SJ22

B1+

Z1+
7

+5V

3 x 120R

3 x 4K7

3 x 3K1

IDM240-5EI
IDM640-8EI

J13A - Feedback Connector

A1-

B1-

Z1-

SHIELD
Connected
to case

D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.14. J13A – Differential (RS-422) encoder connection

Note1: For differential encoders with long cables, the solder-joints SJ16, SJ20 and SJ22 must be
strapped, else these straps are optional.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-21

5

3

15

9

10

+5VDC

- Second Encoder - Differential (RS-422) -

J13A

13
GND

14

+3.3V

+1.6V

H1/B2/DT+

H2/Z2+

H3/A2/CK+
4

+5V

3 x 120R

3 x 4K7

3 x 3K1

IDM240-5EI
IDM640-8EI

J13A - Feedback Connector

H1/B2/DT-

H2/Z2-

H3/A2/CK-

SHIELD
Connected
to case

D
S

P
 C

o
n

tr
o

ll
e
r

SJ23

SJ19

SJ21

Figure 2.15. J13A – Second encoder - differential (RS-422) connection

Note1: For differential encoders with long cables, the solder-joints SJ19, SJ21 and SJ23 must be
strapped, else these straps are optional.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-22

5

3

9

+5VDC

J13A

13
GND

+3.3V

H1/B2/DT+

H2/Z2+

H3/A2/CK+
4

+5V

3 x 4K7

IDM240-5EI
IDM640-8EI

J13A - Feedback Connector

SHIELD
Connected
to case

- Single-ended / open-collector Hall -

+5V

D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.16. J13A – Single-ended / open-collector Hall connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-23

5

3

15

9

10

+5VDC

- Differential Hall (RS-422) -

J13A

13
GND

14

+3.3V

+1.6V

H1/B2/DT+

H2/Z2+

H3/A2/CK+
4

+5V

3 x 120R

3 x 4K7

3 x 3K1

IDM240-5EI
IDM640-8EI

J13A - Feedback Connector

H1/B2/DT-

H2/Z2-

H3/A2/CK-

SHIELD
Connected
to case

D
S

P
 C

o
n

tr
o

ll
e
r

SJ23

SJ19

SJ21

Figure 2.17. J13A – Differential (RS-422) Hall connection

Note1: For differential encoders with long cables, the solder-joints SJ19, SJ21 and SJ23 must be
strapped, else these straps are optional.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-24

5

3

15

+5VDC

- Differential SSI Encoder (RS-422) -

J13A

13
GND

14

+3.3V

+1.6V

H1/B2/DT+

H3/A2/CK+
4

+5V

120R

2 x 4K7

2 x 3K1

IDM240-5EI
IDM640-8EI

J13A - Feedback Connector

H1/B2/DT-

H3/A2/CK-

SHIELD
Connected
to case

D
S

P
 C

o
n

tr
o

ll
e
r

SJ23

SJ21
120R

Figure 2.18. J13A – Differential (RS-422) SSI encoder connection

Note1: For differential encoders with long cables, the solder-joints SJ21 and SJ23 must be
strapped; otherwise, these straps are optional.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-25

J13A

13
GND

+3.3V

Therm
4

+3.3V

4K7

IDM240-5EI
IDM640-8EI

J13A - Feedback Connector

SHIELD
Connected
to case

- Motor thermal sensor connection -

+3.3V

Raux

D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.19. J13A – Motor thermal sensor connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-26

2.3.7. Feedback – J13B Connector (IDM240-5RI and IDM640-8RI)

Pin Name on the
Drive cover

Typ
e

Function / Comments

1 +5VDC O +5VDC Supply (generated internally)

2 H3/A2/CK+ I Positive Hall 3 for differential Hall or Hall 3 for single-ended Hall
1*)

Second encoder positive A for differential encoder or A for
single-ended encoder

3 H1/B2/DT+
I

Positive Hall 1 for differential Hall or Hall 1 for single-ended Hall
1
*)

Second encoder positive B for differential encoder or B for single-
ended encoder

4 COS+ I Resolver input for Cosines (+)

5 SIN+ I Resolver input for Sinus (+)

6 Therm I Analog input from motor thermal sensor

7 H2/Z2+
I

Positive Hall 2 for differential Hall or Hall 2 for single-ended Hall
1
*)

Second encoder positive Z for differential encoder or Z for single-
ended encoder

8 H2/Z2-
I

Negative Hall 2 for differential Hall

Second encoder: negative Z for differential encoder

9 EXC+ O Excitation output signal (+)

10 EXC- O Excitation output signal (-)

11 GND - Ground of the 5VDC supply

12 H3/A2/CK-
I

Negative Hall 3 for differential Hall

Second encoder negative A for differential encoder

13 H1/B2/DT-
I

Negative Hall 1 for differential Hall

Second encoder negative B for differential encoder

14 COS- I Resolver input for Cosines (-)

15 SIN- I Resolver input for Sinus (-)

case SHIELD Shield

Note: The symbols + and – means the phase for the differential signals. To be observed when
the resolver would be connected.

1
*) In application configurations without Hall or second encoder feedback, this input may be used as

general-purpose inputs.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-27

15

5

9

J13B

10

IDM240-5RI
IDM640-8RI

J13B - Feedback Connector

+3.3V
Connected
to case

- Resolver connection -

+

-

3.3VPP

8V / 50mA max, 10KHzPP RMS

3.3VPP

10K

COS+

SIN+

SIN-

EXC+

EXC-

COS-

SHIELD

EXCITATION

COSINE

SINE

RESOLVER

Resolver coupling ratio = 0.5 ... 3 V

4V PP

+

-

10K

4V PP

4

14

D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.20. J13B – Resolver connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-28

3

1

7

+5VDC

J13B

11
GND

+3.3V

H1/B2/DT+

H2/Z2+

H3/A2/CK+
2

+5V

3 x 4K7

IDM240-5RI
IDM640-8RI

J13B - Feedback Connector

SHIELD
Connected
to case

- Single-ended / open-collector Hall -

+5V

D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.21. J13B – Single-ended / open-collector Hall connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-29

3

1

13

7

8

+5VDC

J13B

11
GND

12

+3.3V

+1.6V

SJ23H1/B2/DT+

SJ19

SJ21

H2/Z2+

H3/A2/CK+
2

+5V

3 x 120R

3 x 4K7

3 x 3K1

IDM240-5RI
IDM640-8RI

J13B - Feedback Connector

H1/B2/DT-

H2/Z2-

H3/A2/CK-

SHIELD
Connected
to case

D
S

P
 C

o
n

tr
o

ll
e
r

- Differential Hall (RS-422) -

Figure 2.22. J13B – Differential (RS-422) Hall connection

Note1: For differential encoders with long cables, the solder-joints SJ19, SJ21 and SJ23 must be
strapped; otherwise, these straps are optional.

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-30

3

1

13

7

8

+5VDC

- Second Encoder - differential (RS-422) -

J13B

11
GND

12

+3.3V

+1.6V

H1/B2/DT+

H2/Z2+

H3/A2/CK+
2

+5V

3 x 120R

3 x 4K7

3 x 3K1

IDM240-5RI
IDM640-8RI

J13B - Feedback Connector

H1/B2/DT-

H2/Z2-

H3/A2/CK-

SHIELD
Connected
to case

D
S

P
 C

o
n

tr
o

ll
e
r

SJ23

SJ19

SJ21

Figure 2.23. J13B – Second encoder - differential (RS-422) connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-31

J13B

11
GND

+3.3V

Therm
6

+3.3V

4K7

IDM240-5RI
IDM640-8RI

J13B - Feedback Connector

SHIELD
Connected
to case

- Motor thermal sensor connection -

+3.3V

Raux

D
S

P
 C

o
n

tr
o

ll
e
r

Figure 2.24. J13B – Motor thermal sensor connection

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-32

2.4 Electrical Specifications

Electrical characteristics:

All parameters measured under the following conditions (unless otherwise noted):

Tamb = 0…50°C, VLOG = 24VDC, V24VPLC = 24VDC, CAN_V+ = 24VDC;

VMOT = 48VDC (IDM240-5EI) or 80VDC (IDM640-8EI);

Supplies start-up / shutdown sequence: -any- ;

Load current 5ARMS (IDM240-5EI) or 8ARMS (IDM640-8EI)

Logic Supply Input

 Measured between +VLOG and GND. Min. Typ. Max. Units

Nominal values, including ripple up to ±25% 12 24 48 VDC

Absolute maximum values, continuous 8 60 VDCSupply voltage

Absolute maximum values, surge (duration ≤ 10mS)
 † -0.5 63 V

+VLOG = 12V 250 400 mA

+VLOG = 24V 100 250 mA Supply current

+VLOG = 48V 50 150 mA

Motor Supply Input
 Measured between +VMOT and GND. Min. Typ. Max. Units

Nominal values, including ripple & braking-induced over-
voltage up to ±25%

12 48 VDC

Absolute maximum values, continuous 0 63 VDC
Supply voltage IDM240

Absolute maximum values, surge (duration ≤ 10mS)
 † -0.5 65 V

Nominal values, including ripple & braking-induced over-
voltage up to ±25%

12 80 VDC

Absolute maximum values, continuous 0 100 VDC
Supply voltage IDM640

Absolute maximum values, surge (duration ≤ 10mS)
 † -0.5 105 V

Idle 1.5 4 mA

Operating 16 A Supply current

Power-up surge (duration ≤ 10mS) 30 APEAK

I/O Supply Input (isolated)

 Measured between +24VPLC and 0VPLC. Min. Typ. Max. Units

Nominal values 8 24 30 VDC

Supply voltage
Absolute maximum values, surge (duration ≤ 10mS)

 † -0.5 32 V

All inputs and outputs disconnected 20 30 mA

Supply current All inputs tied to +24VPLC; all outputs sourcing 80mA each
into external load(s)

 600 650 mA

Isolation voltage rating Between 0VPLC and GND 200 VRMS

CAN-Bus Supply Input (isolated)

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-33

 Measured between CAN_V+ and CAN_GND. Min. Typ. Max. Units

Nominal values 8 24 30 VDC

Supply voltage, default config. Absolute maximum values, surge (duration ≤ 10mS)
† -0.5 32 V

Nominal values 4.75 5 5.25 VDC

Supply voltage, SJ15 strapped Absolute maximum values, surge (duration ≤ 10mS)
† -0.5 7.5 V

CAN-Bus idle 12 25 mA
Supply current

CAN-Bus operating at 1Mbit/s 60 180 mA

Isolation voltage rating Between CAN_GND and GND 200 VRMS

Motor Outputs

 All voltages referenced to GND. Min. Typ. Max. Units

Motor output current IDMx40-5 Continuous operation -5 +5 ARMS

Motor output current IDMx40-8 Continuous operation -8 +8 ARMS

Motor output current, peak -16.5 +16.5 A

Short-circuit protection threshold ±20 ±22 ±24 A

Short-circuit protection delay 10 20 40 µS

Output current = ±5A (IDMx40-5) -800 ±150 +250 mV
On-state voltage drop

Output current = ±8A (IDMx40-8) -900 ±200 +350 mV

Off-state leakage current -1 ±0.1 +1 mA

FPWM = 20kHz, +VMOT = 12V 50 µH

FPWM = 20kHz, +VMOT = 48V 200 µHMotor inductance

FPWM = 20kHz, +VMOT = 80V (IDM640) 400 µH

24V Digital Inputs (opto-isolated)

 All voltages referenced to 0VPLC. Min. Typ. Max. Units

Logic “LOW” -5 0 1.2

Logic “HIGH” 18 24 30 Input voltage

Absolute maximum, surge (duration ≤ 1S)
 † -30 +80

V

Logic “HIGH” 2.5 10 15
Input current

Logic “LOW” 0 0.2
mA

Input frequency 0 5 KHz

Pulse “LOW”-”HIGH”-“LOW” 10 µS
Minimum pulse width

Pulse “HIGH”-“LOW”-”HIGH” 100 µS

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-34

5V Digital Inputs (opto-isolated)

 All voltages referenced to 0VPLC. Min. Typ. Max. Units

Logic “LOW” -0.5 0 0.8

Logic “HIGH” 2.4 5 5.5 Input voltage

Absolute maximum, surge (duration ≤ 1S)
 † -5 +7.5

V

Logic “HIGH” 4 10 20
Input current

Logic “LOW” 0 0.1
mA

Input frequency 0 5 MHz

Minimum pulse width 150 nS

24V Digital Outputs (opto-isolated)

 All voltages referenced to 0VPLC. Min. Typ. Max. Units

Logic “HIGH”; +24VPLC = 24VDC;

External load = 330Ω
22 23 24.5

Output voltage

Absolute maximum, surge (duration ≤ 1S)
 † -0.5 35

V

Logic “HIGH”; [+24VPLC – VOUT] ≤ 2V 80

Logic “LOW” (leakage crt.) 0.05 0.2 Output current

Absolute maximum, surge (duration ≤ 1S)
 † -350 350

mA

Resolver Interface

Applicable to IDM240-5RI and IDM640-8RI
Min. Typ. Max. Units

Excitation frequency 10 KHz

Excitation voltage Software adjustable 0 8 VPP

Excitation current 50
mARM

S

Resolver coupling ratio USIN / COS : UEXC 1:2 2:1 -

Sin / Cos Input voltage 4 VPP

Sin / Cos Input impedance 10 KΩ

Encoder / Hall Inputs

 Min. Typ. Max. Units

Single-ended mode compliance Leave negative inputs disconnected TTL / CMOS / open-collector

Input threshold voltage Single-ended mode 1.4 1.5 1.6 V

Differential mode compliance For full RS422 compliance, see 1 TIA/EIA-422

Input hysteresis Differential mode ±0.1 ±0.2 ±0.5 V

Referenced to GND -7 +12
Input common mode range

Absolute maximum, surge (duration ≤ 1S)
† -25 +25

V

Single-ended mode 4.7 KΩ
Input impedance

Differential mode (see 1) 120 Ω

Analog Inputs

 Min. Typ. Max. Units

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-35

Differential voltage range ±9.5 ±10 ±10.5 V

Common-mode voltage range Referenced to GND -12 0…10 +50 V

Differential, Tach input 60 KΩ
Input impedance

Differential, Ref input 44 KΩ

Referenced to GND; Tach input 30 KΩ
Common-mode impedance

Referenced to GND; Ref input 44 KΩ
Resolution 10 bits

Differential linearity Guaranteed 10-bits no-missing-codes 0.09
%
FS2

Offset error Common-mode voltage = 0…10V ±0.1 ±0.3
%
FS2

Gain error Common-mode voltage = 0…10V ±0.5 ±1
%
FS2

Ref input (depending on software settings) 5 KHz
Bandwidth (-3dB)

Tach input 3.4 KHz

RS-232

 Min. Typ. Max. Units

Standards compliance TIA/EIA-232-C

Bit rate Depending on software settings 9600 115200 Baud

ESD Protection Human Body Model ±15 KV

RS-485

 Min. Typ. Max. Units

Standards compliance TIA/EIA-485

Recommended transmission line
impedance

Measured at 1MHz 90 120 150 Ω

Bit rate Depending on software settings 9600 115200 Baud

Number of network nodes Depending on software settings 64 -

ESD Protection Human Body Model ±15 KV

CAN-Bus

 All voltages referenced to CAN_GND Min. Typ. Max. Units

Standards compliance
CAN-Bus 2.0B error active;

ISO 11898-2

Recommended transmission line
impedance

Measured at 1MHz 90 120 150 Ω

Bit rate Depending on software settings 125K 1M Baud

Number of network nodes Depending on software settings 64 -

ESD Protection Human Body Model ±15 KV

Supply Outputs

 Min. Typ. Max. Units

+5VDC voltage Current sourced = 350mA 4.75 5 5.25 V

+5VDC available current 350 mA

Technical Specifications

@ Technosoft IDM240 / 640 Technical Reference 2-36

Others

 Min. Typ. Max. Units

Operating temperature 0 50 °C

Dimensions Length x Width x Height 136 x 91.5 x 26.5 mm

Weight 0.28 Kg

Frame Insulation voltage withstand GND to SHIELD (connected to frame) 250 V

Storage temperature Not powered -40 85 °C

Humidity Non-condensing 0 90 %RH

1
 To connect 120Ω RS-422 terminators, strap solder-joints SJ16, SJ20, SJ22 (encoder) and/or

SJ21, SJ23, SJ19 (Hall or second encoder).
2
 “FS” stands for “Full Scale”

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage
to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect
device reliability.

2.5 IDM240/640 LEDs

LED Color Function

Green Turned on when OUT#25 output is set low

Red Turned on when the power stage error signal is generated

or when OUT#12 is set low

Programming in the TML Environment

! Technosoft 2003 3-1 IDM240 / 640 Technical Reference

3. IDM240/640 Programming in the TML Environment

3.1 How to Access IDM240/640 I/O pins from TML

3.1.1. General-purpose Digital Inputs

The IDM240/640 general-purpose digital input pins are named IN#n where n can be: 2, 24, 36,
37, 38 or 39. Some of the input pins have also an alternate function. For example pin A1+/IN#3 is
IN#3 with alternate function A1+ – encoder A input. After reset, all the input pins with an alternate
function like A1+/IN#3 have the input function enabled and the alternate function disabled. The
alternate function may be enabled after execution of the TML command ENDINIT (end of
initialization), function of the application configuration set through the previous commands. For
example, if the application configuration is with encoder feedback, at ENDINIT the pin A1+/IN#3
function will switch automatically from general-purpose IN#3 to encoder input A1+.

In order to read a digital input use TML command

var = IN#n;

where var is a 16-bit integer variable. After execution, var is set as follows:

var = 0, if IN#n = 0

var != 0, if IN#n = 1

In order to use a digital input after the alternate function is enabled, 2 more steps are necessary
before reading the input.

Disable the alternate function and enable the I/O function using the TML command:

ENIO#n; where n is the input pin number (0 for IN#0, 1 for IN#1, etc.)

Specify that the I/O pin is input using TML command:

SETIO#n IN; where n is the input pin number

Now the input can be read with the TML command var = IN#n. It is not necessary to repeat the
ENIO#n and SETIO#n IN commands next times the input is read. Once the pin function is set as
input it remains in this state until the input function is specifically disabled with TML command

DISIO#n; where n is the input number

or the alternate function is enabled with a specific command. For example the TML command
ENCAPI 0 enables capture function of the Z1+/IN#5 pin and disables the IN#5.

Programming in the TML Environment

! Technosoft 2003 3-2 IDM240 / 640 Technical Reference

State of inputs IN#36, IN#37, IN#38 and IN#39 can be read all together using TML command

 var = IN2, bitmask;

which puts in var the result of an AND logic between the state of inputs/outputs and the value of
the bitmask. The state of the IN2 is read as follows:

Bits 15-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 X IN#39 IN#38 IN#37 IN#36 IN#35/
H3+

IN#34/
H2+

IN#33/
H1+

The state of an input pin is 1 if the input signal is high and 0 if the input signal is low.

3.1.2. General-purpose Digital Outputs
The IDM240/640 has 5 general-purpose digital output pins are named OUT#n where n can be 25,
28, 29, 30, 31 and a special output OUT#12/ER to signalize the power stage error.

In order to set an output high (1 logic) use TML command

SOUT#n; set OUT#n (1 logic)

In order to set an output low (0 logic) use TML command

ROUT#n; reset OUT#n (0 logic)

After reset, the digital outputs must be first declared as outputs using TML command

SETIO#n OUT; where n is the output pin number

After an output pin is declared as output it can be set high or low with SOUT#n or ROUT#n. It is
not necessary to repeat the SETIO#n OUT command next times the output is used. Once the pin
function set as output it remains in this state.

CAUTION ! You should not set as outputs other IDM240/640 pins. Use the TML command

SETIO#n OUT only for n = 12, 25, 28, 29, 30 and 31!
SETTING AS AN OUTPUT OF ONE OF THE INPUT PINS CAN DAMAGE THE DRIVE!

Remark: The state of an output pin is 0 if the output is set high and 1 if the output is set low.

3.1.3. Encoder Signals
In application configurations with encoder feedback, A1+/IN#3 and B1+/IN#4 inputs are
automatically setup as encoder inputs when the TML command ENDINIT is executed. The motor
position is computed by the on-board encoder interface and provided in the TML variable APOS
(actual motor position).

If the encoder has an index pulse connected to Z1+/IN#5, the capture input can be enabled (see
3.1.8 for details) and used to capture the actual motor position on rising or falling edge of the
encoder index pulse.

In application configurations without encoder feedback, A1+/IN#3 and B1+/IN#3 inputs may be
used as general-purpose inputs IN#3 and IN#4. The Z1+I/IN#5 input may also be used as

Programming in the TML Environment

! Technosoft 2003 3-3 IDM240 / 640 Technical Reference

general-purpose input IN#5 if the application doesn’t need to capture actual motor position on
using Z1+ input.

3.1.4. Hall Signals
In application configurations requiring Hall signals feedback, H1+/IN#33, H2+/IN#34 and
H3+/IN#35 pins are setup as Hall inputs. The actual state of the Hall signals is provided in the
TML variable HALL, which can take values from 1 to 6. The HALL variable has on bits 2-0 the
values of the H3+, H2+, H1+ signals applied on J13A/J13B connector.

In application configurations without Hall signals feedback, Hall inputs may be used as general-

purpose inputs IN#33, IN#34 and IN#35.

3.1.5. Analog Inputs

IDM240/640 Pins TML Environment

+Ref

-Ref

The 10-bit A/D conversion result, left-shifted by 6 is provided in TML
variable AD5.

The position or speed reference can be read from TML variables TPOS
or TSPD. These are computed as

(AD5 – AD5OFF) x CADIN / 2
16-SFTADIN

 , where AD5OFF is a
programmable offset and CADIN, SFTADIN are 2 TML parameters.

+Tach

-Tach

The 10-bit A/D conversion result, left-shifted by 6 is provided in TML
variable AD2.

In applications where position feedback is read from this input, TML
variable APOS contains (AD2 >> 6).

In applications where speed feedback is read from this input, TML
variable ASPD contains

(AD2OFF – AD2)>>6, where AD2OFF is a programmable offset.

3.1.6. Limit Switch Inputs LSP, LSN
The IDM240/640 has 2 dedicated inputs for limit switches: LSP (positive direction) and LSN
(negative direction). The inputs can be programmed to sense rising of falling transitions. The
following actions can be programmed when a transition is detected on a limit switch input:

Automatically stop the motor. This feature can be activated with TML command LSACT STOPx
where x = 0,1,2 or 3. STOP3 to STOP0 indicate 4 different ways to stop a motor: a) smooth with
a programmed deceleration rate; b) by setting speed reference to 0; c) by setting current
reference to 0; d) by setting motor voltage command to 0;

Generate a TML interrupt. The TML interrupt service routine accepts any TML command, hence
when a limit switch is reached, any desired action can be programmed;

Generate a TML event. On event occurrence, the motion mode and/or parameters can be
automatically changed. This feature is useful if the motor is on-purpose moved towards a limit
switch to execute a specific motion sequence when the limit switch is reached.

The edge-detection feature of a limit switch input must be enabled using the TML commands

Programming in the TML Environment

! Technosoft 2003 3-4 IDM240 / 640 Technical Reference

ENLSP 0; enable LSP to sense a falling edge

ENLSP 1; enable LSP to sense a rising edge

ENLSN 0; enable LSN to sense a falling edge

ENLSN 1; enable LSN to sense a rising edge

The edge-detection is automatically disabled after the transition is sensed, to avoid the potential
problems caused by multiple transitions. Hence, after each transition sensed, the capture input
must be enabled again in order to detect the next transition. The edge-detection can also be
disabled using TML commands DISLSN or DISLSP.

3.1.7. ENABLE Input
The IN#16/EN input can be used as an emergency stop. When asserted high, the following
events happen:

The IDM240/640 executes automatically the TML command AXISOFF that has the following
effects:

the controllers are disabled;

the power-stage transistors are turned off;

Generate a TML interrupt. The TML interrupt service routine accepts any TML command, hence
when a Enable input is triggered, any desired action can be programmed;

The IN#16/EN input acts like a non-maskable interrupt, which is always executed, no matter of
the IDM240/640 operation context. If the TML command AXISON is executed while IN#16/EN pin
is held low, the command has no effect. By default, in order to applying a voltage to motor, the
IN#16/EN input must be held low or left open.

3.1.8. CAPI Capture Input
The actual motor position can be captured when rising or falling transitions occur on the capture
input Z1+. The latency from the time a transition happens on a capture input to the time the motor
position is read is maximum 63ns. This feature offers the possibility to perform precise motor
positioning relative to its position at the time when the capture input was triggered. For example,
connecting the encoder index pulse to Z1+ can do accurate homing. When a transition is detected
on a capture input, the motor position is saved in the TML variable CAPPOS. In the same time,
the following actions may be programmed:

Generate a TML interrupt. The TML interrupt service routine accepts any TML command, hence
when a capture input is triggered, any desired action can be programmed;

Generate a TML event. On event occurrence, the motion mode and/or parameters can be
automatically changed. This feature may be used to pre-program next motor move after the
capture input was triggered.

The edge-detection feature of a the capture inputs must be enabled using the TML commands

ENCAPI 0 enable CAPI to sense a falling edge

ENCAPI 1 enable CAPI to sense a rising edge

The edge-detection is automatically disabled after the transition is sensed, to avoid the potential
problems caused by multiple transitions. Hence, after each transition sensed, the capture input
must be enabled again in order to detect the next transition. The edge-detection can also be
disabled using TML commands DISCAPI. When capture inputs are disabled their alternate
function as general-purpose inputs IN#5 is enabled.

Programming in the TML Environment

! Technosoft 2003 3-5 IDM240 / 640 Technical Reference

3.1.9. READY Output

The OUT#25 /RD output is set high immediately after reset. It goes low after the IDM240/640

internal initialization ends. This output can be used to signal to an external device that the
IDM240/640 is powered and it is ready to receive and execute TML commands. When is low the
IDM240/640 green LED is turned on. The state of the output may be changed with TML
commands

SOUT#25; set OUT#25 /RD high and turn off green LED

ROUT#25; set OUT#25 /RD low and turn on green LED

3.2 PWM Voltage Command Scaling

In the TML environment all PWM voltage commands are normalized as 16-bit signed integers.
The following table presents the how these commands are translated into voltages

TML Voltage Command [bits] Voltage Applied [Volts]

+32767 +Vmax
1

0 0

-32768 -Vmax

Vmax is the maximum voltage applicable defined as Vmax = VMOT – VD – VDT , where

VMOT is the IDM240/640 motor supply / DC-bus voltage

VD is the voltage drop on inverter transistors

VDT is the voltage drop due to dead-time (if dead-time compensation is not activated)

Hence the scaling factor for the voltage commands is:

Voltage [V] =
]bits[32768

]Vmax[V
× TML Voltage [bits]

Remark: The resolution of the PWM voltage commands depends on the PWM frequency, set by
default at 20KHz. At this value PWM resolution is 1:1000. This means that a modification of the
voltage applied occurs only if the 10MSB of the TML command voltage are changed.

3.3 Error Signal

The IDM240/640 power stage generates an error signal in case of short-circuit and/or earth-fault.
When the error signal is set, the following events happen:

The inverter transistors are turned off as long as the error state is set

1
 A positive voltage determines in the motor a current that is measured as positive

Programming in the TML Environment

! Technosoft 2003 3-6 IDM240 / 640 Technical Reference

The OUT#12 /ER output is set high and the IDM240/640 red led is turned on

Generate a TML interrupt. The TML interrupt service routine accepts any TML command, hence
when power-stage protection is triggered, any desired action can be programmed

If the error condition has disappeared, it is possible to resume the moving through executing the

AXISON instruction, and optionally, setting low the OUT#12 /ER signal and turn off the red led

using the SOUT#12 instruction.

3.4 Supply / DC-bus Voltage Measurement Scaling

The IDM240/640 includes a supply / DC-bus voltage feedback. In the TML environment, the A/D
converted value of the supply / DC-bus voltage feedback can be read as the TML variable AD4.

The scaling factor for the DC-bus voltage measurement is:

 DC-bus [V] =
][65472

][5.108

bits

V × AD4 [bits]

where 108.5 V is the maximum measurable DC-bus voltage

65472 is the AD4 value for DC-bus voltage = 108.5 V

Remark: AD4 value is the result of a 10-bit A/D conversion, left-shifted by 6. The 6LSB of AD6 are
always 0. If the A/D conversion result varies with 1LSB this translates into a variation of the AD4
value with 2

6
 = 64.

3.5 Motor Currents Scaling

The IDM240/640 measures motor currents through shunts placed in the lower-legs of the inverter.
Only currents measured on phases A and B are connected to 2 A/D inputs with a current gain
factor of 0.1V/A. The shunt from phase C is used only to sense a short-circuit. In applications with
3-phase AC motors, the TML variables IA and IB provide the motor currents in phases A and B. In
applications with DC or brushless DC motors, TML variable IQ gives the motor current. The
scaling factor for the motor currents is:

Motor current [A] =
]/[1.0][32704

][65.1

AVbits

V

×
× TML current [bits], or

Motor current [A] =
][32704

][5.16

bits

A × TML current [bits]

Remark: The A/D conversion result has 10-bit resolution and is used left-shifted by 6. The 6LSB
of TML currents are always 0. If the A/D conversion result varies with 1LSB this translates into a
variation of the TML current value with 2

6
 = 64.

Programming in the TML Environment

! Technosoft 2003 3-7 IDM240 / 640 Technical Reference

3.6 Motor Speed Scaling

TML variable ASPD gives the motor speed. The scaling factor depends on the speed sensor.

When the motor has a position sensor like an encoder, the speed can be estimated as position
increment per speed-loop sampling period (set by default at 1ms). In this case the scaling factor
is

 Motor speed [rpm] =
T[s][lines]N4

60

××
× ASPD [bits]

where N is the number of encoder lines

 T is the speed-loop sampling period in seconds

 4 is the multiplication ratio of the position resolution done in the encoder interface

Example: If T = 1ms, and N = 500 lines, motor speed [rpm] = 30 × ASPD [bits]

When the motor has a position sensor like a resolver, the speed can be estimated as position
increment per speed-loop sampling period. In this case the scaling factor is

 Motor speed [rpm] =
T[s][bits/rev]P

1

RES
×

× ASPD [bits]

where PRES is the resolver interface resolution

 T is the speed-loop sampling period in seconds

If the speed feedback is provided by a tachometer, connected to IDM240/640 connector J9 on
analogue input Tach, the scaling factor is

 Motor speed [rpm] =
]/[]/[165.0][1024

][3.3

rpmV
T

KVVbits

V

××
× ASPD [bits]

where KT is the tachometer constant

0.165 [V/V] is the IDM240/640 feedback gain factor

Remark: In speed control motion modes, the speed reference should be provided in the same
units as ASPD i.e. based on the same scaling as for the speed measurement.

3.7 Motor Position Scaling

TML variable APOS gives the motor position. When encoder feedback is used, APOS is
measured in encoder counts (1 encoder count = 1 bit). The scaling factor is:

Motor position [revolutions] =
[lines]N4

1

×
× APOS [bits]

where N is the number of encoder lines

4 is the multiplication ratio of the position resolution done in the encoder interface

If the position feedback is read from the resolver analogue inputs, the scaling factor is

Programming in the TML Environment

! Technosoft 2003 3-8 IDM240 / 640 Technical Reference

Motor position [revolutions] =
[bits/rev]P

1

RES

× APOS [bits]

where PRES is the resolver interface resolution

If the position feedback is read from the analogue input TACH, the scaling factor is

 Motor position [revolutions] =
]/[]/[165.0][1024

][3.3

rpmV
P

KVVbits

V

××
× APOS [bits]

where KP is the analogue position sensor constant.

3.8 Drive Temperature Scaling

The IDM240/640 includes a temperature sensor. TML variable AD7 gives the drive temperature.
The scaling factor is:

 Drive temperature [°C] =
]/[01.0][1024

][3.3

CVbits

V

°×
× AD7 [bits] - 50[°C]

Technosoft Motion Language

! Technosoft 2003 4-1 IDM240 / 640 Technical Reference

4. Technosoft Motion Language

The Technosoft Motion Language (TML) consists of a high-level set of instructions allowing to:

• Set up the Intelligent drive for a particular motion application configuration

• Program and execute motion sequences

For the setup phase the TML enables the user to:

• Describe the basic system configuration (as motor and sensors type)

• Perform specific settings (as motor start mode, PWM mode, sampling rates, etc.)

• Setup the controllers (current, speed, position, external user specific loop), etc.

For motion programming and execution the TML permits to:

• Select the motion mode (profiles, contouring, gearing in multiple axes structures, etc.)

• Setup events and change on-the-fly the motion mode and/or parameters when the events
occur

• Detect transitions and program specific actions for external signals as limit switches,
captures

• Execute homing sequences

• Compute motion parameters using the built-in ALU

• Synchronize multiple-axis structures, by sending group commands, etc.

The ultimate goal of the TML instruction set is to implement complex motion applications based
on high-level motor-independent motion sequencing commands.

4.1 TML Environment

The TML environment includes 3 basic components:

• the “motion processor”

• the trajectory generator

• the motor control kernel

The software implemented “motion processor” represents the core of the TML environment. It
decodes and executes the TML commands. Like any processor, it includes specific elements as
program counter, stack, ALU, interrupt management and registers.

The trajectory generator computes function of the motion mode selected, the target position,
speed, torque or voltage in order to reach the commanded values.

The motor-control kernel implements the control loops including acquisition of feedback sensors,
the controllers, the coordinate transformations for FOC, the motor protections, etc.

When the “motion processor” executes motion configuration or command instructions, it
translates them into actions upon the trajectory generator and/or the motor control kernel.

The TML works with 3 data types:

int/uint – 16-bit signed/unsigned integers

long – 32-bit signed integers

fixed – 32-bit fixed-point where the 16 MSB represent the integer part and the 16 LSB
the fractional part

Technosoft Motion Language

! Technosoft 2003 4-2 IDM240 / 640 Technical Reference

4.2 Motion Modes

The Intelligent drive offers the 8 reference modes, i.e. 8 modes to provide the target reference:

• profiles

• contouring

• pulse & direction

• external

• electronic gearing

• electronic cam

• test

• stop

Each reference mode can be applied to several control structures. From this combination results
40 motion modes, where each motion mode designates a reference mode and a specific control
structure.

4.2.1. Position Profile Modes
In position profile modes, a position control is performed using a trapezoidal speed profile. The
user specifies the desired position (absolute or relative), the slew speed and the
acceleration/deceleration ramp. The reference generator computes the position trajectory
corresponding to a trapezoidal or triangular speed profile. Depending on the control structure
used, 4 position profile modes are possible:

Table 4.1. Position Profile - Motion Modes

Controlled Loops Position Profile
Motion Modes Position / User Speed Torque

PP3 √ √ √
PP2 √ √
PP1 √ √
PP0 √

Related Parameters

CPOS Command position (long) – desired position (absolute or relative) in position units
1

CSPD Command speed (fixed)– desired slew speed in speed units
2

CACC Command acceleration (fixed) – desired acceleration / deceleration in acceleration units
3

1

Position units can be: a) counts of encoder (1 count = 1/(4 * no. of encoder lines); b) 1 LSB if position feedback is read

from an analogue input or parallel port; c) one micro-step for steppers
2
 Speed units can be: a) position units/slow-loop sampling if speed is estimated as position difference; b) 1LSB if speed

feedback is read from an analogue input or parallel port;
3
 Acceleration units are speed units / slow-loop sampling

Technosoft Motion Language

! Technosoft 2003 4-3 IDM240 / 640 Technical Reference

Related Instructions

MODE PPx Set position profile mode x (x = 0, 1, 2, 3)

CPR Command position is relative

CPA Command position is absolute

UPD Update – updates motion parameters. Start command if no motion

STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

In all position profile modes, the motion parameters CPOS, CSPD, CACC can be changed any

time during motion. The reference generator automatically re-computes the position trajectory in
order to reach the new commanded position using the new values for slew speed and
acceleration. Figure 4.1 shows an example when slew speed and acceleration rate are changed,
while commanded position is kept the same.

172

CPOS = 172

CSPD = 4

CACC = 1

UPD

CSPD = 8

CACC = 2

UPD

Figure 4.1. Position profile. On-the-fly change of motion parameters

There is no restriction for the commanded position. If during motion a new position command is
issued that require to reverse the motor, the reference generator does automatically the following
operations:

• stops the motor with the programmed deceleration rate

• accelerates the motor in the opposite direction till the slew speed is reached or till the
motor has to decelerate

• stops the motor on the commanded position

In position profile modes, the reference generator automatically eliminates the round-off errors,
which may appear when the commanded position can’t be reached with the programmed slew
speed and acceleration/deceleration rate. This situation is illustrated by the example below.

Technosoft Motion Language

! Technosoft 2003 4-4 IDM240 / 640 Technical Reference

Example:

Commanded position is 258 counts, with the slew speed 18 counts/sampling and the acceleration
rate 4 counts/sampling

1
. To reach the slew speed 2 options are available:

Accelerate at 16 in 4 steps, then from 16 to 18 in a 5
th
 step. Acceleration space is 49 counts

Accelerate from 0 to 2 in 1
st
 step, then from 2 to 18 in 4 steps. Acceleration space is 41 counts

For the deceleration phase the options and spaces are the same. But, no matter what option is
used for acceleration and deceleration phase, the space that remains to be done at constant
speed is not a multiple of 18 i.e. the position increment at each step. Hence when to start the
deceleration phase? Table 4.2, presents the possible options and the expected errors.

 Table 4.2. Round-off error example. Options and expected errors.

Acceleration
 Space

[counts]

Deceleration
Space

[counts]

Space to do
at constant
speed
[counts]

Time to go at
constant speed

[sampling steps]

Deceleration
starts after

[samplings]

Target position
Error

[counts]

5 + 8 = 13 - 16 49 counts 49 counts 258 – 2 * 49

= 160 counts

160/18 = 8.8

5 + 9 = 14 + 2

5 + 9 = 14 - 6 49 counts 41 counts 258 – 49 – 41

= 168 counts

168/18 = 9.3

5 + 10 = 15 + 12

5 + 9 = 14 - 6 41 counts 49 counts 258 – 41 – 49

= 168 counts

168/18 = 9.3

5 + 10 = 15 +12

5 + 9 = 14 -14 41 counts 41 counts 258 – 2 * 41

= 176 counts

176/18 = 9.7

5 + 10 = 15 +4

The Intelligent drive comes with a different approach. It monitors the round-off errors and
automatically eliminates them by introducing during deceleration phase short periods where
target speed is kept constant. Hence, the target position is always reached exactly without errors.

CPOS=258

CSPD=18

CACC=4

Figure 4.2. Position profile. Automatic elimination of round-off errors

Technosoft Motion Language

! Technosoft 2003 4-5 IDM240 / 640 Technical Reference

Figure 4.2 shows the target speed generated by the Intelligent drive for the above example.
During the deceleration phase the target speed:

• decelerates from 18 to 6 in 3 steps (target position advances with 36 counts)

• is kept constant for 1 step (target position advances with 6 counts)

• decelerates from 6 to 2 in one step (target position advances 4 counts)

• decelerates from 2 to 0 in the last step (target position advances 1 count)

Hence deceleration space is 47 counts which added to 49 counts for acceleration phase and 162
counts for constant speed gives exactly the 258 counts commanded position.

Programming Example

 MODE PP3; // set position profile mode 3

 CACC = 1.5; // command acceleration = 1.5 counts/sampling
2

 CSPD = 20.; // command speed = 20 counts/sampling

 CPOS = 20000; // command position = 2000counts

 CPA; // command position is absolute

 UPD; // update - start the motion

4.2.2. Speed Profile Modes
In speed profile modes, a speed control is performed using a trapezoidal profile. The user
specifies the jog speed and the acceleration/deceleration ramp. When motion starts, the motor
accelerates up to the specified speed and continues to jog at this speed until a new speed or a
stop command is issued. Speed, direction and acceleration can be changed any time during
motion. Depending on the control structure used, 2 speed profile modes are possible:

Table 4.3. Speed Profile - Motion Modes

Controlled Loops Speed Profile

Motion Modes Position /
User

Speed Torque

SP1 √ √
SP0 √

Related Parameters

CSPD Command speed (fixed) – desired jog speed in speed units. Sign gives direction.

CACC Command acceleration (fixed) – desired acceleration / deceleration in

acceleration units

Related Instructions

MODE SPx Set speed profile mode x (x = 0, 1)

UPD Update – updates motion parameters. Start command if no motion

Technosoft Motion Language

! Technosoft 2003 4-6 IDM240 / 640 Technical Reference

STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

Technosoft Motion Language

! Technosoft 2003 4-7 IDM240 / 640 Technical Reference

Programming Example

 MODE SP1; // set speed profile mode 1

 CACC = 1.; // command acceleration = 1.0 counts/sampling
2

 CSPD = -25.5; // command speed = -25.5 counts/sampling

 // negative command speed = negative direction

 UPD; // update - start the motion

4.2.3. Position/Speed/Torque/Voltage Contouring Modes
In contouring mode, an arbitrary profile can be prescribed. The profile contour is described by
reference increments per sampling over a time interval (see Figure 4.3). The contour profile is:

!" a position reference in position contouring mode;

!" a speed reference in speed contouring mode;

!" a torque reference in torque contouring mode;

!" a voltage reference in voltage contouring mode;

0

4

8

12

16

20

24

0 2 4 6 8 10 12 14

Figure 4.3. Reference generation in contouring modes

In position/speed contouring, the starting point is either the current value of the target
position/speed, or the actual value of the motor position/speed (see par. Motion Mode Changing).
In torque/voltage contouring, the starting value is settable by the user (default value is 0).

The contouring modes require a local memory where to place the sequence of contour segments
to be executed. First the contouring mode must be set and first segment should be provided.
Then contouring mode can be activated with the UPD command. Once a contouring mode is

activated, the rest of the segments are automatically executed. The sequence of contour
segments must end with a segment where the time interval is 0. When the reference generator
works with one segment, the next segment is already fetched waiting in a local buffer. This
procedure permits to immediately start the following segment when the current one ends. Each

Technosoft Motion Language

! Technosoft 2003 4-8 IDM240 / 640 Technical Reference

time the reference generator starts a new segment, the parameters of the next segment are
transferred into the local buffer.

A host may also send through any communication channel contouring segments. But these
segment commands are treated differently. Each time a segment command is sent by the host, it
starts to execute immediately, canceling previous segment processing.

Table 4.4, presents the possible contouring modes.

Table 4.4. Contouring Modes

Controlled Loops
Category Motion Modes

Position / User Speed Torque

PP3 √ √ √
PP2 √ √
PP1 √ √

Position Contouring

PP0 √
SC1 √ √

Speed Contouring
SC0 √

Torque Contouring TC √
Voltage Contouring VC

Related Parameters

REF0(H)
1
 Starting value (int) – torque/voltage contouring in torque/voltage units

2

Time Value or variable (int) – represents time interval in samplings of a

segment

Increment Value or variable (fixed) – represents reference increment per sampling

Related Instructions

MODE PCx Set position contouring mode x (x = 0, 1, 2, 3)

MODE SCx Set speed contouring mode x (x = 0, 1)

MODE TC Set torque contouring

MODE VC Set voltage contouring. Voltage reference represents motor voltage

for DC motor quadrature component (Q-axis) of the voltage vector
for AC motors

SEG Time, Increment Set a contour segment with parameters Time and Increment

UPD Update – updates motion parameters. Start if no motion

STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

1

(H) means high part (16MSB) of a 32-bit variable
2
 Torque unit. Torque [torque units] = Torque [Nm] * 2

10
/ (VREFHI - VREFLO) * 64 * KI / (KT * 2

SFTCRT
) where: VREFHI - VREFLO

= analogue input range, KI – current measurement gain [V/A], KT – motor torque constant [Nm/A], SFTCRT – a TML
parameter set by default at 0)

Voltage unit. Voltage [voltage unit] = Voltage [V] * 32768/ UDC where UDC – DC-bus voltage [V]

Technosoft Motion Language

! Technosoft 2003 4-9 IDM240 / 640 Technical Reference

Programming Example (see Figure 4.3)

 MODE PC3; // set position contouring mode 3

 SEG 2, 4.; // set 1st segment. Increment position reference

 // with 4 counts/sampling in the next 2 samplings

 UPD; // update – start motion

 SEG 4, 2.; // set 2
nd

 segment

 SEG 4, 1.; // set 3
rd

 segment

 SEG 2, 0.; // set 4
th
 segment

 SEG 0, 0.; // end contour sequence

4.2.4. Position/Speed Pulse & Direction Modes
In pulse & direction modes, the position or speed reference is provided by an external device,
which gives 2 digital signals:

Pulse – a sequence of pulses. Each pulse represents a position unit. The sum of the pulses
indicates the position displacement to be performed. The variation of number of pulses during one
sampling period represents a speed reference.

Direction - a digital signal which indicates the reference sign (motion direction)

The external device Pulse signal must be connected to the intelligent drive input IN#38/P or
IN#38/P5V. The external device Direction signal must be connected to the intelligent drive input
IN#37/D or IN#37/D5V.

Table 4.5, presents the possible pulse & direction modes.

Table 4.5. Pulse & Direction Modes

Controlled Loops
Category Motion Modes

Position / User Speed Torque

PPD3 √ √ √
PPD2 √ √
PPD1 √ √

Position Pulse &
Direction

PPD0 √
SPD1 √ √Speed Pulse &

Direction SPD0 √

Related Instructions

MODE PPDx Set position pulse & direction mode x (x = 3, 2, 1, 0)

MODE SPDx Set speed pulse & direction mode x (x = 1, 0)

UPD Update – updates motion parameters. Start command if no motion

STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

Programming Example

 MODE PPD3; // set pulse & dir mode 3

 UPD; // update – activate new mode. Motion starts

Technosoft Motion Language

! Technosoft 2003 4-10 IDM240 / 640 Technical Reference

// when external device provides pulses

4.2.5. External Position/Speed/Torque/Voltage Modes
In the external modes, an external device provides the target reference in one of the following
ways:

!" using TML on-line commands sent through any communication channel;

!" as an analogue voltage connected to Ref input;

!" as a 16-bit value which can be read from the an input port mapped in the I/O space;

!" as a 32-bit value which can be read from two input port mapped in the I/O space;

Table 4.6, presents the possible external modes. Torque and voltage external modes include
2 options:

!" torque/voltage slow – reference is read at each slow-loop (position/speed) sampling
period

!" torque/voltage fast – reference is read at each fast-loop (torque/current) sampling period

Related Parameters

EREF (long) where the external device writes the position reference when it is provided on-

line. The speed, torque or voltage reference should be written in EREF(H) which seen

as an integer

Related Instructions

MODE PEx Set external position mode x (x = 3, 2, 1, 0)

MODE SEx Set external speed mode x (x = 1, 0)

MODE TES Set external torque mode slow

MODE TEF Set external torque mode fast

MODE VES Set external voltage mode slow

MODE VES Set external voltage mode fast

EXTREF 0 Set external reference type: provided on-line

EXTREF 1 Set external reference type: read from analogue input (+Ref, -Ref)

EXTREF 2 Set external reference type: read from a 16-bit I/O port

EXTREF 3 Set external reference type: read from a 32-bit I/O port

UPD Update – updates motion parameters. Start command if no motion

STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

The external reference should be in position units for position external modes; speed units for
speed external modes; torque units for torque external modes; and voltage units for voltage
external modes.

Technosoft Motion Language

! Technosoft 2003 4-11 IDM240 / 640 Technical Reference

Table 4.6. External Modes

Controlled Loops
Category Motion Modes

Position / User Speed Torque

PE3 √ √ √
PE2 √ √
PE1 √ √

Position External

PE0 √
SE1 √ √

Speed External
SE0 √

Torque External Slow TES √
Torque External Fast TEF √
Voltage External Slow VES

Voltage External Fast VEF

Programming Example

 EXTREF 1; // external reference read from analogue input
 MODE SE1; // set speed external mode 1
 UPD; // update – activate new mode

4.2.6. Torque/Voltage Test Modes
The torque and voltage test modes are intended for performing preliminary tests during the setup
phase. The test reference is a limited ramp (see Figure 4.4). In application configurations with
brushless AC motors, the test modes also give the possibility to drive the motor by setting up the
electrical angle variation (see Figure 4.5)

Figure 4.4. Reference profile in test modes

Technosoft Motion Language

! Technosoft 2003 4-12 IDM240 / 640 Technical Reference

Figure 4.5. Electrical angle setup in test modes with brushless AC motors

Related Parameters

REFTST maximum value of the test reference in torque or voltage units (int)

RINCTST reference increment at each slow-loop sampling period (int)

THTST initial value for the electrical angle in electrical angle units
1
 (int)

TINCTST electrical angle increment at each fast-loop sampling period (int)

Related Instructions

MODE TT Set torque test mode

MODE VT Set voltage test mode

4.2.7. Electronic Gearing Modes
In electronic gearing mode one axis set as master transmits its position to one or several axes set
as slaves. The slaves can receive the master position through CAN communication channel or
from second encoder input, and follow the master position with a programmable ratio. The master
position can be the actual motor position (default) or the current target position. If actual position
is sent, the master can work in any motion mode. If target position is sent, the master should work
in a mode that generates a target position. The master sends its position once at each slow-loop
sampling. Slave axes perform a position control. The master reference increment multiplied by the
gear ratio is added to their actual position. Depending on the control structure the following 4
motion modes are possible for the slaves

Table 4.7. Electronic Gearing Slave - Motion Modes

Controlled LoopsElectronic Gearing
Slave Motion Modes Position Speed Torque

GS3 √ √ √
GS2 √ √
GS1 √ √
GS0 √

Related Parameters

SLAVEID the axis or group ID to which master sends its position

GEAR slave(s) gear ratio (fixed). Negative values means opposite direction

MREF (long) slave location where the master sends its position

Related Instructions

MODE GSx Set electronic gear slave mode x (x = 3, 2, 1, 0)

SGM Set electronic gearing master mode

1 Electrical angle [electrical angle units] = electrical angle [degrees] * 32767 / 180 in the range – 32768 to +32767 i.e. +/- 180 degrees

Technosoft Motion Language

! Technosoft 2003 4-13 IDM240 / 640 Technical Reference

RGM Reset electronic gearing master mode

Programming Example

// On slave axis (Axis ID = 1):
MODE GS3; // set electronic gearing slave mode 3
 GEAR = -0.5;// slave gear ratio is 0.5 opposite direction
UPD; // update – activate new mode

// On master axis:
 SAVEID 1; // slave axis has Axis ID = 1
 SGM; // set electronic gearing master mode
UPD; // update – activate new mode. Master starts to send

// its position

4.2.8. Electronic Cam Modes
In electronic cam mode one axis set as master transmits its position to one or several axes set as
slaves. The slaves can receive the master position through CAN communication channel or from
second encoder input. A cam table specifies the slaves position function of the master position.
Between master points linear interpolation is performed. The master position can be the actual
motor position (default) or the current target position. If actual position is sent, the master can
work in any motion mode. If target position is sent, the master should work in a mode that
generates a target position. The master sends its position once at each slow-loop sampling. Slave
axes perform a position control. The master reference increment multiplied by the gear ratio is
added to their actual position. Depending on the control structure the following 4 motion modes
are possible for the slaves.

Table 4.8. Electronic Cam Slave - Motion Modes

Controlled LoopsElectronic Cam Slave
Motion Modes Position Speed Torque

CS3 √ √ √
CS2 √ √
CS1 √ √
CS0 √

Related Parameters

SLAVEID the Axis or Group ID to which master sends its position

MREF (long) slave location where the master sends its position

MPOS0 (long) slave location where is master position after correction

CAMOFF cam offset

Related Instructions

Technosoft Motion Language

! Technosoft 2003 4-14 IDM240 / 640 Technical Reference

MODE CSx Set electronic cam slave mode x (x = 3, 2, 1, 0)

SGM Set electronic cam master mode

RGM Reset electronic cam master mode

INITCAM LoadAddress, RunAddress Copy cam table from E
2
ROM to RAM

Programming Example

// On slave axis (Axis ID = 1):
INITCAM 0x4500,0xF000; // copy cam table from E2ROM to RAM
MODE CS3; // set electronic cam slave mode 3
UPD; // update – activate new mode

// On master axis:
 SAVEID 1; // slave axis has Axis ID = 1
 SGM; // set master mode for electronic cam
UPD; // update – activate new mode. Master starts to send

// its position

4.2.9. Stop Modes
The Intelligent drive offers 4 modes to stop the motor. These are presented in Table 4.9.

Table 4.9. Stop Modes

Stop Modes Action

STOP3 Smoothly decelerates the motor till speed is 0

STOP2 Forces target speed to 0

STOP1 Forces target torque to 0

STOP0 Forces motor voltage to 0

In order to start a new the motion after a STOP command, the motion mode has to be set again.
This operation disables the stop mode and allows motor to move.

Related Instructions

STOPx Set stop mode x (x = 3, 2, 1, 0)

Programming Example

STOP3; // smooth stop

MODE PP3; // set position profile mode 3

UPD; // update – restart motion after a STOP command

Technosoft Motion Language

! Technosoft 2003 4-15 IDM240 / 640 Technical Reference

4.2.10. Motion Mode Changing

The intelligent drive allows switching on the fly all the motion modes except the test modes. This
feature is especially useful for position/speed control applications where the target reference is
provided by the internal trajectory generator using position/speed profile modes, position/speed
contouring modes, electronic gearing, electronic cam and stop modes.

On the fly change of the motion modes is possible because the target reference is updated each
time the motion mode changes. Whenever a new motion mode is set, the target position/speed
reference is set to the actual values of the motor position/speed. This default target update mode
(TUM0) is particularly useful to perform precise relative positioning triggered by an external event,
because the input data for the relative position profile computation are the real motor position and
speed.

For open-loop applications where there is no position/speed feedback, the intelligent drive offers
also the possibility cancel the target position/speed update with the actual motor values. In this
case (set with TUM1 command) the target reference is preserved when motion modes are
changed. In speed profile or speed contouring modes the trajectory generator continues to
integrate the target position allowing thus on the fly transition from these modes to position profile
or position contouring modes, even in the absence of the motor feedback.

4.3 Application Programming

Motion Command Categories

Basically, there are two categories of motion commands:

• immediate

• sequential, which can only reside in the local memory (if present)

The immediate motion commands don’t require a wait loop to complete the execution. These
commands can be send to the Intelligent drive via the communication channels, or can reside in
the local memory.

The sequential motion commands require a wait loop to complete. In this category enter the
following 2 commands:

WAIT! Wait a programmed event to occur

SEG Time, Increment Set a contour segment with parameters Time and Increment
to be executed when the previous one ends

The sequential commands can reside only in a local memory. If these commands are sent via the
communication channels are immediately executed as if the wait loop condition is always true.

TML Program Structure

A TML program starts with instruction BEGIN and ends with instruction END. It is divided into
2 sections:

• the initialization section

• the motion application programming section

The initialization section starts after BEGIN and lasts until the ENDINIT command, which means
end of initialization section. In this section, the intelligent drive is setup for a particular motion

Technosoft Motion Language

! Technosoft 2003 4-16 IDM240 / 640 Technical Reference

application configuration. This involves setup of the TML configuration registers for the application
motor and sensors types, the PWM and sampling rates settings, the parameterization of the
controllers, protections and other special features like: motor start method, PWM mode, etc.
When ENDINIT command is executed, it uses the information from the initialization section to
setup the intelligent drive for a particular motion application configuration. After ENDINIT
execution, the basic configuration involving the motor and sensors types, the sampling rates,
can’t be changed unless the intelligent drive is reset.

The motion application programming section contains the motion sequences to be executed. The
section starts after ENDINIT and lasts until the TML program ends. In many cases, the first
instruction to be executed in this section is AXISON which activates the PWM commands for the
default motion mode after reset: external voltage, reference provided on-line in EREF(H). Default
value of EREF(h) is 0.

Structure of a TML Program

BEGIN; // TML program start

 ...

// Intelligent drive setup for a particular application configuration

 ...

ENDINIT; // end of initialization

 ...

// Motion Sequences

 ...

END; // TML program end

4.4 Event Triggers

The IDM240/640 can be programmed to monitor an event and do actions on the event
occurrence. A typical example is the situation when the parameters and/or the motion mode have
to be changed (updated) at a precise moment, when a certain event happens. The TML recog-
nizes a set of 18 events, which can be programmed, one at a time, for monitoring (Table 4.10).

Table 4.10. Programmable Event Triggers

No. Mnemonic Event Description

1 !MC Set event when motion complete

2 !CAP Set event when a capture input is triggered

3 !LSP Set event when positive limit switch (LSP input) is triggered

4 !LSN Set event when negative limit switch (LSN input) is triggered

5 !IN#n 0 Set event when digital input #n is reset;

6 !IN#n 1 Set event when digital input #n is set;

7
!RT value32

!RT var32

Set event after a time period (relative to event setting) = a 32-bit
long value or variable. Time unit is slow-loop period

8 !AT value32 Set event when absolute time = a 32-bit long value or variable

Technosoft Motion Language

! Technosoft 2003 4-17 IDM240 / 640 Technical Reference

!AT var32

9
!SU value32

!SU var32

Set event when actual (motor) speed <= a 32-bit fixed value or
variable

10
!SO value32

!SO var32

Set event when actual (motor) speed >= a 32-bit fixed value or
variable

11
!RPU value32

!RPU var32

Set event when actual (motor) relative position (from current
motion start or POS0 value) <= a 32-bit long value or variable

12
!RPO value32

!RPO var32

Set event when actual (motor) relative position (from current
motion start or POS0 value) >= a 32-bit long value or variable;

13
!APU value32

!APU var32

Set event when actual (motor) absolute position <= 32-bit long
value or variable

14
!APO value32

!APO var32

Set event when actual (motor) absolute position >= 32-bit long
value or variable

15
!RU value32

!RU var32

Set event when target reference <= 32-bit long/fixed value or
variable

16
!RO value32

!RO var32

Set event when target reference >= 32-bit long/fixed value or
value

17
!VU var32a, value32

!VU var32a, var32b

Set event when a 32-bit long/fixed variable (var32a) <= 32-bit

long/fixed value or variable

18
!VO var32a, value32

!VO var32a, var32b

Set event when a 32-bit long/fixed variable (var32a) >= 32-bit

long/fixed value or variable

After an event is programmed, the user has the following options:

!" wait until the event occurs, then do a certain action

!" set a new motion mode and/or set of motion parameters, to be automatically activated
when the event occurs

!" stop motion when the event occurs

Programming Examples

1)

!RT 100; // set relative time event: after 100 slow-loop periods

// i.e. after 100ms for default sampling values

WAIT!; // wait event to occur

2)

!CAP; // set event when a capture input is triggered

STOP3!; // smooth stop when event occurs

3)

!IN#4 0 // set event when input IO#4 goes low

MODE PP3 // set position profile mode 3

CPR; // command position is relative

CPOS=2000; // command position is 2000

Technosoft Motion Language

! Technosoft 2003 4-18 IDM240 / 640 Technical Reference

!UPD; // when event occurs, move 2000 from actual position

4.5 Conditional Jumps and Functions

TML offers 2 powerful instructions for program control:

!" conditional GOTO;

!" conditional CALL of a TML function

A TML function starts with a label and ends with RET instruction. The function can contain any
TML command. When a conditional GOTO or CALL instruction is encountered, the condition is

checked and, if it is true, a jump or call to the specified label is executed. If condition is false, the
next TML instruction is executed.

The condition to check is a comparison of a given parameter or variable with 0. The possible
conditions are: < 0, <= 0, >0, >=0, =0, != 0.

Programming Examples

GOTO label1, i_var2, LT; // jump to label1 if i_var2 < 0

GOTO label2, i_var2, LEQ; // jump to label2 if i_var2 <= 0

GOTO label3, i_var2, GT; // jump to label3 if i_var2 > 0

GOTO label4; // unconditional jump to label4

CALL fct1, i_var1, GEQ; // call function fct1, if i_var1 >= 0

CALL fct1, i_var1, EQ; // call function fct1, if i_var1 = 0

CALL fct1, i_var1, NEQ; // call function fct1, if i_var1 != 0

CALL fct1; // unconditional call of

// function fct1

fct1:
 …
 …
 RET

4.6 TML Interrupts – Automatic Functions for Monitoring Conditions

The TML interrupts offer the possibility to select up to 12 interrupt conditions that can be
monitored. On the contrary to the event triggers where the programmed event is expected to
occur and it is waited, the TML interrupts main goal is to provide a way to react to unexpected
events as are most of the conditions from Table 4.11. The TML interrupt service routine is like a
TML function except the RET instruction which is replaced by RETI (return from interrupt). In
order to generate a TML interrupt 3 conditions are necessary:

!" the TML interrupts should be globally enabled (with TML command EINT)

!" one or more interrupt conditions should be individually unmasked

!" the monitored condition should occur

Technosoft Motion Language

! Technosoft 2003 4-19 IDM240 / 640 Technical Reference

The TML interrupts use, requires to define an interrupt table with the addresses (starting labels) of
the TML interrupt service routines.

Table 4.11. TML Interrupt Conditions

TML Interrupt
No.

Condition Description

0 ENABLE input is set low or left open

1 Power-stage protection (short-circuit and/or earth-fault) is triggered

2 At least one software-monitored protection: over-current, I
2
t, TEMP1 input

over limit, TEMP2 input over limit, over-voltage, under-voltage) is triggered

3 Control error. The difference between the target and actual value is over a
programmed limit

4 Communication error

5 32-bit position wraps-around

6 Positive Limit Switch (LSP input) is triggered

7 Negative Limit Switch (LSN input) is triggered

8 A capture input (CAPI) was triggered

9 When motion is completed

10 When a new contour segment can be provided

11 When a programmable event trigger occurs

Programming Example

 INTTABLE = IntVect; // set interrupt table
 ICR = 0x4; // unmask INT2
 EINT; // global enable for TML interrupts
 …
 …

Int2_SoftProtection: // INT2 Interrupt service routine
 STOP3; // stop motion
 RETI; // return from interrupt

IntVect: // interrupt vector table
 @Int0_Disable;
 @Int1_PDPINT;
 @Int2_SoftProtection;
 @Int3_ControlError;
 @Int4_CommError;
 @Int5_WrapAround;
 @Int6_LimitSwitchP;
 @Int7_LimitSwitchM;

Technosoft Motion Language

! Technosoft 2003 4-20 IDM240 / 640 Technical Reference

 @Int8_Capture;
 @Int9_MotionComplete;
 @Int10_UpdateContourSeg;
 @Int11_EventReached;

4.7 Arithmetic and Logic Operations

The TML “motion processor” ALU permits the following operations:

!" addition

!" subtraction

!" multiplication

!" left and right shift

!" logic AND and OR

The operands, TML variables or parameters are treated always as signed numbers. Right shift is
performed with sign-extension.

Addition. The right-side operand (variable or value) is added to the left-side operand

Examples:

 i_var1 += 10; // i_var1 = i_var1 + 10
 i_var1 += i_var2; // i_var1 = i_var1 + i_var2

Subtraction. The right-side operand (variable or value) is subtracted from the left-side operand

Examples:

 i_var1 -= 10; // i_var1 = i_var1 - 10
 i_var1 -= i_var2; // i_var1 = i_var1 - i_var2

Arithmetic Shift. Can be performed with one or 2 operands. In shift instructions, with a single
operand, its value is left or right shifted. At right shifts, high order bits are sign-extended and the
low order bits are lost. At left shifts, high order bits are lost and the low order bits are zeroed. The
shift value is between 0 and 15.

Examples:

 i_var1 <<= 2; // i_var1 = i_var1 left shifted by 2
 l_var1 >>= 7; // l_var1 = l_var1 right shifted by 7

In shift operations with 2 operands, the destination operand is a 32-bit variable (long or fixed) and
the source operand is a 16-bit integer. The destination operand takes the value of the source
operand left shifted between 0 and 16. The high order bits of the shifted value are sign-extended.

Examples:

 i_var1 = 16; // integer i_var1 = 16 (0x10)

Technosoft Motion Language

! Technosoft 2003 4-21 IDM240 / 640 Technical Reference

 l_var1 = i_var1 <<3; // long l_var1 = 128 (0x80)
 i_var1 = -10; // integer i_var1 = -10 (0xFFF6)
 l_var1 = i_var1 <<0; // long l_var1 = -10 (0xFFFFFFF6)

The last example shows how shift instruction can be used to assign to a long variable the value of
an integer variable, preserving the sign.

Shift operations can also be done with the 48-bit PROD Register, which keeps the result of the last

performed multiply operation.

Example:

 PROD >>= 1; // right shift by 1 the contents of PROD register,
 // in order to divide by 2 the last

Multiplication. The multiply instructions, include 2 source operands. The first operand can be
any parameter or a variable (integer, long or fixed). The 2

nd
 operand can be only an integer

variable or a 16-bit immediate value. The 48-bit result is automatically saved in a dedicated
register named PROD. The multiplication result can be saved in PROD, left or right shifted with a

value between 0 and 15.

Examples:

 l_var1 * -200 <<0; // PROD = 48-bit result of l_var1 * (-200)
 i_var1 * i_var2 >>1; // PROD = (i_var1 * i_var2)/2
 l_var1 = PROD; // save in l_var1 the 32LSB of PROD
 l_var1 * i_var2 >>2; // PROD = (l_var1 * i_var2)/4

Logic AND and OR. Bit manipulation can be done using TML instruction

SRB var16, ANDmask, ORmask

This command performs a logic-AND between var16 value and the ANDmask value and
afterwards a logic-OR with the ORrmask value. The result is saved in var16.

Technosoft Motion Language

! Technosoft 2003 4-22 IDM240 / 640 Technical Reference

4.8. Multiple-axis Programming

For multiple-axis application the TML offers 3 categories of instructions:

a) write a data to a remote axis or group of axes

Example:

[2]i_var1 = i_var2;// i_var1 from axis 2 = i_var2 from local axis

b) read a data from a remote axis

Example:

i_var1 = [1]i_var2;// i_var1 from local axis = i_var2 from axis 1

c) send a TML command to a remote axis or group of axes

Example:

[3]{UPD}; // send command UPD to axis 3

Serial Communication Protocol

! Technosoft 2003 A-1 IDM240 / 640 Technical Reference

Appendix A. Serial Communication Protocol

TML Instruction Format

The TML instruction code consists of 1 to 5, 16-bit words (see Figure A.1). The first word is the
operation code. The rest of words (if present) represent the instruction data words. The operation
code is divided into 2 fields: Bits 15-9 represent the code for the operation category. For example
all TML instructions that perform addition of 2 integer variables share the same operation
category code. The remaining bits 8-0 represent the operand ID that is specific for each
instruction.

Operation Code

Data (1)

…

Data (4)

 Operation Category Operand ID

15 ……………………9 8 ……………………….. 0

Figure A.1. TML Instruction Format

Axis Identification in a Multiple-axis Network

Another information that has to be included in a serial message is the axis or group ID. The axis
ID is a unique number between 0 and 255 through which an axis is identified. After power-on, the
Axis ID is set by default at 255. It can be changed using the TML command AXISID. This
command may se sent by a host or may be included in a TML program that is automatically
executed after power-on. This program may set for example the Axis ID according with the value
read from the IDM240/640 J6 connector, which is dedicated for this purpose.

Each axis also includes a group ID. When a TML command is sent to a group, all axes sharing
the same group ID will receive the command. This feature allows a host to send a command
simultaneously to several axes, for example to start or stop the axes motion in the same time. The
group ID is like the Axis ID an 8-bit value. A TML command can be sent to 8 different groups.
Each group is defined as having one of the 8 bits of the group ID value set to 1 (see Table A.1)

The group ID of an axis can have any value between 0 and 255. If for example the group ID is 11
(1011b) this means that the axis will receive all messages sent to groups 1, 2 and 4

Serial Communication Protocol

! Technosoft 2003 A-2 IDM240 / 640 Technical Reference

 Table A.1. Definition of the groups

Group No. Group ID value

1 1 (0000 0001b)

2 2 (0000 0010b)

3 4 (0000 0100b)

4 8 (0000 1000b)

5 16 (0001 0000b)

6 32 (0010 0000b)

7 64 (0100 0000b)

8 128 (1000 0000b)

When a TML Instruction is sent through the serial channel, the body of the message consists of
the axis or group ID followed by the instruction code (see Figure A.2).

Axis/Group ID

Operation Code

Data (1)

…

Data (4)

Figure A.2. Message Structure

The axis or group ID is sent as a 16-bit word with the following structure:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 G ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 0 0 0 H

Figure A.3. Structure of the axis or group ID in a communication message

Where:

 Bit 0 – HOST bit. When a host is connected with an IDM240/640 through the RS-232
protocol, both host and IDM240/640 must have the same ID (same value for bits ID7 to ID0). The
difference is done through the HOST bit: 0 – IDM240/640, 1 – host. When RS-485 protocol is
used, the host and the IDM240/640 board(s) must have different ID (different values for bits ID7 to
ID0) and HOST bit should be 0

 Bits 11-8 – ID7-ID0: the 8-bit value of an axis or group ID

 Bit 12 – GROUP bit: 0 – ID7-ID0 value is an Axis ID, 1 – ID7-ID0 value is a group ID

Serial Communication Protocol

! Technosoft 2003 A-3 IDM240 / 640 Technical Reference

Message Types

The serial communication protocol is based on 2 types of messages:

• Type A: Messages that don’t require an answer (a return message). In this category enter for
example the messages containing commands for parameter settings, commands that start or
stop motion execution, etc.

• Type B: Messages that require an answer. In this category enter the messages containing
commands that ask to return data, for example the value of TML parameters, registers, or
variables.

The type B message has 2 components:

• A request message with the TML command “Give Me Data”.

• An answer message with the TML command “Take Data”

All messages, type A or type B have the structure presented in Figure A.3.

The “Give Me Data” request message includes the following information:

Axis ID (destination axis)

Operation Code: 0B004 for 16-bit data

 0B005 for 32-bit data

Data(1): Sender Axis ID

Data(2): Requested Data Address

Figure A.4 “Give Me Data” Message Contents

The “Take Data” answer message includes the following information:

Axis ID (destination axis)

Operation Code: 0B404 for 16-bit data

 0B405 for 32-bit data

Data(1): Sender Axis ID

Data(2): Requested Data Address

Data(3): Data Requested 16LSB

Data(4): Data Requested 16MSB (for 32-bit data)

Figure A.5. “Take Data” Message Contents

Serial Communication Protocol

! Technosoft 2003 A-4 IDM240 / 640 Technical Reference

Serial RS232/RS485 Communication Protocol

The IDM240/640 serial communication interface works with 8 data bits, 2 stop bits, no parity at
the following baud rates: 9600 (default after reset), 19200, 38400, 56600 and 115200. The
messages exchanged through serial communication are packed in the following format:

Byte 1: Message length

Byte 2: Axis/Group ID – high byte

Byte 3: Axis/Group ID – low byte

Byte 4: Operation code – high byte

Byte 5: Operation code – low byte

Byte 6: Data (1) – high byte

Byte 7: Data (1) – low byte

Byte 8: Data (2) – high byte

…

Byte13: Data (4) – low byte

Last byte: Checksum

Figure A.6. Serial communication message format

The message length byte contains the total number of bytes of the message minus 2. Put in over
words, the length byte value is the number of bytes of the: axis/group ID (2bytes), the operation
code (2 bytes) and the data words (variable from 0 to 8 bytes). The checksum byte is the sum
modulo 256 of all the bytes of the message except the checksum itself.

Example1: The TML instruction “kpp = 5” (set proportional part of the position controller), has

the instruction code:

Operation Code = 205Eh

Data (1) = 0005h

A host connected on RS-232 with an IDM240/640 with Axis ID = 255 = 0FFh (default after reset)
wants to send the TML instruction “kpp = 5”. The serial message must have the following

contents:

Byte 1: 06h – length: ID=2,Opcode=2,Data=2

Byte 2: 0Fh – high byte of ID = 0FF0h

Byte 3: F0h – low byte of ID = 0FF0h

Byte 4: 20h – high byte of OpCode = 205Eh

Byte 5: 5Eh – low byte of OpCode = 205Eh

Byte 6: 00h – high byte of Data(1) = 0005h

Byte 7: 05h – low byte of Data(1) = 0005h)

Byte 8: 88h – checksum

Figure A.7. Serial message contents when TML instruction “kpp = 5” is sent

Serial Communication Protocol

! Technosoft 2003 A-5 IDM240 / 640 Technical Reference

Example2:

The host connected on RS-232 wants to get the value of the kpp parameter from an IDM240/640
with Axis ID = 255 = 0FFh. The kpp value to be returned is 120h. The host has to send a “Give
Me Data” TML command with the following instruction code:

Operation Code = B004h (16-bit value)

Data (1) = 0FF1h (sender ID = destination ID + HOST bit set)

Data(2) = 025Eh (kpp variable address)

The” Take Data” answer will have the following instruction code:

Operation Code = B404h (16-bit value)

Data (1) = 0FF0h (sender ID)

Data(2) = 025Eh (kpp variable address)

Data(3) = 0120h (kpp variable value)

The serial message send by the host with “Give Me Data” command must have the following
contents:

Byte 1: 08h – length ID=2,Opcode=2,Data=4

Byte 2: 0Fh – high byte of ID = 0FF0h

Byte 3: F0h – low byte of ID = 0FF0h

Byte 4: B0h – high byte of OpCode = B004h

Byte 5: 04h – low byte of OpCode = B004h

Byte 6: 0Fh – high byte of Data(1) = 0FF1h

Byte 7: F1h – low byte of Data(1) = 0FF1h

Byte 8: 02h – high byte of Data(2) = 025Eh

Byte 9: 5Eh – low byte of Data(2) = 025Eh

Byte 8: 1Bh – checksum

Figure A.8. Serial message contents for “Give Me Data” value of kpp

The serial message received by the host with “Take Data” command must have the following
contents:

Serial Communication Protocol

! Technosoft 2003 A-6 IDM240 / 640 Technical Reference

Byte 1: 0Ah – length ID=2,Opcode=2,Data=6

Byte 2: 0Fh – high byte of ID = 0FF1h

Byte 3: F1h – low byte of ID = 0FF1h

Byte 4: B4h – high byte of OpCode = B404h

Byte 5: 04h – low byte of OpCode = B404h

Byte 6: 0Fh – high byte of Data(1) = 0FF0h

Byte 7: F0h – low byte of Data(1) = 0FF0h

Byte 8: 02h – high byte of Data(2) = 025Eh

Byte 9: 5Eh – low byte of Data(2) = 025Eh

Byte 10: 01h – high byte of Data(3) = 0120h

Byte 11: 20h – low byte of Data(3) = 0120h

Byte 12: 42h – checksum

Figure A.9. Serial message contents for “Take Data” value of kpp

RS-232 Protocol

The RS-232 communication can be used to connect a host with one IDM240/640 working in slave
mode. The RS-232 protocol is full duplex, allowing simultaneous transmission in both directions.
After each command (Type A or B) sent by the host, the IDM240/640 will confirm the reception by

sending one acknowledge-Ok byte. This byte is’ O’ (ASCII code of capital o, 0x4F). If the host
receives the ‘O’ byte, this means that the IDM240/640 has received correctly (checksum
verification was passed) the last message sent, and now is ready to receive the next message.

If the checksum computed by the IDM240/640 doesn’t match with the one sent by the host, the

IDM240/640 will send one acknowledge-Not-ok byte. This is ‘N’ (ASCII code of capital n, 0x4E). If
the host receives the ‘N’ byte, it can start immediately to send again the last message.

If after a message sent, the host doesn’t receive any acknowledge byte (after the programmed
timeout period), this means that at some point during the last message transmission, one byte
was lost and the synchronization between the host and the IDM240/640 is gone. In order to
restore the synchronization the host should do the following:

1. send a SYNC byte having value 0x0d

2. wait a programmed timeout period for an answer;

3. if the IDM240/640 sends back the same SYNC byte, the synchronization is restored and the
host can again the last message, else go to step 1

4. repeat steps 1 to 3 until IDM240/640 answers or 15 SYNC bytes are sent. If after 15 SYNC
bytes there is no answer from the IDM240/640, then there is a serious communication
problem and the serial link must be checked

When a host sends a type A message through RS-232 it has to:

a) Send the SCI message (as in Example 1);

Serial Communication Protocol

! Technosoft 2003 A-7 IDM240 / 640 Technical Reference

b) Wait the acknowledge-OK byte ‘O’ from the IDM240/640;

When a host sends a type B message through RS-232 it has to:

a) Send a message with “Give Me Data” command (as in Example 2)

b) Wait the acknowledge-OK byte ‘O’ from the IDM240/640;

c) Wait the response message from the IDM240/640, which contains the command “Take Data”.

When the IDM240/640 returns a “Take Data” message it doesn’t expect to receive an
acknowledge byte from the host. It is the host task to monitor the communication. If the host gets
the response message with a wrong checksum, it is the host duty to send again the “Give Me
Data” request.

RS-485 Protocol

The RS-485 communication can be used to connect up to 255 IDM240/640 in a multi-axis
network. The master is also one of the network nodes. The RS-485 protocol is semi-duplex. If at
one moment one network node transmits – it has the transmission enabled and the reception
disabled – all the other nodes must listen – their transmission is disabled and the reception is
enabled.

This procedure imposes certain limitations:

An acknowledge byte is sent back to the master after receiving a message on RS-485, ONLY if
the message was sent to an individual axis.

No acknowledge byte is sent back after receiving a group message on RS-485 by a group of
several axes. This avoids conflicting messages on the RS-485 bus, if more slave axes try to send
the acknowledge byte at the same time. Hence it is the master job to request data from each axis
in order to check that sent group messages were received correctly by each axis.

An IDM240/640 device can’t send a message to itself. This situation may occur if for example the
message is sent to a group and the sender is included in the group

It is not recommended to program a slave axis to send a message when a certain event happens.
The correct approach is to program the master to periodically interrogate each axis about its
status

If after a message sent to one axis, the host doesn’t receive the acknowledge byte (after the
programmed timeout period), in order to restore the synchronization the host should do the
following:

1. Send 15 SYNC bytes (value 0x0d)

2. Send again the message

CAN Communication Protocol

! Technosoft 2003 B-1 IDM240 / 640 Technical Reference

Appendix B. CAN Communication Protocol

TML Instruction Format

The TML instruction code consists of 1 to 5, 16-bit words (see Figure B.1). The first word is the
operation code. The rest of words (if present) represent the instruction data words. The operation
code is divided into 2 fields: Bits 15-9 represent the code for the operation category. For example
all TML instructions that perform addition of 2 integer variables share the same operation
category code. The remaining bits 8-0 represent the operand ID that is specific for each
instruction.

Operation Code

Data (1)

…

Data (4)

 Operation Category Operand ID

15 ……………………9 8 ……………………….. 0

Figure B.1. TML Instruction Format

Axis Identification in a Multiple-axis Network

In multiple-axis configurations, each axis needs to be identified through a unique number – the
Axis ID. The Axis ID is set hardware from SW1 and is sampled at power-on. It can be later
changed using the TML command AXISID. This command may se sent by a host or may be
included in a TML program that is automatically executed after power-on with the Intelligent drive
set in stand-alone mode.

The Technosoft Motion Language allows several axis to be assigned to a group. When a TML
command is sent to a group, all axes sharing the same group ID, will receive the command. This
feature allows a host to send a command simultaneously to several axes, for example to start or
stop the axes motion in the same time. The Group ID is like the Axis ID an 8-bit value. A TML
command can be sent to 8 different groups. Each group is defined as having one of the 8 bits of
the group ID value set to 1 (see Table B.1)

CAN Communication Protocol

! Technosoft 2003 B-2 IDM240 / 640 Technical Reference

Table B.1. Definition of the groups

Group No. Group ID value

G1 1 (0000 0001b)

G2 2 (0000 0010b)

G3 4 (0000 0100b)

G4 8 (0000 1000b)

G5 16 (0001 0000b)

G6 32 (0010 0000b)

G7 64 (0100 0000b)

G8 128 (1000 0000b)

The Group ID of an axis can have any value between 0 and 255. If for example the group ID is 11
(1011b) this means that the axis will receive all messages sent to groups 1, 2 and 4.

When a TML Instruction is send through the CAN-bus channel, the Axis/Group ID and the
operation code are included in the CAN Message Identifier Words (see Figure B.2).

CAN Message Identifier Word1 (contains part of the Operation Code and Axis/Group ID)

CAN Message Identifier Word2 (contains rest of the Operation Code and Axis/Group ID)

Data (1)

…

Data (4)

Figure B.2. Message Structure

In a serial or CAN message, the axis or group ID is a 16-bit word with the following structure:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 G ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 0 0 0 H

Where:

 Bit 0 – HOST bit.

In a network configuration like in Figure B.3, the HOST bit indicates the destination axis for
messages received by the relay axis: 0 – relay axis, 1 – host. Messages received by the relay
axis with HOST bit set to 1, will be retransmitted through RS-232 to the host. Messages received
by the relay axis with HOST bit set to 0, will be interpreted as commands for this axis and will be
executed.

In a network configuration like in Figure B.4, the HOST bit must always be 0.

 Bits 11-4 – ID7-ID0: the 8-bit value of an axis or group ID

 Bit 12 – GROUP bit: 0 – ID7-ID0 value is an Axis ID, 1 – ID7-ID0 value is a group ID

CAN Communication Protocol

! Technosoft 2003 B-3 IDM240 / 640 Technical Reference

Figure B.3. Multiple-axis network using CAN-bus communication with host connected through
RS-232 to an axis used as communication relay

Figure B.4. Multiple-axis network using CAN-bus communication with host connected directly to
the CAN network

CAN Message Types

The communication protocol is based on 2 types of messages:

Type A: Messages that don’t require an answer (a return message). In this category enters for
example the messages containing commands for parameter settings, commands that start or stop
motion execution, etc. These messages have the structure presented in Figure B.2.

Type B: Messages that require an answer. In this category enter the messages containing
commands that ask to return data, for example the value of TML parameters, registers, or
variables.

The type B message has 2 components:

A request message with the TML command “Give Me Data”

An answer message with the TML command “Take Data”

The “Give Me Data” request message has the following content:

IDM240
used as

relay

 axis

4

4

SCIRX

SCITX

CAN_GND

CAN_H

CAN_L

CAN_V+

transceiver
RS-

Rx
Gn
Tx

Host or PC
connected

on RS232
IDM240 IDM240

IDM240

used as

“normal” axis

IDM240 IDM240

CAN_GND

CAN_H

CAN_L

CAN_V+

Host or PC

connected

on RS232

work

CAN Communication Protocol

! Technosoft 2003 B-4 IDM240 / 640 Technical Reference

CAN Message Identifier Word1 (contains part of the Operation Code and Axis/Group ID)

CAN Message Identifier Word2 (contains rest of the Operation Code and Axis/Group ID)

Data(1): Sender Axis ID

Data(2): Requested Data Address

Figure B.5. “Give Me Data” Message Contents

The Operation Code for the “Give Me Data” request is 0B004 for 16-bit data and 0B005 for 32-bit
data.

The “Take Data” answer message includes the following information:

CAN Message Identifier Word1 (contains part of the Operation Code and Axis/Group ID)

CAN Message Identifier Word2 (contains rest of the Operation Code and Axis/Group ID)

Data(1): Sender Axis ID

Data(2): Requested Data Address

Data(3): Data Requested 16LSB

Data(4): Data Requested 16MSB (for 32-bit data)

Figure B.6. “Take Data” Message Contents

The Operation Code for the “Take Data” request is 0B404 for 16-bit data and 0B405 for 32-bit
data.

CAN-bus Communication Protocol – Frames Description

The Intelligent drive implements the CAN 2.0B protocol that uses 29 bits for the identifier. Figure
B.7 presents how the standard TML Instruction from Figure B.2 is packed and transmitted on the
CAN-bus: the CAN message identifier format and the CAN data bytes correspondence with the
instruction code data words.

CAN Message Identifier Word 1

x x x Operation Code (7MSB)

(Operation Category)

GROUP

 Bit

Axis/Group ID (5MSB)
ID7-ID3

CAN Message Identifier Word 2

Axis/Group ID (3LSB) ID7-ID3 0 0 0 HOST

bit

Operation code (9LSB)

(Operation ID)

CAN Message

Data Byte No.

TML Data Word

1 Data(1) – high byte

2 Data(1) – low byte

CAN Communication Protocol

! Technosoft 2003 B-5 IDM240 / 640 Technical Reference

3 Data(2) – high byte

4 Data(2) – low byte

5 Data(3) – high byte

6 Data(3) – low byte

7 Data(4) – high byte

8 Data(4) – low byte

Figure B.7. CAN message frame

The CAN-bus communication offers the possibility to work on a semi-duplex network like in a full-
duplex one. The CAN controller automatically solves the conflicts that occur while 2 axes try to
transmit messages in the same time. For example, in an RS-485 network, such an event usually
corrupts both messages, while in a CAN-bus the higher priority message always wins. The lower
priority message is automatically sent after the transmission of the first message ends.

Any Intelligent drive from a CAN-bus network may also be connected through RS-232 with a host
(see Figure B.3). In this structure, the axis connected to the host, apart from executing the
commands received from host or other axes, acts also as a retransmission relay which:

receives through RS-232, commands from host for another axis and retransmits them to the
destination through CAN-bus

receives through CAN-bus data requested by host from another axis and retransmits them to the
host through RS-232

This flexibility enables a host to program and monitor a CAN-bus network of Intelligent drives
using only one RS-232 connection to any axis, without the need to have a CAN-bus interface. In
this case the CAN-bus protocol is completely transparent for the host.

By default, the CAN baud-rate is set at 125Kbps. The maximum baud-rate is 1Mbps. It can be
changed at any value supported by the CAN transceiver.

CAN-bus Communication Protocol – Examples

Example 1: Suppose the host wants to send on the CAN bus to an IDM240/640 the message
containing the TML instruction “KPP = 0x1234” (set proportional part of the position controller).

As this is a type A message (no answer required), the instruction (see extracts from Table D.2
and C.6 below) has the following code:

Operation Code = 205Eh

Data (1) = 1234h

(Extract from Table D.2. TML Instruction Set. Assignment Group)

TML Instruction Format Syntax Description

Operation Code Data(1) Data(2) Data(3) Data(4)

V16 = val16 V16 = val16 0x2000 | 9LSB(&V16) val16

(Extract from Table C.6. Controllers Parameters)

Name Address Type Description

KPP 0x025E int Proportional term coefficient for position controller

CAN Communication Protocol

! Technosoft 2003 B-6 IDM240 / 640 Technical Reference

If the destination IDM240/640 has the Axis ID = 5, the CAN Message Identifier Words have the
following content:

CAN Message Identifier Word 1

x x x Operation Code

(7MSB from 205Eh)

GROUP

 Bit

Axis/Group ID (5MSB)
ID7-ID3

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

= 04 00 h

CAN Message Identifier Word 2

Axis/Group ID (3LSB)
 ID7-ID3

0 0 0 HOST

bit

Operation code

(9LSB from 205E)

1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0

= A0 5E h

Consequently, the CAN message for “kpp = 0x1234” is:

Byte no. Value Description

1 04 high byte of CAN Message Identifier Word1 = 0400h

2 00 low byte of CAN Message Identifier Word1 = 0400h

3 A0 high byte of CAN Message Identifier Word2 = A05Eh

4 5E low byte of CAN Message Identifier Word2 = A05Eh

5 12 high byte of Data(1) = 1234h

6 34 low byte of Data(1) = 1234h

Figure B.8. CAN message contents when TML instruction “kpp = 0x1234” is sent

Example 2: Suppose the host connected directly on the CAN bus wants to get the value of the
local position error from an IDM240/640. The position error is a 16-bit TML variable named
POSERR situated at the 0x022A internal memory address (see extract from Table 39 below).

(Extract from Table 39. Controllers Variables)

Name Address Type Description

POSERR 0x022A int Position error

Suppose the host CAN bus address is 3 and that the questioned IDM240/640 has 5 as CAN bus
address. As this is a type B message (an answer is required), it has 2 components: the request
command “Give Me Data” and the answer “Take Data”.

The request command “Give Me Data” has the following content:

CAN Message Identifier Word1 (Op. Code = B004h and ID = 5) 1600h

CAN Message Identifier Word2 (Op. Code = B004h and ID = 5) A004h

Data(1): Sender Axis ID 0030h

Data(2): Requested Data Address 022Ah

Supposing that the POSERR value is 2, the ”Take Data” answer will have the following content:

CAN Message Identifier Word1 (Op. Code = B404h and ID = 3) 1680h

CAN Communication Protocol

! Technosoft 2003 B-7 IDM240 / 640 Technical Reference

CAN Message Identifier Word2 (Op. Code = B404h and ID = 3) 6004h

Data(1): Sender Axis ID 0050h

Data(2): Requested Data Address 022Ah

Data(3): Value Existing at Requested Data Address 0002h

The request CAN Message Identifier Words for the CAN message “?POSERR” are:

CAN Message Identifier Word 1

x x x Operation Code

(7MSB from B004h)

GROUP

 Bit

Axis/Group ID (5MSB) ID7-ID3

0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

= 16 00 h

CAN Message Identifier Word 2

Axis/Group ID (3LSB) ID7-ID3 0 0 0 HOST

bit

Operation code

(9LSB from B004h)

1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

= A0 04 h

Consequently, the request CAN message for “?POSERR” is:

Byte no. Value Description

1 16 high byte of CAN Message Identifier Word1 = 1600h

2 00 low byte of CAN Message Identifier Word1 = 1600h

3 A0 high byte of CAN Message Identifier Word2 = A004h

5 04 low byte of CAN Message Identifier Word2 = A004h

5 00 high byte of Data(1) = 0030h

6 30 low byte of Data(1) = 0030h

7 02 high byte of Data(2) = 022Ah

8 2A low byte of Data(2) = 022Ah

Figure B.9. CAN message contents when TML instruction “?POSERR” is sent

The answer CAN Message Identifier Words for the CAN message answer to “?POSERR” are:

CAN Message Identifier Word 1

x x x Operation Code

(7MSB from B404h)

GROUP

 Bit

Axis/Group ID (5MSB) ID7-ID3

0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0

= 16 80 h

CAN Message Identifier Word 2

Axis/Group ID (3LSB) ID7-ID3 0 0 0 HOST

bit

Operation code

(9LSB from B004h)

0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0

= 60 04 h

Consequently, the CAN message answered to the request “?POSERR” is:

Byte no. Value Description

CAN Communication Protocol

! Technosoft 2003 B-8 IDM240 / 640 Technical Reference

1 16 high byte of CAN Message Identifier Word1 = 1680h

2 80 low byte of CAN Message Identifier Word1 = 1680h

3 60 high byte of CAN Message Identifier Word2 = 6004h

5 04 low byte of CAN Message Identifier Word2 = 6004h

5 00 high byte of Data(1) = 0050h

6 50 low byte of Data(1) = 0050h

7 02 high byte of Data(2) = 022Ah

8 2A low byte of Data(2) = 022Ah

9 00 high byte of Data(2) = 0002h

10 02 low byte of Data(2) = 0002h

Figure B.10. CAN message contents for “Take Data” value of POSERR

TML Data Components

! Technosoft 2003 C-1 IDM240 / 640 Technical Reference

Appendix C. TML Data Components

TML Registers

The TML environment works with configuration, command and status registers.

The configuration registers contain essential configuration information like motor and sensors
type, or basic operation settings like PWM mode, motor start method, etc. The configuration
registers must be setup during the initialization phase.

The command registers hold configuration settings that can be changed during motion. These
settings refer to the activation/deactivation of software protections, use of TML interrupts and
communication options.

The status registers, provide information about the status of different motion system elements like
communication, motion mode, active control loops, system protections, TML interrupts. The status
registers can be used to detect events and to take decisions in a TML program.

Configuration registers (R/W):

SCR – System Configuration Register. Used to define the basic application configuration: motor
and sensors types, brake circuit presence, external user loop existence

OSR – Operating Settings Register. Used to define specific system operating settings, as current
offset detection mode, Brushless AC motor start procedure, PWM special features, stepper
control type, how to read the sensor of the external user loop, which pin to use for brake
command

Command registers (R/W):

CCR – Communication Control Register. Contains settings for SPI and parallel I/O channels.

ICR – Interrupt Control Register. Used to define the masks for TML interrupts

PCR - Protections Control Register. Used to activate different protections in the system, as
maximum current, I

2
t, over and under voltage and over-temperature (TEMP1,2 inputs over limits)

Status registers (RO):

AAR - Axis Address Register. Keeps the Axis ID and the group ID

CBR – CAN Baud rate Register. Keeps the current settings for CAN-bus baud-rate

CER – Communication Error Register. Contains error flags for the communication channels

CSR – Communication Status Register. Contains status flags for the communication channels

ISR - Interrupt Status Register. Contains interrupt flags set by the TML interrupt conditions

MCR – Motion Command Register. Contains information about the motion modes: reference
mode, active control loops, positioning type: absolute or relative, etc.

MSR – Motion Status Register. Mainly used internally by the TML kernel, the register bits give
indications about motion progress and specific motion events as software protections, control
error, wrap-around, limit switches, captures, contour segments, events, axis status, etc.

TML Data Components

! Technosoft 2003 C-2 IDM240 / 640 Technical Reference

PCR - Protections Control Register. Used to examine the status of different protections in the
system, as over-current, I

2
t, over and under voltage and TEMP1, TEMP2 inputs over limits

The TML registers have reserved mnemonics, but no specially dedicated instructions. Hence, in a
TML program, registers are treated like any other TML parameter or variable. The configuration
and command registers can be read or written. The status registers can only be read. Table C.1
presents the TML registers, their mnemonic, type and the corresponding data memory addresses.

Table C.1. TML Registers

Mnemonic Register Name Type Address

SCR System Configuration Register Configuration 0x300

OSR Operating Settings Register Configuration 0x302

CCR Communication Control Register Command 0x30A

ICR Interrupt Control Register Command 0x304

PCR Protections Control Register Cmd/status 0x303

AAR Axis Address Register Status 0x30C

CBR CAN Baud rate Register Status 0x30D

CER Communication Error Register Status 0x301

CSR Communication Status Register Status 0x30B

ISR Interrupt Status Register status 0x306

MCR Motion Command Register Status 0x309

MSR Motion Status Register status 0x308

TML Parameters

TML programs use some specific data information structured through the TML parameters.
Having reserved TML mnemonics, the TML parameters allow setup and/or examine the
parameters of the different motion system components.

Some of the TML parameters share the same memory address. They are used in application
configurations that exclude one each other, and thus are not needed at the same time.

A part of the TML parameters must be setup during the initialization phase. They are used to
define the real-time kernel including the PWM frequency and the control loops sampling periods
and should not be changed after the execution of the ENDINIT command. The other parameters
can be initialized, used and changed any time before or after ENDINIT command.

The following tables present the TML parameters, grouped by functionality.

TML Data Components

! Technosoft 2003 C-3 IDM240 / 640 Technical Reference

Table C.2. Real-time Kernel Parameters

Parameter Name Address Data Type Significance

CLPER 0x0250 uint Current loop sampling time

SLPER 0x0251 uint Speed loop sampling time

Table C.3. Motors Parameters

Parameter Name Address Data Type Significance

BOOST 0x027D int Boost voltage

CORDDTH 0x028E int Acceleration correction factor

CORDTH 0x028D int Speed correction factor

CWEAK 0x0257 int Weak factor

GUARD 0x027E int Stepper guard factor

IDMAX 0x027B int D axis maximum current

IDMIN 0x027C int D axis minimum current

IDRSTEP 0x027B int D axis reference current

IQRSTEP 0x027C int Q axis reference current

KSLIP 0x0279 int Slip factor

KSPD 0x0277 int Speed factor

KVOLT 0x0279 int Voltage factor

POSTRGG 0x0289 uint Position trigger for controlled start

SCL2H 0x0281 int Scaling factor 2 - high part

SCL2L 0x0282 uint Scaling factor 2 - low part

SCL3 0x0283 int Scaling factor 3

SCL4 0x0286 int Scaling factor 4

SENSE 0x0288 int PMSM start sense

SFTCWEAK 0x0258 int Shift for weak factor

SFTKSLIP 0x027A int Shift slip factor

SFTKSPD 0x0278 int Shift for speed factor

SFTKVOLT 0x027A int Shift voltage factor

SFTSCL1 0x0280 int Scaling factor shift

SGCODTH 0x0289 int Speed sign correction factor

SIN2REC 0x0287 int Sinusoidal to rectangular transition level

SRCOR 0x027F int Sinusoidal to rectangular transition correction

SRECTCOMP 0x028F int Device correction term

T1ONA 0x0284 uint Time on A phase

T1ONB 0x0285 uint Time on B phase

TIMELIM 0x0286 uint Time limit for controlled start

WEAKINC 0x0259 int Weak increment

TML Data Components

! Technosoft 2003 C-4 IDM240 / 640 Technical Reference

Table C.4. Sensors Parameters

Parameter Name Address Data Type Significance

AD0OFF 0x0244 uint Offset for AD0 channel

AD1OFF 0x0245 uint Offset for AD1 channel

AD2OFF 0x0246 uint Offset for AD2 channel

AD3OFF 0x0247 uint Offset for AD3 channel

AD4OFF 0x0248 uint Offset for AD4 channel

AD5OFF 0x0249 uint Offset for AD5 channel

AD6OFF 0x024A uint Offset for AD6 channel

AD7OFF 0x024B uint Offset for AD7 channel

CADIN 0x025C int Analog feedback scaling factor

CI0 0x028D int Static friction current factor

CIQ 0x028E int Motor torque current factor

ELRES 0x0279 uint Encoder increments / electrical resolution

FILTER1 0x029D int Coefficient for the first order filter for analogue reference

HALLCASE 0x0259 int Hall sensors configuration parameter

HALLDIR 0x028F int Speed estimate from time (Hall pulse length) parameter

MECRES 0x0277 uint Position sensor increments / mechanical revolution

PFOVF 0x029C uint Position feedback overflow value (analogue, parallel I/O or on-line position
sensor)

POSOKLIM 0x036A uint Position accepted error band to lock control

SETAD01 0x024C int Specific AD channels assignment (IA, IB) for the selected power stage

SETAD23 0x024D int specific AD channels assignment (ANALOG_FDBK, IC) for the selected
power stage

SETAD45 0x024E int specific AD channels assignment (VDC, REF) for the selected power stage

SETAD67 0x024F int specific AD channels assignment (TEMP1/TQLIM, TEMP2/TQFFW) for the
selected power stage

SFTADIN 0x025D int Shift for analog feedback scaling factor

SFTCRT 0x0290 int Current measurement shift factor

TONPOSOK 0x036B uint Trigger time for control lock after positioning

VDCN 0x025A uint DC bus voltage nominal value (V_dc compensation)

ZAOFF 0x0289 uint Offset between encoder Z

TML Data Components

! Technosoft 2003 C-5 IDM240 / 640 Technical Reference

Table C.5. Power Converters Parameters

Parameter Name Address Data Type Significance

BRAKEDC 0x028B uint Brake duty cycle

BRAKELIM 0x028A uint Brake activation level

BRAKEOFF 0x028C uint Brake inactive state set value (default active Lo)

DBT 0x0253 uint Power stage dead-time

DBTLIM 0x027E int Dead band compensation parameter

DBTTH 0x027F int Dead band threshold

PWMPER 0x0252 uint PWM period

SATPWM 0x0254 int Saturation limit for voltage command

NEWPERWOB 0x0287 uint Central PWM period for wobbling

MAXPWMWOB 0x028F uint Maximum PWM frequency variation during wobbling

Table C.6. Controllers Parameters

Parameter Name Address Data Type Significance

ENC2TH 0x0278 uint Scaling constant for electrical angle computation

IMAXP 0x0266 int Saturation limit for integral part for position controller

IMAXS 0x026C int Saturation limit for integral part for speed controller

KDFP 0x0264 int Derivative term filter coefficient for position controller

KDP 0x0262 int Derivative term coefficient for position controller

KFFA 0x026E int Acceleration feedforward factor

KFFL 0x026F int Load torque feedforward factor

KFFS 0x026D int Speed feedforward factor

KII 0x0273 int Integrative term coefficient for current controller

KIP 0x0260 int Integrative term coefficient for position controller

KIS 0x0269 int Integrative term coefficient for speed controller

KPI 0x0271 int Proportional term coefficient for current controller

KPP 0x025E int Proportional term coefficient for position controller

KPS 0x0267 int Proportional term coefficient for speed controller

SATID 0x0275 int Saturation limit for ud command

SATIQ 0x0276 int Saturation limit for uq command

SATP 0x0265 int Saturation limit for speed command

SATS 0x026B int Saturation limit for current command

SFTAFFW 0x0291 int Shift feedforward acceleration

SFTKDP 0x0263 int Derivative term shift for position controller

SFTKFF 0x0270 int Feedforward shift

SFTKII 0x0274 int Integrative term shift for current controller

SFTKIP 0x0261 int Integrative term shift for position controller

SFTKIS 0x026A int Integrative term shift for speed controller

SFTKPI 0x0272 int Proportional term shift for current controller

SFTKPP 0x025F int Proportional term shift for position controller

SFTKPS 0x0268 int Proportional term shift for speed controller

SFTSFFW 0x0292 int Shift feedforward speed

TML Data Components

! Technosoft 2003 C-6 IDM240 / 640 Technical Reference

Table C.7. Reference Generator Parameters

Parameter Name Address Data Type Significance

CACC 0x02A2 fixed Acceleration command for position/speed profile modes

CPOS 0x029E long Position command for position profile mode

CSPD 0x02A0 fixed Speed command for position/speed profile modes

GEAR 0x02AC fixed Gearing factor for slave axis

POS0 0x02B8 long Position origin for relative position event

REF0 0x02A8 fixed Initial reference in voltage test mode (fixed)

REF0 0x02A8 long Initial reference in torque test mode (long)

REFTST 0x0281 int Test reference saturation value

RINCTST 0x0280 int Test reference increment value

SLAVEID 0x0311 int Axis / group ID for slave in electronic gearing

THTST 0x0282 int Test reference electric angle

TIME0 0x02BE long Time origin for relative time event

TINCTST 0x0283 int Test reference electric angle increment

Table C.8. Protections Parameters

Parameter Name Address Data Type Significance

ALPHA 0x0295 long I2t cooling coefficient

BETA 0x0293 long I2t heating

EFLEVEL 0x02C7 int Earth fault - protection limit

ERRMAX 0x02C5 uint Control error limit

IMAXPROT 0x0297 int Maximum current - protection limit

NI2T 0x0255 long I2t computation interval

T1MAXPROT 0x0298 uint Temp1. maximum - protection value

T2MAXPROT 0x0299 uint Temp2. maximum - protection value

TERRMAX 0x02C6 uint Trigger time for control error

TIMAXPROT 0x02C4 uint Trigger time for maximum current protection

UMAXPROT 0x029A uint DC bus voltage maximum - protection value

UMINPROT 0x029B uint DC bus voltage minimum - protection value

Table C.9. Motion Language Parameters

Parameter Name Address Data Type Significance

INITABLE 0x0307 int Start address of TML interrupts vector table

TML Data Components

! Technosoft 2003 C-7 IDM240 / 640 Technical Reference

TML Variables

TML programs use some specific data information structured through the TML variables. Having
reserved TML mnemonics, the TML variables are used in the control module of the program.
Their values can be read at any time during the execution of the program. Activating the on-chip
logger module, real-time data tracing can also be implemented for any of these variables.

The TML variables are internally initialized before activating the motion system real time structure
(before

the ENDINIT TML command), or before activating the motion control functions (before the
execution of the AXISON TML command).

Majority of TML variables is read only (RO). Modifying their value during motion execution may
cause improper operation of the motion system. In specific situations, some of the TML variables
can also be written (are R/W variables).

The following tables present the TML variables, grouped by functionality.

Table C.10. Motors Variables

Name Address Type Description

APOS 0x0228 Long actual position

ASPD 0x022C Fixed actual speed

IA 0x0239 Int A phase current

IB 0x023A int B phase current

IC 0x023B int C phase current

STATE 0x0288 int Sinusoidal/rectangular actual stepper control mode

UAREF 0x0236 int A phase reference voltage

UBREF 0x0237 int B phase reference voltage

UCREF 0x0238 int C phase reference voltage

Table C.11. Sensors Variables

Name Address Type Description

ACCPL 0x02FF int Estimated acceleration between tow Hall/encoder pulses

AD0 0x023C uint 1st AD channel (current i_A)

AD1 0x023D uint 2nd AD channel (current i_B)

AD2 0x023E uint 3rd AD channel (reference)

AD3 0x023F uint 4th AD channel (current i_C)

AD4 0x0240 uint 5th AD channel (DC link voltage)

AD5 0x0241 uint 6th AD channel (feedback)

AD6 0x0242 uint 7th AD channel (Temperature 1 / Limit torque)

AD7 0x0243 uint 8th AD channel (Temperature 2 / Feedforward torque)

CAPPOS 0x02BC long Captured position

COSTH 0x0226 int Cosine theta

ELPOS 0x0221 int Absolute electrical position

TML Data Components

! Technosoft 2003 C-8 IDM240 / 640 Technical Reference

FFL 0x0223 int Feedforward load torque

POSINC 0x0222 int On-line incremental position feedback

SSPL 0x02FE int Speed samples between tow Hall/encoder pulses

THETAINC 0x020E int Electrical angle increment

Table C.12. Controllers Variables

Name Address Type Description

CRTERR 0x0231 int Q axis current error

HALL 0x0227 int Hall sensors information

ID 0x0234 int D axis current

IDREF 0x0233 int D axis reference current

IQ 0x0230 int Q axis current

IQREF 0x022F int Q axis reference current

POSERR 0x022A int Position error

SINTH 0x0225 int Sinus theta

SPDERR 0x022E int Speed error

SPDREF 0x022B int Reference speed

THETA 0x0224 int Field position angle

UDREF 0x0235 int D axis reference voltage

UQREF 0x0232 int Q axis reference voltage

Table C.13. Power Converter Variables

Name Address Type Description

CVDC 0x025B int DC bus compensation ratio

Table C.14. Motion Language Variables

Name Address Type Description

PROD 0x030E 48 bits Result of a TML multiply operation

TML Data Components

! Technosoft 2003 C-9 IDM240 / 640 Technical Reference

Table C.15. Reference Generator Variables

Name Address Type Description

ATIME 0x02C0 Long Absolute system time

CDREF 0x02A4 Fixed Reference increment for a contour segment

CTIME 0x02A6 Int No. of samplings for a contour segment

EREF 0x02A8 fixed/long External reference for all external modes

MREF 0x02AA Long Reference send from master

RPOS 0x02BA Long Relative position for event tests

RTIME 0x02C2 Long Relative time for event tests

TACC 0x02B6 Fixed Target acceleration

TPOS 0x02B2 Long Target position

TREF 0x02AE fixed/long Target reference

TSPD 0x02B4 Fixed Target speed

TML User variables

Besides the TML pre-defined variables, the users of TML environment can define their own
variables, which can be used in all the TML instructions that manipulate variables of the same
types. The on-chip data memory offers the possibility to work with up to 32 integer / 16 long or
fixed user-defined variables (see Table C.17). The address of the user variables is automatically
set in order of declaration starting with 0x03E0. Apart from these variables the Intelligent drive
also provides 3 pre-defined variables for general-purpose use (see Table C.16)

Table C.16. General-purpose Pre-defined Variables

Name Address Type Description

VAR_I1 0x0366 Int Predefined user variable

VAR_I2 0x0367 Int Predefined user variable

VAR_LF 0x0368 Fixed/long Predefined user variable

Table C.17. User-defined Variables

Type Format Representation Range

Int Signed integer 16 bits -32768 ¸ 32767 (0x8000 ¸ 0x7FFF)

Long Signed long integer 32 bits -2147483648 ¸ 2147483647 (0x80000000 ¸
0x7FFFFFFF)

Fixed (Integer part).(fractional part) 32 bits -32768.999969 ¸ 32767.999969 (0xFFFF.FFFF ¸
0x7FFF.FFFF)

TML Instruction Set Summary

! Technosoft 2003 D-1 IDM240 / 640 Technical Reference

Appendix D. TML Instruction Set Summary
This paragraph describes the complete set of TML instructions, grouped by functionality. Within
each group, the instructions are ordered alphabetically and contain the mnemonic syntax, a short
description and the instruction code. The next table presents the symbols used.

Table D.1. TML Instructions Code Symbols

Symbols Description

&Label Address of TML program label

&V16 Address of a 16-bit integer variable

&V32 Address of a 32-bit long or fixed variable

(V16) Memory location at address equal with V16 value

(la) Long addressing. Source/destination operand provided with 16-bit address. Some TML instructions using 9-bit
short addressing are doubled with their long addressing equivalent

9LSB(&V16) The 9 LSB (less significant bits) of the address of a 16-bit integer

9LSB(&V32) The 9 LSB (less significant bits) of the address of a 32-bit long or fixed

A Axis ID

A/G Axis ID or Group ID

ANDdis 16-bit AND mask. See Table MCRx & AND/OR masks for DISIO#n and

Table MCRx & PxDIR addresses

ANDen 16-bit AND mask. See Table MCRx & AND/OR masks for ENIO#n and

Table MCRx & PxDIR addresses

ANDin 16-bit AND mask. See Table AND/OR masks for SETIO#n IN

ANDm 16-bit user-defined AND mask

ANDout 16-bit AND mask. See Table AND/OR masks for SETIO#n OUT

ANDrst 16-bit AND mask. See Table AND/OR masks for ROUT#n

ANDset 16-bit AND mask. See Table AND/OR masks for SOUT#n

Bit_msk 16-bit AND mask. See Tables PxDIR & Bit_msk for V16=IN#n and

table MCRx & PxDIR addresses

BitMskIO 16-bit AND mask. See Table BitMskIO for V16=INPORT#n

D_ref 32-bit fixed value

D_time 16-bit value

Flag See Table Condition Flag for GOTO/CALL

LengthMLI Length of a TML instruction code in words – 1

MCRx See Tables MCRx & AND/OR masks for ENIO#n / DISIO#n and

Table MCRx & PxDIR addresses

ORdis 16-bit OR mask. See Table MCRx & AND/OR masks for DISIO#n and

Table MCRx & PxDIR addresses

ORen 16-bit OR mask. See Table MCRx & AND/OR masks for ENIO#n and

Table MCRx & PxDIR addresses

ORin 16-bit OR mask.. See Table AND/OR masks for SETIO#n IN

ORm 16-bit user-defined OR mask

TML Instruction Set Summary

! Technosoft 2003 D-2 IDM240 / 640 Technical Reference

ORout 16-bit OR mask. See Table AND/OR masks for SETIO#n OUT

ORrst 16-bit OR mask. See Table AND/OR masks for ROUT#n

ORset 16-bit OR mask. See Table AND/OR masks for SOUT#n

PxDIR See Table PxDIR & Bit_msk for V16=IN#n and Table MCRx & PxDIR addresses

pm Data memory space: 200 – 3FFh (internal), 8000 – 0FFFFh (external)

dm Program memory space: 8000 – 0FFFFh (external)

dpi SPI-E2ROM memory space: 4000h – 7FFFh (external)

TM Type of memory. When used in syntax TM should be replaced by dm or pm or spi. When used in code, see
Table TM values.

V16 16-bit integer variable

V16D 16-bit integer variable used as destination

V16S 16-bit integer variable used as source

V32 32-bit long or fixed variable

V32(L) 16LSB of a 32-bit long or fixed variable (seen as a 16-bit integer)

V32(H) 16MSB of a 32-bit long or fixed variable (seen as a 16-bit integer)

V32D 32-bit long or fixed variable used as destination

V32S 32-bit long or fixed variable used as source

Val16 16-bit integer value

Val32 32-bit long or fixed value

Val32(L) 16LSB of a 32-bit long or fixed value

Val32(H) 16MSB of a 32-bit long or fixed value

TML Instruction Set Summary

! Technosoft 2003 D-3 IDM240 / 640 Technical Reference

Table D.2. TML Instruction Set. Assignment Group

CodeSyntax Description

0 1 2 3

(V16D), TM = V16S (V16D) from TM = V16S 0x90B0 | TM &V16D &V16S

(V16D), TM = V32S (V16D) from TM = V32S 0x90B1 | TM &V16D &V32S

(V16D), TM = val16 (V16D) from TM = val16 0x90A0 | TM &V16D val16

(V16D), TM = val32 (V16D) from TM = val32 0x90A1 | TM &V16D val32(L) val32(H)

(V16D+), TM = V16S (V16D) from TM = V16S then V16D += 1 0x9030 | TM &V16D &V16S

(V16D+), TM = V32S (V16D) from TM = V32S thenV16D += 1 0x9031 | TM &V16D &V32S

(V16D+), TM = val16 (V16D) from TM = val16 then V16D += 1 0x9020 | TM &V16D val16

(V16D+), TM = val32 (V16D) from TM = val32 then V16D += 1 0x9021 | TM &V16D val32(L) val32(H)

SRB V16,ANDm,ORm Set / Reset Bits of a V16 0x5800 | 9LSB(&V16) ANDm ORm

SRBL V16,ANDm,ORm Set / Reset Bits of a V16 (la) 0x5C00 &V16 ANDm Orm

V16 = label V16 = address of a TML label 0x2000 | 9LSB(&V16) &label

V16 = val16 V16 = val16 0x2000 | 9LSB(&V16) val16

V16D = (V16S), TM V16D = (&V16S) from TM 0x9180 | TM &V16S &V16D

V16D = (V16S+), TM V16D = (&V16S) from TM then V16S += 1 0x9100 | TM &V16S &V16D

V16D = IN#n Read input #n 0x6000 | 9LSB(&V16D) PxDIR Bit_msk

V16D = IN1, ANDm Read IN#25 to IN#32 with ANDm 0x6000 | 9LSB(&V16D) PEDIR ANDm

V16D = IN2, ANDm Read IN#33 to IN#39 with ANDm 0x6000 | 9LSB(&V16D) PFDIR ANDm

V16D = INPORT#n Read input #n from IO space port 0x6800 | 9LSB(&V16D) BitMskIO

V16D = INPORT,ANDm Read all inputs from IO space port 0x6800 | 9LSB(&V16D) ANDm

V16D = V16S V16D = V16S 0x2800 | 9LSB(&V16D) &V16S

V16D = -V16S V16D = -V16S 0x3000 | 9LSB(&V16D) &V16S

V16D = V32S(H) V16D = V32S(H) 0x2800 | 9LSB(&V16D) &V32S+1

V16D = V32S(L) V16D = V32S(L) 0x2800 | 9LSB(&V16D) &V32S

V16D, dm = V16S V16D from dm = V16S (la) 0x9014 &V16D &V16S

V16D, dm = val16 V16 from dm = val16 (la) 0x9004 &V16D val16

V32 = val32 V32 = val32 0x2400 | 9LSB(&V32) val32(L) val32(H)

V32(H) = val16 V32(H) = val16 0x2000 | 9LSB(&V32+1) val16

V32(L) = val16 V32(H) = val16 0x2000 | 9LSB(&V32) val16

V32D = (V16S), TM V32D = (V16S) from TM 0x9181 | TM &V16S &V32D

V32D = (V16S+), TM V32D = (V16S) from TM then V16D += 1 0x9101 | TM &V16S &V32D

V32D = V32S V32D = V32S 0x2C00 | 9LSB(&V32D) &V32S

V32D = -V32S V32D = -V32S 0x3400 | 9LSB(&V32D) &V32S

V32D =V16S << N V32D = V16S left-shifted by N 0x8960 | N (N=0-16) &V32D &V16S

V32D(H) = V16S V32D(H) = V16 0x2800 | 9LSB(&V32D+1) &V16S

V32D(L) = V16S V32D(L) = V16 0x2800 | 9LSB(&V32D) &V16S

V32D, dm = V32S V32D from dm = V32S (la) 0x9015 &V32D &V32S

V32D, dm = val32 V32 from dm = val32 (la) 0x9005 &V32D val32(L) val32(H)

TML Instruction Set Summary

! Technosoft 2003 D-4 IDM240 / 640 Technical Reference

Table D.3. TML Instruction Set. Arithmetic Group

CodeSyntax Description

0 1 2 3

PROD <<= N Left shift PROD by N 0x88A0 | N (N=0-15) 0x030e

PROD >>= N Right shift PROD by N 0x8880 | N (N=0-15) 0x030e

V16 <<= N Left shift V16 by N 0x8820 | N (N=0-15) &V16

V16 >>= N Right shift V16 by N 0x8800 | N (N=0-15) &V16

V16 += val16 Add val16 to V16 0x3800 | 9LSB(&V16) val16

V16 -= val16 Subtract val16 from V16 0x4800 | 9LSB(&V16) val16

V16 * val16 << N PROD = (V16 * val16) >> N 0x8C20 | N (N=0-15) &V16 val16

V16 * val16 >> N PROD = (V16 * val16) >> N 0x8C00 | N (N=0-15) &V16 val16

V16A * V16B << N PROD = (V16A * V16B) << N 0x8CA0 | N (N=0-15) &V16A &V16B

V16A * V16B >> N PROD = (V16A * V16B) >> N 0x8C80 | N (N=0-15) &V16A &V16B

V16D += V16S Add V16S to V16D 0x4000 | 9LSB(&V16D) &V16S

V16D -= V16S Subtract V16S from V16D 0x5000 | 9LSB(&V16D) &V16S

V32 * V16 << N PROD = (V32 * V16) << N 0x8DA0 | N (N=0-15) &V32 &V16

V32 * V16 >> N PROD = (V32 * V16) >> N 0x8D80 | N (N=0-15) &V32 &V16

V32 * val16 << N PROD = (V32 * val16) << N 0x8D20 | N (N=0-15) &V32 val16

V32 * val16 >> N PROD = (V32 * val16) >> N 0x8D00 | N (N=0-15) &V32 val16

V32 >>= N Right shift V32 by N 0x8900 | N (N=0-15) &V32

V32 <<= N Left shift V32 by N 0x8920 | N (N=0-15) &V32

V32 += val32 Add val32 to V32 0x3C00 | 9LSB(&V32) val32(L) val32(H)

V32 -= val32 Subtract val32 from V32 0x4C00 | 9LSB(&V32) val32(L) val32(H)

V32D += V32S Add V32S to V32D 0x4400 | 9LSB(&V32D) &V32S

V32D -= V32S Subtract V32S from V32D 0x5400 | 9LSB(&V32D) &V32S

Table D.4. TML Instruction Set. Program Flow Decision Group

CodeSyntax Description

0 1 2 3

CALL Label Unconditional CALL of a function 0x7401 &Label

CALL Label, V16, Flag CALL function if V16 Flag 0 0x7401 | Flag &V16 &Label

CALL Label, V32, Flag CALL function if V32 Flag 0 0x7501 | Flag &V32 &Label

GOTO Label Unconditional GOTO to label 0x7400 &Label

GOTO Label, V16, Flag GOTO label if V16 Flag 0 0x7400 | Flag &V16 &Label

GOTO Label, V32, Flag GOTO label if V32 Flag 0 0x7500 | Flag &V32 &Label

RET Return from TML function 0x0404

RETI Return from TML Interrupt SR 0x0504

TML Instruction Set Summary

! Technosoft 2003 D-5 IDM240 / 640 Technical Reference

Table D.5. TML Instruction Set. Motion Mode Setting Group

CodeSyntax Description

0 1 2 3

MODE CS0 Set MODE Cam Slave 0 () 0x5909 0xB4C6 0x8406

MODE CS1 Set MODE Cam Slave 1 (T) 0x5909 0xB5C6 0x8506

MODE CS2 Set MODE Cam Slave 2 (S) 0x5909 0xB6C6 0x8606

MODE CS3 Set MODE Cam Slave 3 (S,T) 0x5909 0xB7C6 0x8706

MODE GS0 Set MODE Gear Slave 0 () 0x5909 0xB4C5 0x8405

MODE GS1 Set MODE Gear Slave 1 (T) 0x5909 0xB5C5 0x8505

MODE GS2 Set MODE Gear Slave 2 (S) 0x5909 0xB6C5 0x8605

MODE GS3 Set MODE Gear Slave 3 (S,T) 0x5909 0xB7C5 0x8705

MODE PC0 MODE Position Contouring 0 () 0x5909 0xBCC2 0x8402

MODE PC1 MODE Position Contouring 1 (T) 0x5909 0xBDC2 0x8502

MODE PC2 MODE Position Contouring 2 (S) 0x5909 0xBEC2 0x8602

MODE PC3 MODE Position Contouring 3 (S,T) 0x5909 0xBFC2 0x8702

MODE PE0 MODE Position External 0 () 0x5909 0xBCC0 0x8400

MODE PE1 MODE Position External 1 (T) 0x5909 0xBDC0 0x8500

MODE PE2 MODE Position External 2 (S) 0x5909 0xBEC0 0x8600

MODE PE3 MODE Position External 3 (S,T) 0x5909 0xBFC0 0x8700

MODE PP0 MODE Position Profile 0 () 0x5909 0xBCC1 0x8401

MODE PP1 MODE Position Profile 1 (T) 0x5909 0xBDC1 0x8501

MODE PP2 MODE Position Profile 2 (S) 0x5909 0xBEC1 0x8601

MODE PP3 MODE Position Profile 3 (S,T) 0x5909 0xBFC1 0x8701

MODE PPD0 MODE Position Pulse & Dir 0 () 0x5909 0xBCC4 0x8404

MODE PPD1 MODE Position Pulse & Dir 1 (T) 0x5909 0xBDC4 0x8504

MODE PPD2 MODE Position Pulse & Dir 2 (S) 0x5909 0xBEC4 0x8604

MODE PPD3 MODE Position Pulse & Dir 3 (S,T) 0x5909 0xBFC4 0x8704

MODE SC0 MODE Speed Contouring 0 (T) 0x5909 0xBAC2 0x8202

MODE SC1 MODE Speed Contouring 1 (T) 0x5909 0xBBC2 0x8302

MODE SE0 MODE Speed External 0 (T) 0x5909 0xB2C0 0x8200

MODE SE1 MODE Speed External 1 (T) 0x5909 0xB3C0 0x8300

MODE SP0 MODE Speed Profile 0 () 0x5909 0xBAC1 0x8201

MODE SP1 MODE Speed Profile 1 (T) 0x5909 0xBBC1 0x8301

MODE SPD0 MODE Speed Pulse & Dir 0 () 0x5909 0xBAC4 0x8204

MODE SPD1 MODE Speed Pulse & Dir 1 (T) 0x5909 0xBBC4 0x8304

MODE TC MODE Torque Contouring 0x5909 0xB1C3 0x8103

MODE TEF MODE Torque External Fast loop 0x5909 0xB1E0 0x8120

MODE TES MODE Torque External Slow loop 0x5909 0xB1C0 0x8100

MODE TT MODE Torque Test 0x5909 0xB1C8 0x8108

MODE VC MODE Voltage Contouring 0x5909 0xB0C3 0x8003

MODE VEF MODE Voltage External Fast loop 0x5909 0xB0E0 0x8020

MODE VES MODE Voltage External Slow loop 0x5909 0xB0C0 0x8000

MODE VT MODE Voltage Test 0x5909 0xB0C8 0x8008

TML Instruction Set Summary

! Technosoft 2003 D-6 IDM240 / 640 Technical Reference

Table D.6. TML Instruction Set. Configuration and Command Group

Code Syntax Description

0 1 2 3

AXISOFF AXIS is OFF (deactivate control) 0x0002

AXISON AXIS is ON (activate control) 0x0102

BEGIN BEGIN of a TML program 0x649C

BREAK BREAK TML program execution 0x0010

CHECKSUM, TM Start, Stop,
V16D

V16D = Checksum between Start
and Stop addresses from TM

0xD910 | (TM<<3) &V16D Start Stop

CONTINUE Resume TML program execution 0x0110

CPA Command Position is Absolute 0x5909 0xFFFF 0x2000

CPR Command Position is Relative 0x5909 0xDFFF 0x0000

DINT Disable TML Interrupts 0x0410

EINT Enable TML Interrupts 0x0510

END END of a TML program 0x0001

ENDINIT END of Initialization 0x0020

EXTREF 0 External Reference read from EREF
updated on-line

0x5909 0xFF3F 0x0000

EXTREF 1 External Reference read from
REFERNCE input

0x5909 0xFF7F 0x0040

EXTREF 2 External Reference read from a16-
bit IO port

0x5909 0xFFBF 0x0080

EXTREF 3 External Reference read from a
32=bit IO port

0x5909 0xFFFF 0x00C0

INITCAM addrS, addrD Copy CAM table from SPI (addrS
address) to RAM (addrD address)

0xD840 addrS addrD

LSACT NONE Limit Switch Action = NONE 0x20A7 0x0000

LSACT STOP0 Limit Switch Action = STOP0 0x20A7 0x0001

LSACT STOP1 Limit Switch Action = STOP1 0x20A7 0x0002

LSACT STOP2 Limit Switch Action = STOP2 0x20A7 0x0004

LSACT STOP3 Limit Switch Action = STOP3 0x20A7 0x0008

NOP No Operation 0x0000

RAOU Reset Automatic Origin Update 0x5909 0xEFFF 0x0000

RESET RESET DSP controller 0x0402

SAOU Set Automatic Origin Update 0x5909 0xFFFF 0x1000

SAP V32 Set Actual Position = V32 0x8000 | 9LSB(&V32)

SAP val32 Set Actual Position = val32 0x8400 val32(L) val32(H)

SEG D_time, D_ref Segment D_time, D_ref 0x7800 D_time D_ref(L) D_ref(H)

SEG V16, V32 Segment V16, V32 0x7C00 | 9LSB(&V16) &V32

SETWS val16 SET Wait-States for PS,DS,IS 0xD802 val16

STA Set Target pos. = Actual pos. 0x2CB2 0x0228

STOP0 STOP motion in mode 0 0x0104

TML Instruction Set Summary

! Technosoft 2003 D-7 IDM240 / 640 Technical Reference

STOP0! STOP0 when ! (event occurs) 0x0004

STOP1 STOP motion in mode 1 0x0144

STOP1! STOP1 when ! (event occurs) 0x0044

STOP2 STOP motion in mode 2 0x0184

STOP2! STOP2 when ! (event occurs) 0x0084

STOP3 STOP motion in mode 3 0x01C4

STOP3! STOP3 when ! (event occurs) 0x00C4

TUM0 Set Target Update Mode 0 0x5909 0xBFFF 0x0000

TUM1 Set Target Update Mode 1 0x5909 0xFFFF 0x4000

UPD Update motion immediate 0x0108

UPD! Update when ! (event occurs) 0x0008

TML Instruction Set Summary

! Technosoft 2003 D-8 IDM240 / 640 Technical Reference

Table D.7. TML Instruction Set. Event group

CodeSyntax Description

0 1 2 3

!APO V32 ! if Relative Position Over V32 0x7192 0x0228 &V32

!APO val32 ! if Relative Position Over val32 0x7092 0x0228 val32(L) val32(H)

!APU V32 ! if Relative Position Under V32 0x7183 0x0228 &V32

!APU val32 ! if Relative Position Under val32 0x7083 0x0228 val32(L) val32(H)

!AT V32 ! if Absolute Time >= V32 0x7198 0x02C0 &V32

!AT val32 ! if Absolute Time >= val32 0x7098 0x02C0 val32(L) val32(H)

!CAP ! if Capture triggered 0x700E

!IN#n 0 ! if Input #n is 0 0x70DB PxDIR Bit_msk

!IN#n 1 ! if Input #n is 1 0x70DA PxDIR Bit_msk

!LSN ! if Limit Switch Negative active 0x700C

!LSP ! if Limit Switch Positive active 0x700D

!MC !(set event) if Motion Complete 0x700F

!RO V32 ! if Reference Over V32 0x7190 0x02AE &V32

!RO val32 ! if Reference Over val32 0x7090 0x02AE val32(L) val32(H)

!RPO V32 ! if Relative Position Over V32 0x7194 0x02BA &V32

!RPO val32 ! if Relative Position Over val32 0x7094 0x02BA val32(L) val32(H)

!RPU V32 ! if Relative Position Under V32 0x7185 0x02BA &V32

!RPU val32 ! if Relative Position Under val32 0x7085 0x02BA val32(L) val32(H)

!RT V32 ! if Relative Time >= V32 0x71B9 0x02C2 &V32

!RT val32 ! if Relative Time >= val32 0x70B9 0x02C2 val32(L) val32(H)

!RU V32 ! if Reference Under V32 0x7181 0x02AE &V32

!RU val32 ! if Reference Under val32 0x7081 0x02AE val32(L) val32(H)

!SO V32 ! if Speed Over V32 0x7196 0x022C &V32

!SO val32 ! if Speed Over val32 0x7096 0x022C val32(L) val32(H)

!SU V32 ! if Speed Under V32 0x7187 0x022C &V32

!SU val32 ! if Speed Under val32 0x7087 0x022C val32(L) val32(H)

!VO V32A, V32B ! if V32A >= V32B 0x7190 &V32A &V32B

!VO V32A, val32 ! if V32A >= val32 0x7090 &V32A val32(L) val32(H)

!VU V32A, V32B ! if V32A <= V32B 0x7181 &V32A &V32B

!VU V32A, val32 ! if V32A <= val32 0x7081 &V32A val32(L) val32(H)

WAIT! Wait until event occurs 0x0408

TML Instruction Set Summary

! Technosoft 2003 D-9 IDM240 / 640 Technical Reference

Table D.8. TML Instruction Set. I/O Group

CodeSyntax Description

0 1 2 3

DIS2CAPI Disable 2nd CAPI capture 0x04A0

DISCAPI Disable CAPI capture 0x0481

DISIO#n Disable IO#n 0x5C00 MCRx ANDdis ORdis

DISLSN Disable LSN limit switch 0x5C00 0x7070 0xFFFE 0x0000

DISLSP Disable LSP limit switch 0x5C00 0x7071 0xFFFE 0x0000

EN2CAPI0 Enable 2nd CAPI capture

for 1->0

0x0420

EN2CAPI1 Enable 2nd CAPI capture

for 0->1

0x0520

ENCAPI0 Enable CAPI capture for 1->0 0x0401

ENCAPI1 Enable CAPI capture for 0->1 0x0501

ENIO#n Enable IO#n 0x5C00 MCRx ANDen ORen

ENLSN0 Enable LSN limit switch for 1->0 0x5C00 0x7070 0x7FFB 0x0001

ENLSN1 Enable LSN limit switch for 0->1 0x5C00 0x7070 0x7FFF 0x0005

ENLSP0 Enable LSP limit switch for 1->0 0x5C00 0x7071 0x7FFB 0x0001

ENLSP1 Enable LSP limit switch for 0->1 0x5C00 0x7071 0x7FFF 0x0005

OUTPORT V16 OUT V16 value to IO space port 0x6C00 | 9LSB(&V16)

ROUT#n Reset IO#n output to 0 0x5C00 PxDIR ANDrst ORrst

SETIO#n IN Set IO#n as input 0x5C00 PxDIR ANDin ORin

SETIO#n OUT Set IO#n as output 0x5C00 PxDIR ANDout ORout

SOUT#n Set IO#n output to 1 0x5C00 PxDIR ANDset ORset

TML Instruction Set Summary

! Technosoft 2003 D-10 IDM240 / 640 Technical Reference

Table D.9. TML Instruction Set. Communication and Multiple axis group

CodeSyntax Description

0 1 2 3

[A/G] { Instr1; Instr2; …} Send a series of TML instructions to
[A/G]

0x9400 | LengthMLI A/G MLI code 1-4 words

[A/G] (V16D),TM = V16S [A/G] (V16D),TM = local V16S 0x9830 | TM A/G & V16D & V16S

[A/G] (V16D),TM = V32S [A/G] (V16D),TM = local V32S 0x9831 | TM A/G & V16D & V32S

[A/G] V16D = V16S [A/G] V16D = local V16S 0xB800 | 9LSB(&V16D) A/G & V16S

[A/G] V16D,dm = V16S [A/G] V16D,dm = local V16S (la) 0x9814 A/G & V16D & V16S

[A/G] V32D = V32S [A/G] V32D = local V32S 0xBC00 | 9LSB(&V32D) A/G & V32S

[A/G] V32D,dm = V32S [A/G] V32D,dm= local V32S (la) 0x9815 A/G & V32D & V32S

ADDGRID V16 Add Group ID = V16 0x0940 &V16

ADDGRID val16 Add Group ID = val16 0x0840 val16

AXISID val16 AXIS ID = val16 0x0801 val16

CANBR val16 Set CAN-bus Baud-Rate 0x0804 val16

GROUPID val16 GROUP ID = val16 0x0802 val16

REMGRID V16 Remove Group ID = V16 0x0980 &V16

REMGRID val16 Remove Group ID = val16 0x0880 val16

RGM Reset axis as Gear/Cam Master 0x5909 0xF7FF 0x0000

SCIBR V16 Set SCI Baud Rate 0x0920 &V16

SCIBR val16 Set SCI Baud Rate 0x0820 val16

SGM Set axis as Gear/Cam Master 0x5909 0xFFFF 0x8800

SPIBR V16 Set SPI Baud Rate 0x0910 &V16

SPIBR val16 Set SPI Baud Rate 0x0810 val16

V16D = [A] (V16S),TM Local V16D = [A] (V16S), dm 0x9D00 | TM A/G & V16S & V16D

V16D = [A] V16S Local V16D = [A] V16S 0xD800 | 9LSB(&V16S) A/G & V16D

V16D = [A] V16S,dm Local V16D = [A] V16S, dm (la) 0x9C00 A/G & V16S & V16D

V32D = [A] V32S,dm Local V32D = [A] V32S, dm (la) 0x9C01 A/G & V32S & V32D

V32D = [A] (V16S),TM Local V32D = [A] (V16S),TM 0x9D01 | TM A/G & V16S & V16D

V32D = [A] V32S Local V32D = [A] V32S 0xDC00 | 9LSB(&V32S) A/G & V32D

TML Instruction Set Summary

! Technosoft 2003 D-11 IDM240 / 640 Technical Reference

The following tables explicit the symbols used in the TML instruction set.
Table D.10. AND/OR for masks SETIO#n IN Table D.11. AND/OR masks for SETIO#n OUT

#n ANDin ORin Function #n ANDout ORout Function

#0 0xFEFF 0x0000 R 8 #0 0xFFFF 0x0100 S 8

#1 0xFDFF 0x0000 R 9 #1 0xFFFF 0x0200 S 9

#2 0xFBFF 0x0000 R 10 #2 0xFFFF 0x0400 S 10

#3 0xF7FF 0x0000 R 11 #3 0xFFFF 0x0800 S 11

#4 0xEFFF 0x0000 R 12 #4 0xFFFF 0x1000 S 12

#5 0xDFFF 0x0000 R 13 #5 0xFFFF 0x2000 S 13

#6 0xBFFF 0x0000 R 14 #6 0xFFFF 0x4000 S 14

#7 0x7FFF 0x0000 R 15 #7 0xFFFF 0x8000 S 15

#8 0xFEFF 0x0000 R 8 #8 0xFFFF 0x0100 S 8

#9 0xFDFF 0x0000 R 9 #9 0xFFFF 0x0200 S 9

#10 0xFBFF 0x0000 R 10 #10 0xFFFF 0x0400 S 10

#11 0xF7FF 0x0000 R 11 #11 0xFFFF 0x0800 S 11

#12 0xEFFF 0x0000 R 12 #12 0xFFFF 0x1000 S 12

#13 0xDFFF 0x0000 R 13 #13 0xFFFF 0x2000 S 13

#14 0xBFFF 0x0000 R 14 #14 0xFFFF 0x4000 S 14

#15 0x7FFF 0x0000 R 15 #15 0xFFFF 0x8000 S 15

#16 0xFEFF 0x0000 R 8 #16 0xFFFF 0x0100 S 8

#17 0xFDFF 0x0000 R 9 #17 0xFFFF 0x0200 S 9

#18 0xFBFF 0x0000 R 10 #18 0xFFFF 0x0400 S 10

#19 0xF7FF 0x0000 R 11 #19 0xFFFF 0x0800 S 11

#20 0xEFFF 0x0000 R 12 #20 0xFFFF 0x1000 S 12

#21 0xDFFF 0x0000 R 13 #21 0xFFFF 0x2000 S 13

#22 0xBFFF 0x0000 R 14 #22 0xFFFF 0x4000 S 14

#23 0x7FFF 0x0000 R 15 #23 0xFFFF 0x8000 S 15

#24 0xFEFF 0x0000 R 8 #24 0xFFFF 0x0100 S 8

#25 0xFEFF 0x0000 R 8 #25 0xFFFF 0x0100 S 8

#26 0xFDFF 0x0000 R 9 #26 0xFFFF 0x0200 S 9

#27 0xFBFF 0x0000 R 10 #27 0xFFFF 0x0400 S 10

#28 0xF7FF 0x0000 R 11 #28 0xFFFF 0x0800 S 11

#29 0xEFFF 0x0000 R 12 #29 0xFFFF 0x1000 S 12

#30 0xDFFF 0x0000 R 13 #30 0xFFFF 0x2000 S 13

#31 0xBFFF 0x0000 R 14 #31 0xFFFF 0x4000 S 14

#32 0x7FFF 0x0000 R 15 #32 0xFFFF 0x8000 S 15

#33 0xFEFF 0x0000 R 8 #33 0xFFFF 0x0100 S 8

#34 0xFDFF 0x0000 R 9 #34 0xFFFF 0x0200 S 9

#35 0xFBFF 0x0000 R 10 #35 0xFFFF 0x0400 S 10

#36 0xF7FF 0x0000 R 11 #36 0xFFFF 0x0800 S 11

#37 0xEFFF 0x0000 R 12 #37 0xFFFF 0x1000 S 12

#38 0xDFFF 0x0000 R 13 #38 0xFFFF 0x2000 S 13

#39 0xBFFF 0x0000 R 14 #39 0xFFFF 0x4000 S 14

TML Instruction Set Summary

! Technosoft 2003 D-12 IDM240 / 640 Technical Reference

Table D.12.AND/OR masks for ROUT#n Table D.13. AND/OR masks for SOUT#n

#n ANDrst Orrst Function #n ANDset ORset Function

#0 0xFFFE 0x0000 R 0 #0 0xFFFF 0x0001 S 0

#1 0xFFFD 0x0000 R 1 #1 0xFFFF 0x0002 S 1

#2 0xFFFB 0x0000 R 2 #2 0xFFFF 0x0004 S 2

#3 0xFFF7 0x0000 R 3 #3 0xFFFF 0x0008 S 3

#4 0xFFEF 0x0000 R 4 #4 0xFFFF 0x0010 S 4

#5 0xFFDF 0x0000 R 5 #5 0xFFFF 0x0020 S 5

#6 0xFFBF 0x0000 R 6 #6 0xFFFF 0x0040 S 6

#7 0xFF7F 0x0000 R 7 #7 0xFFFF 0x0080 S 7

#8 0xFFFE 0x0000 R 0 #8 0xFFFF 0x0001 S 0

#9 0xFFFD 0x0000 R 1 #9 0xFFFF 0x0002 S 1

#10 0xFFFB 0x0000 R 2 #10 0xFFFF 0x0004 S 2

#11 0xFFF7 0x0000 R 3 #11 0xFFFF 0x0008 S 3

#12 0xFFEF 0x0000 R 4 #12 0xFFFF 0x0010 S 4

#13 0xFFDF 0x0000 R 5 #13 0xFFFF 0x0020 S 5

#14 0xFFBF 0x0000 R 6 #14 0xFFFF 0x0040 S 6

#15 0xFF7F 0x0000 R 7 #15 0xFFFF 0x0080 S 7

#16 0xFFFE 0x0000 R 0 #16 0xFFFF 0x0001 S 0

#17 0xFFFD 0x0000 R 1 #17 0xFFFF 0x0002 S 1

#18 0xFFFB 0x0000 R 2 #18 0xFFFF 0x0004 S 2

#19 0xFFF7 0x0000 R 3 #19 0xFFFF 0x0008 S 3

#20 0xFFEF 0x0000 R 4 #20 0xFFFF 0x0010 S 4

#21 0xFFDF 0x0000 R 5 #21 0xFFFF 0x0020 S 5

#22 0xFFBF 0x0000 R 6 #22 0xFFFF 0x0040 S 6

#23 0xFF7F 0x0000 R 7 #23 0xFFFF 0x0080 S 7

#24 0xFFFE 0x0000 R 0 #24 0xFFFF 0x0001 S 0

#25 0xFFFE 0x0000 R 0 #25 0xFFFF 0x0001 S 0

#26 0xFFFD 0x0000 R 1 #26 0xFFFF 0x0002 S 1

#27 0xFFFB 0x0000 R 2 #27 0xFFFF 0x0004 S 2

#28 0xFFF7 0x0000 R 3 #28 0xFFFF 0x0008 S 3

#29 0xFFEF 0x0000 R 4 #29 0xFFFF 0x0010 S 4

#30 0xFFDF 0x0000 R 5 #30 0xFFFF 0x0020 S 5

#31 0xFFBF 0x0000 R 6 #31 0xFFFF 0x0040 S 6

#32 0xFF7F 0x0000 R 7 #32 0xFFFF 0x0080 S 7

#33 0xFFFE 0x0000 R 0 #33 0xFFFF 0x0001 S 0

#34 0xFFFD 0x0000 R 1 #34 0xFFFF 0x0002 S 1

#35 0xFFFB 0x0000 R 2 #35 0xFFFF 0x0004 S 2

#36 0xFFF7 0x0000 R 3 #36 0xFFFF 0x0008 S 3

#37 0xFFEF 0x0000 R 4 #37 0xFFFF 0x0010 S 4

#38 0xFFDF 0x0000 R 5 #38 0xFFFF 0x0020 S 5

#39 0xFFBF 0x0000 R 6 #39 0xFFFF 0x0040 S 6

TML Instruction Set Summary

! Technosoft 2003 D-13 IDM240 / 640 Technical Reference

Table D.17. MCRx & AND/OR masks for ENIO#n Table D.18. MCRx & AND/OR masks for DISIO#n

#n MPCRx ANDen ORen Function #n MCRx ANDdis ORdis Function

#0 MCRA 0xFFFE 0x0000 R 0 #0 MCRA 0xFFFF 0x0001 S 0

#1 MCRA 0xFFFD 0x0000 R 1 #1 MCRA 0xFFFF 0x0002 S 1

#2 MCRA 0xFFFB 0x0000 R 2 #2 MCRA 0xFFFF 0x0004 S 2

#3 MCRA 0xFFF7 0x0000 R 3 #3 MCRA 0xFFFF 0x0008 S 3

#4 MCRA 0xFFEF 0x0000 R 4 #4 MCRA 0xFFFF 0x0010 S 4

#5 MCRA 0xFFDF 0x0000 R 5 #5 MCRA 0xFFFF 0x0020 S 5

#6 MCRA 0xFFBF 0x0000 R 6 #6 MCRA 0xFFFF 0x0040 S 6

#7 MCRA 0xFF7F 0x0000 R 7 #7 MCRA 0xFFFF 0x0080 S 7

#8 MCRA 0xFEFF 0x0000 R 8 #8 MCRA 0xFFFF 0x0100 S 8

#9 MCRA 0xFDFF 0x0000 R 9 #9 MCRA 0xFFFF 0x0200 S 9

#10 MCRA 0xFBFF 0x0000 R 10 #10 MCRA 0xFFFF 0x0400 S 10

#11 MCRA 0xF7FF 0x0000 R 11 #11 MCRA 0xFFFF 0x0800 S 11

#12 MCRA 0xEFFF 0x0000 R 12 #12 MCRA 0xFFFF 0x1000 S 12

#13 MCRA 0xDFFF 0x0000 R 13 #13 MCRA 0xFFFF 0x2000 S 13

#14 MCRA 0xBFFF 0x0000 R 14 #14 MCRA 0xFFFF 0x4000 S 14

#15 MCRA 0x7FFF 0x0000 R 15 #15 MCRA 0xFFFF 0x8000 S 15

#16 MCRB 0xFFFE 0x0000 R 0 #16 MCRB 0xFFFF 0x0001 S 0

#17 MCRB 0xFFFD 0x0000 R 1 #17 MCRB 0xFFFF 0x0002 S 1

#18 MCRB 0xFFFB 0x0000 R 2 #18 MCRB 0xFFFF 0x0004 S 2

#19 MCRB 0xFFF7 0x0000 R 3 #19 MCRB 0xFFFF 0x0008 S 3

#20 MCRB 0xFFEF 0x0000 R 4 #20 MCRB 0xFFFF 0x0010 S 4

#21 MCRB 0xFFDF 0x0000 R 5 #21 MCRB 0xFFFF 0x0020 S 5

#22 MCRB 0xFFBF 0x0000 R 6 #22 MCRB 0xFFFF 0x0040 S 6

#23 MCRB 0xFF7F 0x0000 R 7 #23 MCRB 0xFFFF 0x0080 S 7

#24 MCRB 0xFEFF 0x0000 R 8 #24 MCRB 0xFFFF 0x0100 S 8

#25 MCRC 0xFFFE 0x0000 R 0 #25 MCRC 0xFFFF 0x0001 S 0

#26 MCRC 0xFFFD 0x0000 R 1 #26 MCRC 0xFFFF 0x0002 S 1

#27 MCRC 0xFFFB 0x0000 R 2 #27 MCRC 0xFFFF 0x0004 S 2

#28 MCRC 0xFFF7 0x0000 R 3 #28 MCRC 0xFFFF 0x0008 S 3

#29 MCRC 0xFFEF 0x0000 R 4 #29 MCRC 0xFFFF 0x0010 S 4

#30 MCRC 0xFFDF 0x0000 R 5 #30 MCRC 0xFFFF 0x0020 S 5

#31 MCRC 0xFFBF 0x0000 R 6 #31 MCRC 0xFFFF 0x0040 S 6

#32 MCRC 0xFF7F 0x0000 R 7 #32 MCRC 0xFFFF 0x0080 S 7

#33 MCRC 0xFEFF 0x0000 R 8 #33 MCRC 0xFFFF 0x0100 S 8

#34 MCRC 0xFDFF 0x0000 R 9 #34 MCRC 0xFFFF 0x0200 S 9

#35 MCRC 0xFBFF 0x0000 R 10 #35 MCRC 0xFFFF 0x0400 S 10

#36 MCRC 0xF7FF 0x0000 R 11 #36 MCRC 0xFFFF 0x0800 S 11

#37 MCRC 0xEFFF 0x0000 R 12 #37 MCRC 0xFFFF 0x1000 S 12

#38 MCRC 0xDFFF 0x0000 R 13 #38 MCRC 0xFFFF 0x2000 S 13

#39 MCRC 0xFFFF 0x0000 - #39 MCRC 0xFFFF 0x0000 -

TML Instruction Set Summary

! Technosoft 2003 D-14 IDM240 / 640 Technical Reference

Table D.14. PxDIR & Bit_msk for V16=IN#n; !IN#n 0; and !IN#n 1;

#n PxDIR Bit_msk Function

#0 PADIR 0x0001 1<<n
#1 PADIR 0x0002 1<<n

#2 PADIR 0x0004 1<<n

#3 PADIR 0x0008 1<<n

#4 PADIR 0x0010 1<<n

#5 PADIR 0x0020 1<<n

#6 PADIR 0x0040 1<<n

#7 PADIR 0x0080 1<<n

#8 PBDIR 0x0001 1<<(n-8)

#9 PBDIR 0x0002 1<<(n-8)

#10 PBDIR 0x0004 1<<(n-8)

#11 PBDIR 0x0008 1<<(n-8)

#12 PBDIR 0x0010 1<<(n-8)

#13 PBDIR 0x0020 1<<(n-8)

#14 PBDIR 0x0040 1<<(n-8)

#15 PBDIR 0x0080 1<<(n-8)

#16 PCDIR 0x0001 1<<(n-16)

#17 PCDIR 0x0002 1<<(n-16)

#18 PCDIR 0x0004 1<<(n-16)

#19 PCDIR 0x0008 1<<(n-16)

#20 PCDIR 0x0010 1<<(n-16)

#21 PCDIR 0x0020 1<<(n-16)

#22 PCDIR 0x0040 1<<(n-16)

#23 PCDIR 0x0080 1<<(n-16)

#24 PDDIR 0x0001 1<<(n-24)

#25 PEDIR 0x0001 1<<(n-25)

#26 PEDIR 0x0002 1<<(n-25)

#27 PEDIR 0x0004 1<<(n-25)

#28 PEDIR 0x0008 1<<(n-25)

#29 PEDIR 0x0010 1<<(n-25)

#30 PEDIR 0x0020 1<<(n-25)

#31 PEDIR 0x0040 1<<(n-25)

#32 PEDIR 0x0080 1<<(n-25)

#33 PFDIR 0x0001 1<<(n-33)

#34 PFDIR 0x0002 1<<(n-33)

#35 PFDIR 0x0004 1<<(n-33)

#36 PFDIR 0x0008 1<<(n-33)

#37 PFDIR 0x0010 1<<(n-33)

#38 PFDIR 0x0020 1<<(n-33)

#39 PFDIR 0x0040 1<<(n-33)

TML Instruction Set Summary

! Technosoft 2003 D-15 IDM240 / 640 Technical Reference

Condition Flags
for GOTO/CALL

 MCRx and PxDIR
Addresses

 TM (Type Memory)
values

Flag Value Register Address TM Value

LT 0x0090 MCRA 0x7090 pm 0x0000

LEQ 0x0088 MCRB 0x7092 dm 0x0004

EQ 0x00C0 MCRC 0x7094 spi 0x0008

NEQ 0x00A0 PADIR 0x7098

GT 0x0084 PBDIR 0x709A

GEQ 0x0082 PCDIR 0x709C

 PDDIR 0x709E

 PEDIR 0x7095

 PFDIR 0x7096

IDM240/640 Dimensions

! Technosoft 2003 E-1 IDM240 / 640 Technical Reference

Appendix E. IDM240/640 Dimensions

The next figures present the IDM240/640 dimensions.

26 mm
(1.024”)136 mm (5.354”)

9
5
 m

m
 (

3
.7

4
”)4

4
.5

 m
m

 (
1
.7

5
2
”)

1
5
 m

m
(0

.5
9

1
”)

4
.2

 m
m

 (
0

.1
6

5
”)

4 mm (0.157”)

Figure E.1. IDM240-5EI and IDM640-8EI dimensions

IDM240/640 Dimensions

! Technosoft 2003 E-2 IDM240 / 640 Technical Reference

26 mm
(1.024”)136 mm (5.354”)

9
5
 m

m
 (

3
.7

4
”)4

4
.5

 m
m

 (
1
.7

5
2
”)

1
5
 m

m
(0

.5
9

1
”)

4
.2

 m
m

 (
0

.1
6

5
”)

4 mm (0.157”)

Figure E.2. IDM240-5RI and IDM640-8RI dimensions

Connectors

! Technosoft 2003 F-1 IDM240 / 640 Technical Reference

Appendix F. Connectors Type and Mating Connectors

Table below presents the IDM240/640 connectors type and the mating connectors

Connector Function Version 1.1 Mating connector
Technosoft specification
feedback to customer

included with the
IDM240/640

J2 Motor & supply Phoenix Contact MC 1.5/8-STF-3.5 YES

J4 Serial generic RS232, 9-pin Sub-D male NO

J10 & J11 CAN generic RJ11-4/4 phone plug YES

J13A / J13B Feedback generic 15-pin High Density Sub-D male YES

J9 Analog & 24V digital I/O generic 26-pin High Density Sub-D male YES

TML_LIB_LabVIEW
v2.0

Motion Control Library for
Technosoft Intelligent

Drives

User Manual

 Technosoft 2006

T E C H N O S O F T

TML_LIB_LabVIEW
v2.0

User Manual

P091.040.LABVIEW.v20.UM.0406
April 2006

Technosoft S.A.
 Rue de Buchaux 38

CH-2022 BEVAIX
Switzerland

Tel.: +41 (0) 32 732 5500
Fax: +41 (0) 32 732 5504

 contact@technosoftmotion.com
www.technosoftmotion.com/

© Technosoft 2006 TML_LIB_LabVIEW – User Manual III

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all
parties must rely upon their own skill and judgment when making use of it. Technosoft does not
assume any liability to anyone for any loss or damage caused by any error or omission in the
work, whether such error or omission is the result of negligence or any other cause. Any and all
such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any
form or by any means, electrical or mechanical including photocopying, recording or by any
information-retrieval system without permission in writing from Technosoft S.A.

About This Manual

This book describes the motion library TML_LIB_LabVIEW v2.0. TML_LIB_LabVIEW is a
collection of functions, which can be integrated in a PC application developed in LabVIEW
environment. With TML_LIB_LabVIEW motion library, you can quickly program the desired
motion and control the Technosoft intelligent drives and motors (with the drive integrated in the
motor case) from a PC. The TML_LIB_LabVIEW allows you to communicate with Technosoft
drive/motors via serial RS-232, RS-485, CAN-bus or Ethernet protocols.

Scope of This Manual

This manual applies to the following Technosoft intelligent drives and motors:

• IDM240 / IDM640 (models IDM240-5EI, IDM240-5LI, IDM640-8EI and IDM640-8LI), with

firmware F000H or later (revision letter must be equal or after H i.e. I, J, etc.)

• IDM240 CANopen/ IDM640 CANopen (models IDM240-5EI CANopen, IDM240-5LI
CANopen, IDM640-8EI CANopen and IDM640-8LI CANopen) with firmware version

F500A.

• IDS240 / IDS640 (all models), with firmware F000H or later

• IDS640 CANopen with firmware F500A or later

• ISCM4805 / ISCM8005 (all models), with firmware F000H or later

• IBL2403 (all models), with firmware F020H or later

• IPS110 (all models), with firmware F005H or later

• IM23x (models IS and MA), with firmware F900H or later

IMPORTANT! For correct operation, these drives/motors must be programmed with firmware
revision H. EasySetUp

1
 - Technosoft IDE for drives/motors setup, includes a firmware

1
 EasySetUp is included in TML_LIB_LabVIEW installation package as a component of

EasyMotion Studio Demo version. It can also be downloaded free of charge from Technosoft
web page

© Technosoft 2006 TML_LIB_LabVIEW – User Manual IV

programmer with which you can check your drive/motor firmware version and revision and if
needed, update your drive/motor firmware to revision H.

Notational Conventions

This document uses the following conventions:

 Drive/motor - an intelligent drive or an intelligent motor having the drive part integrated
in the motor case

 TML – Technosoft Motion Language

 IU – drive/motor internal units

 ACR.5 – bit 5 of ACR data

 FAxx – firmware versions F000H, F020H, F005H, F900H or later

 FBxx – firmware versions F500A or later

Related Documentation

TML_LIB v2.0 User Manual (part no. P091.040.UM.xxxx) describes in detail the
TML_LIB Technosoft Motion Language Library and how to use it to program
motion applications in Visual C++, Visual Basic or Delphi environments.

MotionChip™ II TML Programming (part no. P091.055.MCII.TML.UM.xxxx)

describes in detail TML basic concepts, motion programming, functional
description of TML instructions for high level or low level motion programming,
communication channels and protocols. Also give a detailed description of each
TML instruction including syntax, binary code and examples.

MotionChip II Configuration Setup (part no. P091.055.MCII.STP.UM.xxxx)

describes the MotionChip II operation and how to setup its registers and
parameters starting from the user application data. This is a technical reference
manual for all the MotionChip II registers, parameters and variables.

Help of the EasyMotion Studio software platform – describes how to use the

EasyMotion Studio, which support all new features added to revision H of
firmware. It includes: motion system setup & tuning wizard, motion sequence
programming wizard, testing and debugging tools like: data logging, watch,
control panels, on-line viewers of TML registers, parameters and variables, etc.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual V

If you Need Assistance …

If you want to …

Contact Technosoft at …

Visit Technosoft online

World Wide Web: http://www.technosoftmotion.com/

Receive general information
or assistance

Ask questions about
product operation or report
suspected problems

Make suggestions about or
report errors in
documentation

World Wide Web: http://www.technosoftmotion.com/
Email: contact@technosoftmotion.com

Fax: (41) 32 732 55 04
Email: hotline@technosoftmotion.com

© Technosoft 2006 TML_LIB_LabVIEW – User Manual VII

Contents

1 Introduction ... 1

2 Getting started... 3

2.1 Hardware installation ... 3

2.2 Software installation... 3

2.2.1 Installing EasySetUp... 3

2.2.2 Installing TML_LIB_LabVIEW library.. 3

2.3 Drive/motor setup... 4

2.4 Build an application with TML_LIB_LabVIEW ... 5

3 TML_LIB_LabVIEW description... 7

3.1 Basic concept... 7

3.2 Internal units and scaling factors ... 8

3.3 Axis Identification ... 8

3.4 Functions descriptions ... 9

3.4.1 Motion programming... 10

3.4.1.1 TS_MoveAbsolute.vi ... 10

3.4.1.2 TS_MoveRelative.vi... 12

3.4.1.3 TS_MoveSCurveAbsolute.vi ... 14

3.4.1.4 TS_MoveSCurveRelative.vi .. 16

3.4.1.5 TS_MoveVelocity. vi .. 18

3.4.1.6 TS_SetAnalogueMoveExternal.vi.. 20

3.4.1.7 TS_SetDigitalMoveExternal .. 22

3.4.1.8 TS_SetOnlineMoveExternal.vi .. 23

3.4.1.9 TS_VoltageTestMode.vi .. 25

3.4.1.10 TS_TorqueTestMode.vi... 26

3.4.1.11 TS_PVTSetup.vi .. 27

3.4.1.12 TS_SendPVTFirstPoint.vi.. 29

3.4.1.13 TS_SendPVTPoint.vi... 31

3.4.1.14 TS_PTSetup.vi .. 32

3.4.1.15 TS_SendPTFirstPoint.vi .. 34

3.4.1.16 TS_SendPTPoint.vi ... 35

3.4.1.17 TS_SetGearingMaster.vi ... 36

3.4.1.18 TS_SetGearingSlave.vi ... 37

3.4.1.19 TS_SetCammingMaster.vi .. 39

3.4.1.20 TS_SetCammingSlaveRelative.vi ... 40

© Technosoft 2006 TML_LIB_LabVIEW – User Manual VIII

3.4.1.21 TS_SetCammingSlaveAbsolute.vi .. 42

3.4.1.22 TS_CamDownload.vi... 44

3.4.1.23 TS_CamInitialization.vi .. 46

3.4.1.24 TS_SetMasterResolution .. 47

3.4.1.25 TS_SendSynchronization.. 48

3.4.2 Motor commands .. 49

3.4.2.1 TS_Power.vi .. 49

3.4.2.2 TS_UpdateImmediate.vi .. 50

3.4.2.3 TS_UpdateOnEvent.vi... 51

3.4.2.4 TS_Stop.vi ... 52

3.4.2.5 TS_SetPosition.vi .. 53

3.4.2.6 TS_SetTargetPositionToActual.vi ... 54

3.4.2.7 TS_SetCurrent.vi ... 55

3.4.2.8 TS_QuickStopDecelerationRate.vi.. 56

3.4.3 Events ... 57

3.4.3.1 TS_CheckEvent.vi ... 57

3.4.3.2 TS_SetEventOnMotionComplete.vi... 58

3.4.3.3 TS_SetEventOnMotorPosition.vi... 60

3.4.3.4 TS_SetEventOnLoadPosition.vi .. 61

3.4.3.5 TS_SetEventOnMotorSpeed.vi ... 62

3.4.3.6 TS_SetEventOnLoadSpeed.vi .. 63

3.4.3.7 TS_SetEventOnTime.vi ... 64

3.4.3.8 TS_SetEventOnPositionRef.vi .. 65

3.4.3.9 TS_SetEventOnSpeedRef.vi... 66

3.4.3.10 TS_SetEventOnTorqueRef.vi.. 67

3.4.3.11 TS_SetEventOnEncoderIndex.vi... 68

3.4.3.12 TS_SetEventOnLimitSwitch.vi... 69

3.4.3.13 TS_SetEventOnDigitalInput.vi... 70

3.4.3.14 TS_SetEventOnHomeInput.vi ... 71

3.4.4 TML jumps and function calls ... 72

3.4.4.1 TS_GOTO.vi.. 72

3.4.4.2 TS_GOTO_Label.vi ... 73

3.4.4.3 TS_CALL.vi ... 74

3.4.4.4 TS_CALL_Label.vi... 75

3.4.4.5 TS_CancelableCALL.vi ... 76

3.4.4.6 TS_CancelableCALL_Label.vi .. 77

3.4.4.7 TS_ABORT.vi .. 78

3.4.5 IO handling ... 79

3.4.5.1 TS_SetupInput.vi ... 79

3.4.5.2 TS_GetInput.vi... 80

3.4.5.3 TS_SetupOutput.vi .. 81

3.4.5.4 TS_SetOutput.vi .. 82

3.4.5.5 TS_GetHomeInput.vi ... 83

3.4.5.6 TS_GetMultipleInputs.vi .. 84

3.4.5.7 TS_SetMultipleOutputs.vi .. 85

3.4.5.8 TS_SetMultipleOutputs2.vi.. 86

3.4.6 Data transfer ... 87

© Technosoft 2006 TML_LIB_LabVIEW – User Manual IX

3.4.6.1 TS_SetIntVariable.vi.. 87

3.4.6.2 TS_GetIntVariable.vi ... 88

3.4.6.3 TS_SetLongVariable.vi.. 89

3.4.6.4 TS_GetLongVariable.vi ... 90

3.4.6.5 TS_SetFixedVariable.vi ... 91

3.4.6.6 TS_GetFixedVariable.vi .. 92

3.4.6.7 TS_SetBuffer.vi ... 93

3.4.6.8 TS_GetBuffer.vi ... 94

3.4.7 Drive/motor monitoring ... 95

3.4.7.1 TS_ReadStatus.vi.. 95

3.4.7.2 TS_OnlineChecksum.vi... 96

3.4.8 Miscellaneous ... 97

3.4.8.1 TS_DownloadProgram.. 97

3.4.8.2 TS_Execute.vi ... 98

3.4.8.3 TS_ExecuteScript.vi .. 99

3.4.8.4 TS_GetOutputOfExecute.vi... 100

3.4.8.5 TS_Save.vi .. 101

3.4.8.6 TS_ResetFault.vi ... 102

3.4.8.7 TS_Reset.vi ... 103

3.4.8.8 TS_GetLastErrorText.vi... 104

3.4.9 Data logger ... 105

3.4.9.1 TS_SetupLogger.vi.. 105

3.4.9.2 TS_StartLogger.vi.. 106

3.4.9.3 TS_CheckLoggerStatus.vi... 107

3.4.9.4 TS_UploadLoggerResults.vi.. 108

3.4.10 Drive setup.. 110

3.4.10.1 TS_LoadSetup.vi ... 110

3.4.10.2 TS_SetupAxis.vi .. 111

3.4.10.3 TS_SetupGroup.vi ... 112

3.4.10.4 TS_SetupBroadcast .. 113

3.4.10.5 TS_DriveInitialization.vi ... 114

3.4.11 Drive administration.. 115

3.4.11.1 TS_SelectAxis.vi.. 115

3.4.11.2 TS_SelectGroup.vi .. 116

3.4.11.3 TS_SelectBroadcast.vi .. 117

3.4.12 Communication setup... 118

3.4.12.1 TS_OpenChannel.vi .. 118

3.4.12.2 TS_SelectChannel.vi ... 120

3.4.12.3 TS_CloseChannel.vi.. 121

4 Examples ... 122

4.1 Example 1. Profiled positioning movement followed by a speed profile jogging........... 125

4.2 Example 2. Positioning movement; wait a while; speed jogging; stop after a time period
 127

4.3 Example 3. Speed profile with two acceleration values .. 129

© Technosoft 2006 TML_LIB_LabVIEW – User Manual X

4.4 Example 4. Speed jogging; wait a time period; positioning movement 131

4.5 Example 5. Speed jogging; wait for an input port to be triggered; positioning movement
 133

4.6 Example 6. Absolute position motion profile with different acceleration / deceleration rate
 135

4.7 Example 7. Positioning movement; speed jogging; wait a time period, then stop 137

4.8 Example 8. Repeat a motion at input port set, with current reduction between motions
 139

4.9 Example 9. Move to the positive limit switch, reverse to the negative limit switch........ 141

4.10 Example 10. Move between limit switches until an input port changes its status...... 143

4.11 Example 11. Move forward and backward at 2 different speeds, for a given distance
 145

4.12 Example 12. Speed profile, followed by profiled positioning at a given speed 147

4.13 Example 13. Speed control with external reference .. 149

4.14 Example 14. Profiled positioning, with output port status changing at a given position
 151

4.15 Example 15. Execute a jogging speed motion, until the home input is captured 153

4.16 Example 16. Different motions based on the status of two digital inputs of the drive 155

4.17 Example 17. Move between limit switches. Power-off if blocked on a limit switch 157

4.18 Example 18. Jog at a speed computed from an A/D signal, until a digital input is reset
 159

4.19 Example 19. Speed control, with drive interrogation / setup of TML speed parameters
 161

4.20 Example 20. Setup positioning motion, using tables stored into drive memory 163

4.21 Example 21. Setting the Digital External motion mode.. 165

4.22 Example 22. Test the voltage mode, with event on voltage reference 167

4.23 Example 23. Test torque mode, with event on torque reference 169

4.24 Example 24. Profiled positioning and speed movement, with event test from PC side
 171

4.25 Example 25. Movement as defined in an external file containing TML source code. 173

4.26 Example 26. Positioning command to a group of axes.. 175

4.27 Example 27. Jogging motion until the index capture is detected, then position on index
 177

4.28 Example 28. Speed jogging until home found, position to home, and set position to
zero 179

4.29 Example 29. Download a COFF format file & send a positioning command on-line. 181

© Technosoft 2006 TML_LIB_LabVIEW – User Manual XI

4.30 Example 30. Download a COFF format file, then call TML functions 183

4.31 Example 31. Set up the Master and Slave Gearing Mode; use the drives in gearing
mode 185

4.32 Example 32. Set up Master and Slave in electronic cam Mode; use the drives in cam
mode 187

4.33 Example 33. Usage of data logger to upload real-time stored data from the drive ... 189

4.34 Example 34. Homing procedures based on pre-stored TML sequences on the drive
 191

4.35 Example 35. Positioning with S-Curve profile for speed; speed jogging 194

4.36 Example 36. Reset FAULT state.. 196

4.37 Example 37. Read multiple inputs/set multiple outputs ... 198

4.38 Example 38. Positioning when an event on home input occurs 200

4.39 Example 39. Write/read in the drive memory... 202

4.40 Example 40. View binary code of a TML command... 204

4.41 Example 41. Speed jog and positioning with direction change.................................. 205

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 1

1 Introduction

The programming of Technosoft intelligent drives/motors involves 2 steps:

1) Drive/motor setup
2) Motion programming

For Step 1 – drive/motor setup, Technosoft provides EasySetUp. EasySetUp is an integrated
development environment for the setup of Technosoft drives/motors. The output of EasySetUp is
a set of setup data, which can be downloaded to the drive/motor EEPROM or saved on your PC
for later use. The setup data is copied at power-on into the RAM memory of the drive/motor and is
used during runtime. The reciprocal is also possible i.e. to retrieve the complete setup data from a
drive/motor EEPROM previously programmed. EasySetUp can be downloaded free of charge
from Technosoft web page. It is also provided on the TML_LIB_LabVIEW installation CD.

For Step 2 – motion programming, Technosoft offers multiple options, like:

1) Use the drives/motors embedded motion controller and do the motion programming in

Technosoft Motion Language (TML). For this operation Technosoft provides EasyMotion
Studio, an IDE for both drives setup and motion programming. The output of EasyMotion
Studio is a set of setup data and a TML program to download and execute on the drive/motor.

2) Use a .DLL with high-level motion functions which can be integrated in a host application
written in C/C++, Delphi Pascal, Visual Basic or LabVIEW

3) Use a PLCopen compatible library with motion function blocks which can be integrated in a
PLC application based on one of the IEC 61136 standard languages

4) Combine option 1) with options 2) or 3) to really distribute the intelligence between the
master/host and the drives/motors in complex multi-axis applications. Thus, instead of trying
to command each step of an axis movement, you can program the drives/motors using TML
to execute complex tasks and inform the master when these are done.

TML_LIB_LabVIEW is part of option 2) – a collection of functions allowing you to implement
motion control applications on a PC computer. The link between the Technosoft drives/motors
and the PC can be done via serial link, via CAN-bus using a CAN interface or via Ethernet using
an adapter/bridge between Ethernet and RS-232. Realized as a collection of high-level functions,
the library allows you to focus on the main aspects related to your application specific
implementation, and to simply use the drive and execute motion commands by calling appropriate
functions from the library.

This manual presents how to install and use the components of the TML_LIB_LabVIEW library
version 2.0.

Remarks:

• Option 4) requires using EasyMotion Studio instead of EasySetUp. With EasyMotion
Studio you can create high-level motion functions in TML, to be called from your PC

• EasyMotion Studio is also recommended if your application includes a homing as it
comes with 32 predefined homing procedures to select from, with possibility to adapt
them

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 2

Figure 1.1. Using TML_LIB_LabVIEW to control a Technosoft intelligent drive from the PC computer

MyExample.vi

…

TS_MoveVelocity (…)
…

CSPD=12.5;

MODE SP;

UPD;

TML_LIB

Communication
channel

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 3

2 Getting started

2.1 Hardware installation
For the hardware installation of the Technosoft drives/motors see their user manual.

For drives/motors setup, you can connect your PC to any drive/motor using an RS232 serial link.
Through this serial link you can access all the drives/motors from the network. Alternately, you
can connect your PC directly on the CAN bus network if it is equipped with one of the CAN
interfaces supported by EasySetUp.

2.2 Software installation
In order to perform successfully the following software installations, make sure that you have the
“Administrator” rights.

2.2.1 Installing EasySetUp

On the TML_LIB_LabVIEW installation CD you’ll find the setup for EasyMotion Studio Demo
version. This application includes a fully functional version of EasySetUp and a demo version of
EasyMotion Studio. Start the setup and follow the installation instructions.

2.2.2 Installing TML_LIB_LabVIEW library

Start the TML_LIB_LabVIEW setup and follow the installation instructions. After library installation

open the LabVIEW environment and add in the list VI Search Path, the installation path of the

library, by default C:\Program Files\Technosoft\TML_LIB_LabVIEW..Table 2.1 details the
package contents.

Table 2.1 TML_LIB_LabVIEW package contents

Directory Files Description

TML_lib.dll TML_LIB DLL library file

TMLcomm.dll TML communication DLL file
Root directory

P091.040.UM.xxxx.PDF
The PDF file of the TML_LIB user manual (this
document)

Ex25TML.txt TML source file for Example 25

Ex29RAM.out COFF file for Example 29

Ex30.out COFF file for Example 30

Ex32_MyCam.cam
A cam file for example 32, in Technosoft cam file
format

Examples Files

Ex32_MyCam.txt A cam file for example 32, in text file format

Examples Example diagrams
A complete Visual C project implementing the
examples from Chapter 4.

Functions VI functions
Contains the sub VIs of the library which implement
the functions from TML_LIB.dll

GlobalVIs
sub VIs with global
variables

Sub VIs containing the declaration of global
variables used in examples

Setups Setup data directories
Sample setup data of the drives used in examples.
For your configurations generate the setup data
(see paragraph 2.3)

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 4

2.3 Drive/motor setup

Before starting to send motion commands from the PC, you need to do the drive/motor setup

according with your application needs. For this operation you’ll use EasySetUp.

EasySetUp is an integrated development environment for the setup of Technosoft drives and

motors (with the drive integrated in the motor case). The output of EasySetUp is a set of setup
data, which can be downloaded to the drive/motor EEPROM or saved on your PC for later use.

A setup contains all the information needed to configure and parameterize a Technosoft
drive/motor. This information is preserved in the drive/motor EEPROM in the setup table. The
setup table is copied at power-on into the RAM memory of the drive/motor and is used during
runtime. The reciprocal is also possible i.e. to retrieve the complete setup data from a drive/motor
EEPROM previously programmed

Steps to follow for commissioning a Technosoft drive/motor

Step 1. Start EasySetUp

From Windows Start menu execute: “Start | Programs | EasySetUp | EasySetUp” or “Start |
Programs | EasyMotion Studio | EasySetUp” depending on which installation package you have
used.

Step 2. Establish communication

EasySetUp starts with an empty window from where you can create a New setup, Open a

previously created setup which was saved on your PC, or Upload the setup from the drive/motor.

Before selection one of the above options, you need to establish the communication with the

drive/motor you want to commission. Use menu command Communication | Setup to

check/change your PC communication settings. Press the Help button of the dialogue opened.
Here you can find detailed information about how to setup your drive/motor and do the

connections. Power on the drive/motor and then close the Communication | Setup dialogue with
OK. If the communication is established, EasySetUp displays in the status bar (the bottom line)

the text “Online” plus the axis ID of your drive/motor and its firmware version. Otherwise the text

displayed is “Offline” and a communication error message tells you the error type. In this case,
return to the Communication | Setup dialogue, press the Help button and check troubleshoots.

Remark: When first started, EasySetUp tries to communicate with your drive/motor via RS-232
and COM1 (default communication settings). If your drive/motor is powered and connected to
your PC port COM1 via an RS-232 cable, the communication can be automatically established.

Step 3. Setup drive/motor

Press New button and select your drive/motor type. Depending on the product chosen, the
selection may continue with the motor technology (for example: brushless motor, brushed motor)
or the control mode (for example stepper – open-loop or stepper – closed-loop) and type of
feedback device (for example: incremental encoder, SSI encoder)

This opens 2 setup dialogues: for Motor Setup and for Drive setup through which you can
configure and parameterize a Technosoft drive/motor, plus several predefined control panels
customized for the product selected.

In the Motor setup dialogue you can introduce the data of your motor and the associated
sensors. Data introduction is accompanied by a series of tests having as goal to check the

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 5

connections to the drive and/or to determine or validate a part of the motor and sensors

parameters. In the Drive setup dialogue you can configure and parameterize the drive for your

application. In each dialogue you will find a Guideline Assistant, which will guide you through the

whole process of introducing and/or checking your data. Close the Drive setup dialogue with OK
to keep all the changes regarding the motor and the drive setup.

Step 4. Download setup data to drive/motor

Press the Download to Drive/Motor button to download your setup data in the drive/motor
EEPROM memory in the setup table. From now on, at each power-on, the setup data is copied

into the drive/motor RAM memory that is used during runtime. It is also possible to Save the
setup data on your PC and use it in other applications.

Step 5. Reset the drive/motor to activate the setup data

Step 6. Create the setup data for TML_LIB_LabVIEW. The TML_LIB_LabVIEW requires
drive/motor setup information for proper execution of the application. The setup data is generated

with the Setup | Export to TML_LIB… command if you are in EasySetUp, or the Application |

Export to TML_LIB… command if you are using EasyMotion Studio. The information is

generated in the form of an archive file with the .t.zip extension and is saved in the Archives
folder from EasySetUp/EasyMotion Studio installation folder (by default C:\Program
Files\Technosoft\ESM\).

2.4 Build an application with TML_LIB_LabVIEW

The library TML_LIB_LabVIEW is a collection of high level functions, grouped in several

categories and provided as the TML_LIB.dll file. To simplify the functions usage, each function
has a subVi associated.

Most of these subVIs are of Boolean type, and return a ‘True’ value if the execution of the

function is performed without any error (at PC level). If the function returns a ‘False’ value, you

can interrogate the error type by calling the function TS_GetLastErrorText.vi.

Steps to build an application with TML_LIB_LabView:

1. Create a new VI. Launch LabVIEW and press the button New VI. For details read the
LabView online help.

2. Setup the communication. The application developed is based on the communication
between PC and Technosoft drives/motors thus it should begin with the communication

channel setup. The communication channel is opened with the TS_OpenChannel.vi
subVI. At the end of the application you must close the communication channel with

subVI TS_CloseChannel.vi.

3. Load setup configurations. The setup information is required by the library functions in
order to check if there are incompatibilities between the drive and the operation to be
executed (as an example, avoiding issuing an “Output port” command to a port which is
an input port on that drive). EasySetUp/EasyMotion Studio generates the setup

information in the form of an archive file with the .t.zip extension. The archives are saved

in the Archives folder from EasyMotion Studio/ EasySetUp installation folder. The
drive’s/motor’s setup data are declared in the PC application with function

TS_LoadSetup.vi. The subVI must be called for each configuration setup used.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 6

4. Setup axes. Each axis defined at PC level requires the setup information. The

configuration setup is associated to an axis with subVI TS_SetupAxis.vi.

5. Select the active axis/group. The messages sent from the PC address to one axis. Use

subVI TS_SelectAxis.vi to choose the messages destination. All further function calls,
which send TML messages on the communication channel, will address the messages to
this active axis.

6. Program the motion for current axis. Use the TML_LIB_LabVIEW functions to program
the motions required.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 7

3 TML_LIB_LabVIEW description

3.1 Basic concept
The Technosoft intelligent drives are programmable using the Technosoft Motion Language
(TML). TML consists of a high-level set of codes allowing the user to parameterize and execute
specific motion operations.

TML allows to:

• Configure the motion mode (profiles, contouring, gearing in multiple axes structures, etc.)

• Detect / specifically treat external signals as limit switches, captures

• Execute homing sequences

• Setup / start specific action on pre-defined motion events

• Synchronize multiple axes structures, by sending group commands

• etc.

The TML_LIB_LabVIEW library is the tool that helps you to handle the process of motion control
application implementation on a PC computer, at a high level, without the need to write / compile
TML code.

A central element of the library is the communication kernel, which is responsible of correct
opening of the communication channel (serial RS-232 or RS-485, CAN-bus or Ethernet), as well
as of TML messages handling. This includes handling of the specific communication protocol, for
each of these channels.

Consequently, each application you’ll develop starts with the opening of the communication, i.e.

calling the TS_OpenChannel.vi subVI. The application must end with the TS_CloseChannel.vi
subVI execution.

You’ll be able to handle multiple-axis applications from the PC. Besides the drive/motor setup with
EasySetUp or EasyMotion Studio, you’ll also need to indicate some basic drive information for
correct usage of the library functions. Thus, for each drive that is installed in the system, you’ll

need to execute the TS_SetupAxis.vi subVI, indicating the axis ID and configuration setup. Such
information will be used for some functions of the library, in order to check if there are
incompatibilities between the drive and the operation to be executed (as an example, avoiding
issuing an “Output port” command to a port which is an input port on that drive).

Note that besides setting-up individual axes, it is also possible to setup groups of axes (with the

TS_SetupGroup.vi subVI). This will allow you to issue commands, which will be received and
executed simultaneously on all the axes initialized as belonging to that group.

Once all the axes are defined, the library allows you to select the so-called ‘active axis or group’,

using the TS_SelectAxis, or TS_SelectGroup subVI respectively. Consequently, all future
commands that you’ll execute after the selection of one axis or group will be addressed to that
axis or group. You can change at any time in your program the active axis/group.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 8

3.2 Internal units and scaling factors

Technosoft drives/motors work with parameters and variables represented in internal units (IU).
The parameters and variables may represent various signals: position, speed, current, voltage,
etc. Each type of signal has its own internal representation in IU and a specific scaling factor. In
order to easily identify each type of IU, these have been named after the associated signals. For

example the position units are the internal units for position, the speed units are the internal
units for speed, etc.

The scaling factor of each internal unit shows the correspondence with the international standard
units (SI). The scaling factors are dependent on the product, motor and sensor type. Put in other
words, the scaling factors depend on the setup configuration.

In order to find the internal units and the scaling factors for a specific case, select the application

in the project window and then execute menu command Help | Setup Data Management |
Internal Units and Scaling Factors.

Important: The Help | Setup Data Management | Internal Units and Scaling Factors
command provides customized information, function of the application setup. If you change the
drive, the motor technology or the feedback device, check again the scaling factors with this
command. It may show you other relations!

3.3 Axis Identification

The data exchanged on the communication channel is done using messages. Each message
contains one TML instruction to be executed by the receiver of the message. Apart from the
binary code of the TML instruction attached, any message includes information about its

destination: an axis (drive/motor) or group of axes. This information is grouped in the Axis/Group
ID Code. Each drive/motor has its own 8-bit Axis ID and Group ID.

Remarks:

1. The Axis ID of a drive/motor must be unique and is set during the drive/motor setup
phase with EasySetUp.

2. The Axis ID and Group ID of a drive/motor are stored in TML variable AAR. Use
TS_GetIntVariable.vi to read the value of the Axis ID and Group ID.

The Group ID represents a way to identify a group of axes, for a multicast transmission. This
feature allows to send a command simultaneously to several axes, for example to start or stop the
axes motion in the same time. When a function block sends a command to a group, all the axes
members of this group will receive the command. For example, if the axis is member of group 1
and group 3, it will receive all the messages that in the group ID include group 1 and group 3.

Remark: A drive/motor belongs, by default, to the group ID = 1.

Each axis can be programmed to be member of one or several of the 8 possible groups.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 9

Table 3.1Definition of the groups

Group No. Group ID value

1 1 (0000 0001b)

2 2 (0000 0010b)

3 4 (0000 0100b)

4 8 (0000 1000b)

5 16 (0001 0000b)

6 32 (0010 0000b)

7 64 (0100 0000b)

8 128 (1000 0000b)

3.4 Functions descriptions

The section presents the functions implemented in the TML_LIB_LabVIEW library. The functions
are classified as follows:

• Motion programming – functions for motion programming on the selected axis.

• Motor commands – functions to enable/disable the motor power stage, start/stop the
motion, change the value of the motor position and current

• Events – functions for events programming and test

• TML jumps and function calls – functions which allows you to execute code
downloaded in the drive/motor memory

• I/O handling – functions for read/write operations with drive/motor I/O ports

• Data transfer – functions for read/write operations from/to the drive/motor memory

• Drive/motor monitoring – functions for monitoring the drive/motor status

• Miscellaneous – functions for FAULT state reset and drive reset

• Data logger – functions for logger setup and data upload

• Drive setup – functions for axis setup in the PC application

• Drive administration – functions that control the destination axis of the message sent via
communication channels

• Communication setup – functions that manage the PC communication channel

For each function you will find the following information:

• The subVi symbol

• The function C prototype

• SubVI parameters description

• A functional description

• Name of the related subVIs

• Examples reference. The examples that illustrate the correct use of the functions (subVIs)
are listed in chapter 4.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 10

3.4.1 Motion programming

3.4.1.1 TS_MoveAbsolute.vi

Symbol:

Prototype:

LONG _TS_MoveAbsolute@28(LONG Position, DOUBLE Speed, DOUBLE Acceleration,
SHORT INT Move Moment, SHORT INT Reference Base);

Parameters:

 Name Description

Position Position to reached expressed in drive/motor position units

Speed
Slew speed expressed in TML speed units. If the value is zero the
drive/motor will use the previously value set for speed

Acceleration
Acceleration/deceleration rate expressed in TML acceleration units. If its
value is zero the drive/motor will use the previously value set for
acceleration

Move Moment Defines the moment when the motion is started

Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output return TRUE if no error, FALSE if error

Description: The function programs an absolute positioning with trapezoidal speed profile. The

motion is described through Position parameter for position to reach, Speed for slew speed and

Acceleration for acceleration/deceleration rate. The position to reach can be positive or negative.

The Speed and Acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values
previously defined for the acceleration rate and/or the velocity you don’t need to send their values
again in the following trapezoidal profiles. Set to zero the value of speed and/or acceleration and
the drive/motor will use the values previously defined (this option reduces the TML code
generated by this function).

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the

motion profile starting from the actual values of the position and speed reference. Set Reference

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 11

Base = FROM_MEASURE if you want the reference generator to compute the motion profile
starting from the actual values of the load/motor position and speed. When this option is used, at
the beginning of each new motion profile, the position and speed reference are updated with the
actual values of the load/motor position and speed.

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Related functions: TS_MoveRelative.vi, TS_MoveSCurveAbsolute.vi,
TS_MoveSCurveRelative.vi, TS_MoveVelocity.vi

Associated examples: Example 6, Example 11, Example 12, Example 14, Example 27,
Example 28, Example 29, Example 37, Example 39

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 12

3.4.1.2 TS_MoveRelative.vi

Symbol:

Prototype:

LONG _TS_MoveRelative@32(LONG Position, DOUBLE Speed, DOUBLE Acceleration,
UNSIGNED CHAR Additive, SHORT INT Move Moment, SHORT INT Reference Base);

Parameters:

 Name Description

Position Position increment expressed in TML position units

Speed
Slew speed expressed in TML speed units. If its value is zero the
drive/motor will use the previously value set for speed

Acceleration
Acceleration/deceleration rate expressed in the TML acceleration units.
If its value is zero the drive/motor will use the previously value set for
acceleration

Additive Specifies how is computed the position to reach

Move Moment Defines the moment when the motion is started

Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output return TRUE if no error, FALSE if error

Description: The function programs a relative positioning with trapezoidal speed profile. The

motion is described through Position for position increment, Acceleration for

acceleration/deceleration rate and Speed for slew speed. The position increment can be positive

or negative; the sign gives the motion direction. The speed and acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values
previously defined for the acceleration rate and/or the velocity you don’t need to send their values
again in the following trapezoidal profiles. Set to zero the value of speed and/or acceleration if you
want the drive/motor to use the values previously defined with other commands (this option
reduces the TML code generated by this function).

The position to reach can be computed in 2 ways: standard (default) or additive. In standard
mode, the position to reach is computed by adding the position increment to the instantaneous
position in the moment when the command is executed. In the additive mode, the position to
reach is computed by adding the position increment to the previous position to reach,
independently of the moment when the command was issued. The additive mode is activated with

Additive = IsAdditive.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 13

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the
motion profile starting from the actual values of the position and speed reference. Use this option
for example if successive standard relative moves must be executed and the final target position

should represent exactly the sum of the individual commands. Set Reference Base =

FROM_MEASURE if you want the reference generator to compute the motion profile starting from
the actual values of the load/motor position and speed. When this option is used, at the beginning
of each new motion profile, the position and speed reference are updated with the actual values
of the load/motor position and speed.

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Related functions: TS_ MoveAbsolute.vi, TS_MoveSCurveAbsolute.vi,
TS_MoveSCurveRelative.vi, TS_MoveVelocity.vi

Associated examples: Example 1, Example 2, Example 4, Example 5, Example 7,
Example 8, Example 16, Example 20, Example 24, Example 26,
Example 29, Example 31, Example 32, Example 33, Example 36,
Example 38, Example 40, Example 42

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 14

3.4.1.3 TS_MoveSCurveAbsolute.vi

Symbol:

Prototype:

LONG _TS_MoveSCurveAbsolute@32(LONG Position, DOUBLE Speed, DOUBLE
Acceleration, LONG Jerk Time, SHORT INT Move Moment, SHORT INT Deceleration Type);

Parameters:

 Name Description

Position Position to reach expressed in TML position units

Speed The slew speed expressed in TML speed units.

Acceleration Acceleration/deceleration rate expressed in TML acceleration units.

Jerk Time
Represents the time interval for acceleration to reach the programmed
value. It is expressed in TML time units.

Move Moment Defines the moment when the motion is started

Input

Deceleration Type
Specifies the speed profile used when the motion is stopped with
TS_Stop

Output Return TRUE if no error, FALSE if error

Description: The function block programs an absolute positioning with an S-curve shape of the
speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the

acceleration and an S-curve profile for the speed. The motion is described through Position
parameter for position to reach, Speed for slew speed, Acceleration for

acceleration/deceleration rate and Jerk Time. The position to reach can be positive or negative.

The Speed, Acceleration and Jerk Time can be only positive.

An S-curve profile must begin when load/motor is not moving. During motion the parameters
should not be changed. Therefore when executing successive S-curve commands, you should
wait for the previous motion to end before setting the new motion parameters and starting next
motion.

When the motion is stopped with function TS_Stop.vi, the deceleration phase can be done in 2
ways:

• Smooth, using an S-curve speed profile, when Deceleration Type =
S_CURVE_SPEED_PROFILE

• Fast, using a trapezoidal speed profile, when Deceleration Type =

TRAPEZOIDAL_SPEED_PROFILE

The motion can be executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 15

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_MoveAbsolute.vi, TS_MoveRelative.vi, TS_MoveSCurveRelative.vi
TS_MoveVelocity.vi, TS_QuikStopDecelerationRate.vi

Associated examples: Example 35

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 16

3.4.1.4 TS_MoveSCurveRelative.vi

Symbol:

Prototype:

LONG _TS_MoveSCurveRelative@32(LONG Position, DOUBLE Speed, DOUBLE
Acceleration, LONG Jerk Time, SHORT INT Move Moment, SHORT INT Deceleration Type);

Parameters:

 Name Description

Position Position increment expressed in drive/motor position units

Speed Slew speed expressed in drive/motor speed units.

Acceleration
Acceleration/deceleration rate expressed in drive/motor acceleration
units.

Jerk Time
Represents the time interval for acceleration to reach the programmed
value. It is expressed in drive/motor time units.

Move Moment Defines the moment when the motion is started

Input

Deceleration Type
Specifies the speed profile used when the motion is stopped with
TS_Stop.vi

Output Return TRUE if no error, FALSE if error

Description: The function block programs a relative positioning with an S-curve shape of the
speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the

acceleration and an S-curve profile for the speed. The motion is described through Position
parameter for position increment, Speed for slew speed, Acceleration for

acceleration/deceleration rate and Jerk Time. The position to reach can be positive or negative.

The Speed, Acceleration and Jerk Time can be only positive.

An S-curve profile must begin when load/motor is not moving. During motion the parameters
should not be changed. Therefore when executing successive S-curve commands, you should
wait for the previous motion to end before setting the new motion parameters and starting next
motion.

When the motion is stopped with function TS_Stop.vi, the deceleration phase can be done in 2
ways:

• Smooth, using an S-curve speed profile, when Deceleration Type =
S_CURVE_SPEED_PROFILE

• Fast, using a trapezoidal speed profile, when Deceleration Type =

TRAPEZOIDAL_SPEED_PROFILE

The motion can be executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 17

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_MoveAbsolute.vi, TS_MoveRelative.vi, TS_MoveSCurveAbsolute.vi
TS_MoveVelocity.vi

Associated examples: Example 35

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 18

3.4.1.5 TS_MoveVelocity. vi

Symbol:

Prototype:

LONG _TS_MoveVelocity@24(DOUBLE Speed, DOUBLE Acceleration, SHORT INT Move
Moment, SHORT INT Reference Base);

Parameters:

 Name Description

Speed Jog speed expressed in TML speed units

Acceleration
Acceleration rate expressed in TML acceleration units. If the value is
zero the drive/motor will use the previously value set for acceleration.

Move Moment Defines the moment when the motion is started Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output return TRUE if no error, FALSE if error

Description: The function programs a trapezoidal speed profile. You specify the jog Speed. The
load/motor accelerates until the jog speed is reached. The jog speed can be positive or negative;

the sign gives the direction. The Acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values
previously defined for the acceleration rate you don’t need to send its value again in the following
speed profiles. Set to zero the value of acceleration if you want the drive/motor to use the value
previously defined with other commands (this option reduces the TML code generated by this
function).

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the
motion profile starting from the actual values of the position and speed reference. Use this option
for example if successive standard relative moves must be executed and the final target position

should represent exactly the sum of the individual commands. Set Reference Base =

FROM_MEASURE if you want the reference generator to compute the motion profile starting from
the actual values of the load/motor position and speed. When this option is used, at the beginning
of each new motion profile, the position and speed reference are updated with the actual values
of the load/motor position and speed.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 19

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Related functions: TS_MoveRelative.vi, TS_MoveAbsolute.vi, TS_MoveSCurveAbsolute.vi,
TS_MoveSCurveRelative.vi

Associated examples: Example 1, Example 2, Example 3, Example 4, Example 5,
Example 7, Example 9, Example 10, Example 12, Example 15,
Example 16, Example 17, Example 18, Example 19, Example 24,
Example 27, Example 28, Example 29, Example 30, Example 31,
Example 39, Example 40

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 20

3.4.1.6 TS_SetAnalogueMoveExternal.vi

Symbol:

Prototype:

LONG _TS_SetAnalogueMoveExternal@20(SHORT INT Reference Type, UNSIGNED CHAR
Update Reference, DOUBLE Limit Variation, SHORT INT Move Moment);

Parameters:

 Name Description

Reference Type Specifies how the analogue signal is interpreted

Update Reference
Specifies how often the analogue reference is read when torque control
is performed

Limit Variation
Speed/acceleration limit value for position/speed control expressed in
TML internal units

Input

Move Moment Defines the moment when the motion is started

Output Return TRUE if no error, FALSE if error

Description: The function block programs the drive/motor to work with an external analogue
reference read via a dedicated analogue input (10-bit resolution). The analogue signal can be
interpreted as a position, speed or torque analogue reference. Through parameter

ReferenceType you specify how the analogue signal is interpreted:

• Position reference when Reference Type = REFERENCE_POSITION. The drive/motor
performs position control.

• Speed reference when Reference Type = REFERENCE_SPEED. The drive/motor
performs speed control.

• Torque reference when Reference Type = REFERENCE_TORQUE. The drive/motor
performs torque control.

Remark: During the drive/motor setup, in the Drive setup dialogue, you have to:

1. Select the appropriate control type for your application at Control Mode.
2. Perform the tuning of controllers associated with the selected control mode.
3. Setup the analogue reference. Specify the reference values corresponding to the upper

and lower limits of the analogue input. In addition, a dead-band symmetrical interval and
its center point inside the analogue input range may be defined.

In position control you can limit the maximum speed at sudden changes of the position reference
and thus to reduce the mechanical shocks. In speed control you can limit the maximum
acceleration at sudden changes of the speed reference and thus to get a smoother transition.

These features are activated by setting the Limit Variation parameter to a positive value and

disabled when the Limit Variation is zero.

In torque control you can choose how often to read the analogue input: at each slow loop

sampling period (Update Reference = UPDATE_FAST) or at each fast loop sampling period

(Update Reference = UPDATE_SLOW).

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 21

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the motion parameters are set, but does
not execute. You’ll need to issue an update command to determine the execution of the

movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions in
order to activate the movement.

Related functions: TS_SetDigitalMoveExternal.vi, TS_SetOnlineMoveExternal.vi

Associated examples: Example 13

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 22

3.4.1.7 TS_SetDigitalMoveExternal

Symbol:

Prototype:

LONG _TS_SetDigitalMoveExternal@24(UNSIGNED CHAR Set Gear Ratio, SHORT INT
Denominator, SHORT INT Numerator, DOUBLE Limit Variation, SHORT INT Move Moment);

Parameters:

 Name Description

Set Gear Ratio Specifies if the digital reference is followed by the drive with a gear ratio

Denominator Gear ratio denominator

Numerator Gear ratio numerator

Limit Variation Acceleration limit value

Input

Move Moment Defines the moment when the motion is started

Output Return TRUE if no error, FALSE if error

Description: The function block programs the drive/motor to work with an external digital
reference provided as pulse & direction or quadrature encoder signals. In either case, the
drive/motor performs a position control with the reference computed from the external signals.

Remarks: The option for the input signals: pulse & direction or quadrature encoder is established
during the drive/motor setup.

The drive/motor follows the external reference with a gear ratio different than 1:1 when Set Gear
Ratio = YES. The gear ratio is specified as a ratio of 2 integer values: Numerator /

Denominator. The Numerator value is signed, while the Denominator is unsigned. The sign
indicates the direction of movement: positive – same as the external reference, negative –
reversed to the external reference.

You can limit the maximum acceleration at sudden changes of the external reference and thus to

get a smoother transition. This feature is activated when the parameter Limit Value has a positive
value and disabled when its value is zero.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the motion parameters are set, but the
motion is not activated. You’ll need to issue an update command to determine the

execution of the movement. Use the TS_UpdateImmediate.vi or the

TS_UpdateOnEvent.vi functions in order to activate the movement.

Related functions: TS_SetAnalogueMoveExternal, TS_SetOnlineMoveExternal

Associated examples: Example 21

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 23

3.4.1.8 TS_SetOnlineMoveExternal.vi

Symbol:

Prototype:

LONG _TS_SetOnlineMoveExternal@24(SHORT INT Reference Type, DOUBLE Limit
Variation, DOUBLE Initial Value, SHORT INT Move Moment);

Parameters:

 Name Description

Reference Type Specifies how the analogue signal is interpreted

Limit Variation
Speed/acceleration limit value for position/speed control expressed in
drive/motor internal units

Initial Value The initial value of the reference received on-line

Input

Move Moment Defines the moment when the motion is started

Output Return TRUE if no error, FALSE if error

Description: The function programs the drive/motor to work with a reference received via a
communication channel from an external device. Depending on the control mode chosen, the
external reference is saved in one of the TML variables:

• EREFP, which becomes the position reference if the Reference Type =

REFERENCE_POSITION

• EREFS, which becomes the speed reference if the Reference Type =

REFERENCE_SPEED

• EREFT, which becomes the torque reference if the Reference Type =

REFERENCE_TORQUE

• EREFV, which becomes voltage reference if the Reference Type =

REFERENCE_VOLTAGE

Remark: During the drive/motor setup, in the Drive setup dialogue, you have to:

1. Select the appropriate control type for your application in Drive Setup dialogue.
2. Perform the tuning of controllers associated with the selected control mode.

In position control you can limit the maximum speed at sudden changes of the position reference
and thus to reduce the mechanical shocks. In speed control you can limit the maximum
acceleration at sudden changes of the speed reference and thus to get a smoother transition.

These features are activated by setting the Limit Variation parameter to a positive value and

disabled when the Limit Variation is zero.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 24

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

If the external device starts sending the reference AFTER the motion mode is activated, it may be
necessary to initialize EREFP, EREFS, EREFT or EREFV. The desired starting value is set

through Initial Value parameter.

Related functions: TS_SetAnalogueMoveExternal.vi, TS_SetDigitalMoveExternal.vi

Associated examples: Example 13

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 25

3.4.1.9 TS_VoltageTestMode.vi

Symbol:

Prototype:

LONG _TS_VoltageTestMode@20(SHORT INT MaxVoltage, SHORT INT IncrVoltage, SHORT
INT Theta0, SHORT INT Dtheta, SHORT INT MoveMoment);

Parameters:

 Name Description

MaxVoltage Maximum test voltage expressed in drive/motor voltage command units

IncrVoltage Voltage increment expressed in drive/motor internal units

Theta0
Initial value of electrical angle expressed in drive/motor electrical angle
units

Dtheta
Electric angle increment expressed in drive/motor electrical angle
increment units

Input

Move Moment Defines the moment when the motion is started

Output return TRUE if no error, FALSE if error

Description: The function allows you to set the drives/motors in voltage test mode. In the test
mode a saturated ramp voltage is applied to the motor, i.e. the voltage will increase with the

IncrVoltage increment at each slow sampling period up to the MaxVoltage value.

Remark: This is a test mode to be used only in some special cases for drives setup. The test
mode is not supposed to be used during normal operation

For AC motors (like for example the brushless motors), you have the possibility to rotate a voltage
reference vector with a programmable speed. As a result, these motors can be moved in an
“open-loop” mode without using the position sensor. The main advantage of this test mode is the
possibility to conduct in a safe way a series of tests, which can offer important information about
the motor parameters, drive status and the integrity of the its connections.

The voltage reference vector initial position is set through parameter Theta0 and its speed

through Dtheta. For DC motors set these parameters to zero.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_TorqueTestMode.vi

Associated examples: Example 22

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 26

3.4.1.10 TS_TorqueTestMode.vi

Symbol:

Prototype:

LONG _TS_TorqueTestMode@20(SHORT INT MaxTorque, SHORT INT IncrTorque, SHORT
INT Theta0, SHORT INT Dtheta, SHORT Move Moment);

Parameters:

 Name Description

MaxTorque Maximum test torque expressed in TML current units
Input

IncrTorque Torque increment expressed in TML internal units

 Theta0 Initial value of electrical angle expressed in TML electrical angle units

 Dtheta Electric angle increment expressed in TML electrical angle increment units

 Move Moment Defines the moment when the motion is started

Output return TRUE if no error, FALSE if error

Description: The function allows you to set the drives/motors in torque test mode. In the test
mode a saturated ramp current is applied to the motor, i.e. the current will increase with the

IncrTorque increment at each slow sampling period up to the MaxTorque value.

Remark: This is a test mode to be used only in some special cases for drives setup. The test
mode is not supposed to be used during normal operation

For AC motors (like for example the brushless motors), you have the possibility to rotate a current
reference vector with a programmable speed. As a result, these motors can be moved in an
“open-loop” mode without using the position sensor. The main advantage of this test mode is the
possibility to conduct in a safe way a series of tests, which can offer important information about
the motor parameters, drive status and the integrity of the its connections.

The current reference vector initial position is set through parameter Theta0 and its speed

through Dtheta. For DC motors set these parameters to zero.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_VoltageTestMode.vi

Associated examples: Example 23

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 27

3.4.1.11 TS_PVTSetup.vi

Symbol:

Prototype:

LONG _TS_PVTSetup@28(SHORT INT Clear Buffer, SHORT INT Integrity Checking, SHORT
INT Change PVT Counter, SHORT INT Absolute Position Source, SHORT INT Change Low
Level, SHORT INT PVT Counter Value, SHORT INT Low Level Value);

Parameters:

 Name Description

Clear Buffer Specifies if the PVT buffer is cleared

Integrity Checking Enable/disable PVT counter integrity checking

Change PVT Counter
Specifies if the integrity counter is updated with the value of
PVTCounterValue parameter

Absolute Position Source Selects the source for initial position for absolute PVT mode

Change Low Level
Specifies if the level for BufferLow signaling is updated with the
value of LowLevelValue parameter

PVT Counter Value The new value for the drive/motor PVT integrity counter

Input

Low Level Value The new value for the level of the BufferLow signal

Output return TRUE if no error, FALSE if error

Description: The function programs a drive/motor to work in PVT motion mode. In PVT motion
mode the drive/motor performs a positioning path described through a series of points. Each point

specifies the desired Position, Velocity and Time, i.e. contains a PVT data. Between the points
the built-in reference generator performs a 3rd order interpolation.

Remark: The function block just programs the drive/motor for PVT mode. The motion mode is
activated with function TS_SendPVTFirstPoint.vi and the PVT points are sent to the drive with
function TS_SendPVTPoint.vi.

A key factor for getting a correct positioning path in PVT mode is to set correctly the distance in
time between the points. Typically this is 10-20ms, the shorter the better. If the distance in time
between the PVT points is too big, the 3rd order interpolation may lead to important variations
compared with the desired path.

The PVT motion mode can be started only when the previous motion is complete. However, you
can switch at any moment to another motion mode.

The PVT mode can be relative or absolute. In the absolute mode, each PVT point specifies the
position to reach. The initial position may be either the current position reference TML variable

TPOS (Absolute Position Source = 1) or a preset value read from the TML parameter

PVTPOS0 (Absolute Position Source = 0). In the relative mode, each PVT point specifies the
position increment relative to the previous point. In both cases, the time is relative to the previous

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 28

point i.e. represents the duration of a PVT segment. For the first PVT point, the time is measured
from the starting of the PVT mode.

Remark: The PVT mode, absolute or relative, is set with function TS_SendPVTFirstPoint.vi.

Each time when the drive receives a new PVT point, it is saved into the PVT buffer. The reference
generator empties the buffer as the PVT points are executed. The PVT buffer is of type FIFO (first
in, first out). The default length of the PVT buffer is 7 PVT points. Each entry in the buffer is made
up of 9 words, so the default length of the PVT buffer in terms of how much memory space is
reserved is 63 (3Fh) words. The drive/motor automatically sends messages to the host when the

buffer is full, low or empty. The messages contain the PVT status (TML variable PVTSTS). The
buffer full condition occurs when the number of PVT points in the buffer is equal with the buffer
size. The buffer low condition occurs when the number of PVT points in the buffer is less or equal

with a programmable value. The level for BufferLow signaling is updated when Change Low
Level = YES with the value of parameter Low Level Value. The buffer empty condition occurs
when the buffer is empty and the execution of the last PVT point is over.

When the PVT buffer becomes empty the drive/motor:

• Remains in PVT mode if the velocity of last PVT point executed is zero and waits for new
points to receive

• Enters in quick stop mode if the velocity of last PVT point executed is not zero

Therefore, a correct PVT sequence must always end with a last PVT point having velocity zero.

Remarks:

1. The PVT and PT modes share the same buffer. Therefore the TML parameters and
variables associated with the buffer management are the same.

2. Both the PVT buffer size and its start address are programmable via TML parameters
(int@0x0864) and PVTBUFLEN (int@0x0865). Therefore if needed, the PVT buffer size
can be substantially increased. Use TS_SetIntegerVariable.vi to change the PVT buffer
parameters.

Each PVT point also includes a 7-bit integrity counter. The integrity counter value must be
incremented by the host by one, each time a new PVT point is sent to the drive/motor. If the

integrity counter error checking is activated (Integrity Checking = YES), the drive compares its
integrity counter value with the one sent with the PVT point. This comparison is done every time a
PVT point is received. If the values of the two integrity counters do not match, the integrity check
error is triggered, the drive/motor sends messages with PVTSTS to the host and the received
PVT point is discarded. Each time a PVT point is accepted (the integrity counters match or the
integrity counter error checking is disabled), the drive automatically increments its internal
integrity counter.

The default value of the internal integrity counter after power up is 0. Set Change PVT Counter =
YES to change its value with PVT Counter Value parameter. The integrity counter checking is

disabled when parameter Integrity Checking = NO.

Related functions: TS_SendPVTFirstPoint.vi, TS_SendPVTPoint.vi

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 29

3.4.1.12 TS_SendPVTFirstPoint.vi

Symbol:

Prototype:

LONG _TS_SendPVTFirstPoint@36(LONG Position, DOUBLE Velocity, WORD Time,
SHORT INT PVT Counter, SHORT INT PositionType, LONG InitialPosition, SHORT INT Move
Moment, SHORT INT Reference Base);

Parameters:

 Name Description

Position
Position value for first PVT point expressed in drive/motor internal
position units

Velocity
Speed at the end of the first PVT segment expressed in drive/motor
internal speed units

Time
Represents the time interval of the PVT segment expressed in
drive/motor internal time units. The maximum time interval is 511 IU.

PVT Counter Integrity counter for first PVT point.

Position Type Specifies the type of PVT mode

Initial Position The initial position at the start of an absolute PVT movement

Move Moment Defines the moment when the motion is started

Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output return TRUE if no error, FALSE if error

Description: The function sends the first PVT point and activates the PVT motion mode.

Parameter Position Type sets the PVT mode: absolute or relative. In the absolute mode

(Position Type = ABSOLUTE_POSITION), each PVT point specifies the position to reach. The
initial position may be either the current position reference TML variable TPOS or a preset value

read from the TML parameter PVTPOS0. In the relative mode (Position Type =
RELATIVE_POSITION), each PVT point specifies the position increment relative to the previous
point.

Remark: The source for initial position, TPOS or PVTPOS0, is set with function TS_PVTSetup.vi.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 30

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the

motion profile starting from the actual values of the position and speed reference. Set Reference
Base = FROM_MEASURE if you want the reference generator to compute the motion profile
starting from the actual values of the load/motor position and speed. When this option is used, at
the beginning of each new motion profile, the position and speed reference are updated with the
actual values of the load/motor position and speed.

Related functions: TS_PVTSetup.vi, TS_SendPVTPoint.vi

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 31

3.4.1.13 TS_SendPVTPoint.vi

Symbol:

Prototype:

LONG _TS_SendPVTPoint(LONG Position, DOUBLE Velocity, WORD Time, SHORT INT PVT
Counter);

Parameters:

 Name Description

Position Position at the end of the PVT segment expressed in TML position units
Input

Velocity Velocity at the end of the PVT segment expressed in TML speed units

 Time Time interval for the current PVT segment expressed in TML time units

 PVT Counter The integrity counter for the current PVT point

Output return TRUE if no error, FALSE if error

Description: The function sends a PVT point to the drive/motor. Each point specifies the desired

Position, Velocity and Time, i.e. contains a PVT data. Between the PVT points the reference
generator performs a 3

rd
 order interpolation. The PVT point also includes a 7-bit integrity counter

read from PVT Counter. The integrity counter value must be incremented by the host by one,
each time a new PVT point is sent to the drive/motor.

Related functions: TS_PVTSetup.vi, TS_SendPVTFirstPoint.vi

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 32

3.4.1.14 TS_PTSetup.vi

Symbol:

Prototype:

LONG _TS_PTSetup@28(SHORT INT Clear Buffer, SHORT INT Integrity Checking, SHORT
INT Change PT Counter, SHORT INT Absolute Position Source, SHORT INT Change Low
Level, SHORT INT PT Counter Value, SHORT INT Low Level Value);

Parameters:

 Name Description

Clear Buffer When TRUE the PT buffer is cleared

Integrity Checking Enable/disable PT counter integrity checking

Change PT Counter
Specifies if the integrity counter is updated with the value of PT
Counter Value parameter

Absolute Position Source Selects the source for initial position for absolute PVT mode

Change Low Level
Specifies if the level for BufferLow signaling is updated with the
value of LowLevelValue parameter

PT Counter Value The new value for the drive/motor PVT integrity counter

Input

Low Level Value The new value for the level of the BufferLow signal

Output Return TRUE if no error, FALSE if error

Description: The function programs a drive/motor to work in PT motion mode. In PT motion
mode the drive/motor performs a positioning path described through a series of points. Each point

specifies the desired Position and Time, i.e. contains a PT data. Between the points the built-in
reference generator performs a linear interpolation.

Remark: The function block just programs the drive/motor for PT mode. The motion mode is
activated with function TS_SendPTFirstPoint.vi and the PT points are sent to the drive with
function TS_SendPTPoint.vi.

The PT motion mode can be started only when the previous motion is complete. However, you
can switch at any moment to another motion mode.

The PT mode can be relative or absolute. In the absolute mode, each PT point specifies the
position to reach. The initial position may be either the current position reference TML variable

TPOS (Absolute Position Source = 1) or a preset value read from the TML parameter

PVTPOS0 (Absolute Position Source = 0). In the relative mode, each PT point specifies the
position increment relative to the previous point. In both cases, the time is relative to the previous
point i.e. represents the duration of a PT segment. For the first PT point, the time is measured
from the starting of the PT mode.

Remark: The PT mode, absolute or relative, is set with function TS_SendPTFirstPoint.vi.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 33

Each time when the drive receives a new PT point, it is saved into the PT buffer. The reference
generator empties the buffer as the PT points are executed. The PT buffer is of type FIFO (first in,
first out). The default length of the PT buffer is 7 PT points. Each entry in the buffer is made up of
9 words, so the default length of the PVT buffer in terms of how much memory space is reserved
is 63 (3Fh) words. The drive/motor automatically sends messages to the host when the buffer is

full, low or empty. The messages contain the PVT status (TML variable PVTSTS). The buffer full
condition occurs when the number of PVT points in the buffer is equal with the buffer size. The
buffer low condition occurs when the number of PVT points in the buffer is less or equal with a

programmable value. Set Change Low Level = YES to change the level for BufferLow signaling

with the value of parameter Low Level Value. The buffer empty condition occurs when the buffer
is empty and the execution of the last PT point is over. When the PT buffer becomes empty the
drive/motor keeps the position reference unchanged.

Remarks:

3. The PT and PVT modes share the same buffer. Therefore the TML parameters and
variables associated with the buffer management are the same.

4. Both the PT buffer size and its start address are programmable via TML parameters
(int@0x0864) and PVTBUFLEN (int@0x0865). Therefore if needed, the PT buffer size
can be substantially increased. Use TS_SetIntegerVariable.vi to change the PT buffer
parameters.

Each PT point also includes a 7-bit integrity counter. The integrity counter value must be
incremented by the host by one, each time a new PT point is sent to the drive/motor. If the

integrity counter error checking is activated (Integrity Checking = YES), the drive compares its
integrity counter value with the one sent with the PT point. This comparison is done every time a
PT point is received. If the values of the two integrity counters do not match, the integrity check
error is triggered, the drive/motor sends messages with PVTSTS to the host and the received PT
point is discarded. Each time a PT point is accepted (the integrity counters match or the integrity
counter error checking is disabled), the drive automatically increments its internal integrity
counter.

The default value of the internal integrity counter after power up is 0. Set Change PT Counter =
YES to change the value of integrity counter with PT Counter Value parameter. The integrity

counter checking is disabled when parameter Integrity Checking = NO.

Related functions: TS_SendPTFirstPoint.vi, TS_SendPTPoint.vi

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 34

3.4.1.15 TS_SendPTFirstPoint.vi

Symbol:

Prototype:

LONG _TS_SendPTFirstPoint@28(LONG Position, WORD Time, SHORT PT Counter,
SHORT Position Type, LONG Initial Position, SHORT Move Moment SHORT Reference
Base);

Arguments:

 Name Description

Position Position value for first PT point expressed in TML position units

Time Time interval of the PT segment expressed in TML time units.

PT Counter Integrity counter for first PT point.

Position Type Specifies the type of PT mode

Initial Position The initial position at the start of an absolute PT movement

Move Moment Defines the moment when the motion is started

Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output Return TRUE if no error, FALSE if error

Description: The function sends the first PT point and activates the PT motion mode.

Parameter Position Type sets the PT mode: absolute or relative. In the absolute mode (Position
Type = ABSOLUTE_POSITION), each PT point specifies the position to reach. The initial
position may be either the current position reference TML variable TPOS or a preset value read

from the TML parameter PVTPOS0. In the relative mode (Position Type =
RELATIVE_POSITION), each PT point specifies the position increment relative to the previous
point.

Remark: The initial position source, TPOS or PVTPOS0, is set with function TS_PTSetup.vi.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

the movement. Use the TS_UpdateImmediate or the TS_UpdateOnEvent functions in
order to activate the movement.

Related functions: TS_PTSetup.vi, TS_SendPTPoint.vi

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 35

3.4.1.16 TS_SendPTPoint.vi

Symbol:

Prototype:

LONG _TS_SendPTPoint@12(LONG Position, UNSIGNED SHORT INT Time, SHORT INT PT
Counter);

Parameters:

 Name Description

Input Position Position at the end of the PT segment expressed in TML position units

 Time Time interval for the current PT segment expressed in TML time units

 PT Counter The integrity counter for the current PT point

Output return TRUE if no error, FALSE if error

Description: The function sends a PT point to the drive/motor. Each point specifies the desired

Position, and Time. Between the PT points the reference generator performs a linear

interpolation. The PT point also includes a 7-bit integrity counter read from parameter PT
Counter. The integrity counter value must be incremented by the host by one, each time a new
PT point is sent to the drive/motor.

Related functions: TS_PTSetup.vi, TS_SendPTFirstPoint.vi

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 36

3.4.1.17 TS_SetGearingMaster.vi

Symbol:

Prototype:

LONG _TS_SetGearingMaster@24(SHORT INT Group, UNSIGNED CHAR Slave ID, SHORT
INT Reference Base, SHORT INT Enable, UNSIGNED CHAR Set Slave Pos, SHORT INT
Move Moment);

Parameters:

 Name Description

Group
Specifies if the master sends its position to one slave or a group of
slaves

Slave ID The axis ID of the slave or group ID of group of slaves

Reference Base Specifies if the master sends its load position or its position reference

Enable Enable/disables the master in electronic gearing

Set Slave Pos Specify if the master is initializing the slave(s)

Input

Move Moment Defines the moment when the settings are activated

Output Return TRUE if no error, FALSE if error

Description: The function programs the active axis as master in electronic gearing. Once at each

slow loop sampling time interval, the master sends either its load position APOS (Reference
Base = FROM_MEASURE) or its position reference TPOS (Reference Base =
FROM_REFERENCE) to the axis or the group of axes specified in the parameter Slave ID.

Remark: The Reference Base = FROM_MEASURE option is not valid if the master operates in
open loop. It is meaningless if the master drive has no position sensor.

The Slave ID is interpreted either as the Axis ID of one slave (Group = NO) or the value of a

Group ID i.e. the group of slaves to which the master should send its data (Group = YES).

The master operation is enabled with Enable = ENABLE and is disabled when Enable =
DISABLE. In both cases, these operations have no effect on the motion executed by the master.

If the master activation is done AFTER the slaves are set in electronic gearing mode, set Set
Slave Pos = INITIALIZE to determine the master to send an initialization message to the slaves.

The commands are executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_SetGearingSlave, TS_SendSynchronization

Associated examples: Example 31

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 37

3.4.1.18 TS_SetGearingSlave.vi

Symbol:

Prototype:

LONG _TS_SetGearingSlave@28(SHORT INT Denominator, SHORT INT Numerator, SHORT
INT Reference Base, SHORT INT Enable, DOUBLE Limit Variation, SHORT INT Move
Moment);

Parameters:

 Name Description

Denominator Gear ratio denominator (always positive)

Numerator Gear ratio numerator (positive or negative)

Reference Base
Specifies how the motion reference is computed: from actual
values of position and speed reference or from actual values of
load/motor position and speed

Enable Slave Enables the electronic gearing slave mode

Enable Superposition Enables/disables motion superposition

Limit Variation Acceleration limit when the slave is coupling

Input

Move Moment Defines the moment when the settings are activated

Output return TRUE if no error, FALSE if error

Description: The function programs the active axis to operate as slave in electronic gearing. In
electronic gearing slave mode the drive/motor performs a position control. At each slow loop
sampling period, the slave computes the master’s position increment and multiplies it with its
programmed gear ratio. The result is the slave’s position reference increment, which added to the
previous slave position reference gives the new slave position reference.

The gear ratio is the result of the division Numerator / Denominator. Numerator is a signed

integer, while the Denominator is unsigned integer. The Numerator sign indicates the direction

of movement: positive – same as the master, negative – reversed to the master. Numerator and

Denominator are used by an automatic compensation procedure that eliminates the round off
errors, which occur when the gear ratio is an irrational number like: 1/3 (Slave = 1, Master = 3).

The slave can get the master position in two ways:

1. Via a communication channel (Enable Slave = SLAVE_COMMUNICATION_CHANNEL),
from a drive/motor set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder (Enable
Slave = SLAVE_2ND_ENCODER)

Remark: Set Enable Slave = SLAVE_NONE if you want to program the motion mode
parameters without enabling it.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 38

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. Use function TS_SetLongVariable to change its value by
writing the desired value in the TML variable APOS2.

You can smooth the slave coupling with the master, by limiting the maximum acceleration on the
slave. This is particularly useful when the slave must couple with a master running at high speed.

This feature is activated when the parameter Limit Value has a positive value and disabled when
its value is zero.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the

slave position starting from the actual values of the position and speed reference. Set Reference
Base = FROM_MEASURE if you want the reference generator to compute the slave position
starting from the actual values of the load/motor position and speed. When this option is used, at
the beginning of each new motion profile, the position and speed reference are updated with the
actual values of the load/motor position and speed.

Remarks:

1. The function requires drive/motor position loop to be closed. During the drive/motor setup
select Position at Control Mode and perform the position controller tuning.

2. Use function block TS_SetGearingMaster.vi to program a drive/motor as master in
electronic gearing

3. When the reference is read from second encoder or pulse & direction inputs you don’t
need to program a drive/motor as master in electronic gearing

Related functions: TS_SetGearingMaster.vi, TS_SetMasterResolution.vi

Associated examples: Example 31

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 39

3.4.1.19 TS_SetCammingMaster.vi

Symbol:

Prototype:

LONG _TS_SetCammingMaster@20(SHOT INT Group, UNSIGNED CHAR Slave ID, SHORT
INT Reference Base, SHORT INT Enable, SHORT INT Move Moment);

Parameters:

 Name Description

Group
Specifies if the master sends its position to one slave or a group of
slaves

Slave ID The axis ID of the slave or group ID of group of slaves

Reference Base Specifies if the master sends its load position or its position reference

Enable Enable/disables the master in electronic camming

Input

Move Moment Defines the moment when the settings are activated

Output Return TRUE if no error, FALSE if error

Description: The function programs the active axis as master in electronic camming. Once at

each slow loop sampling time interval, the master sends either its load position APOS (Reference
Base = FROM_MEASURE) or its position reference TPOS (Reference Base =
FROM_REFERENCE) to the axis or the group of axes specified in the parameter Slave ID.

Remark: The Reference Base = FROM_MEASURE option is not valid if the master operates in
open loop. It is meaningless if the master drive has no position sensor.

The SlaveID is interpreted either as the Axis ID of one slave (Group = SET_SLAVE) or the value

of a Group ID i.e. the group of slaves to which the master should send its data (Group =
SET_GROUP).

The master operation is enabled with Enable = ENABLE and is disabled when Enable =
DISABLE. In both cases, these operations have no effect on the motion executed by the master.

The commands are executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE

• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_CamDownload.vi, TS_CamInitialization.vi
TS_SetCammingSlaveRelative.vi, TS_SetCammingSlaveAbsolute.vi,
TS_SendSynchronization.vi

Associated examples: Example 32

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 40

3.4.1.20 TS_SetCammingSlaveRelative.vi

Symbol:

Prototype:

LONG _TS_SetCammingSlaveRelative@36(UNSIGNED SHORT INT RunAddress, SHORT
INT Reference Base, SHORT INT Enable Slave, SHORT INT Move Moment, LONG Offset
From Master, DOUBLE Mult Input Factor, DOUBLE Mult Output Factor);

Parameters:

 Name Description

Run Address
Drive/motor RAM address where the cam table is copied with
function TS_CamInitialization

Reference Base
Specifies how the motion reference is computed: from actual
values of position and speed reference or from actual values of
load/motor position and speed

Enable Slave Enable the electronic camming slave mode

Move Moment Defines the moment when the settings are activated

Offset From Master Cam table offset expressed in TML position units

Mult Input Factor CAM table input scaling factor

Input

Mult Output Factor CAM table output scaling factor

Output Return TRUE if no error, FALSE if error

Description: The function block programs the active axis to operate as slave in electronic
camming relative mode. The slave drive/motor executes a cam profile function of the master
drive/motor position. The cam profile is defined by a cam table – a set of (X, Y) points, where X is
cam table input i.e. the master position and Y is the cam table output i.e. the corresponding slave
position. Between the points the drive/motor performs a linear interpolation. In electronic camming
relative mode the output of the cam table is added to the slave actual position.

The cam tables are previously stored in drive/motor EEPROM memory with function

TS_CamDownload.vi. After download, previously starting the camming slave, you have to
initialize the cam table, i.e. to copy it from EEPROM memory to RAM memory. Use function

TS_CamInitialization.vi to initialize a cam table. The active cam table is selected through

parameter Run Address. The Run Address must contain the drive/motor RAM address where
the cam table was copied.

The slave can get the master position in two ways:

1. Via a communication channel (Enable Slave = SLAVE_COMM_CH), from a drive/motor
set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder (Enable
Slave = SLAVE_2ND_ENCODER)

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 41

Remark:

1. Set Enable Slave = SLAVE_NONE if you want to program the motion mode parameters
without enabling it.

2. Use function block TS_SetCammingMaster.vi to program a drive/motor as master in
electronic camming. When the reference is read from second encoder or pulse &
direction inputs you don’t need to program a drive/motor as master in electronic camming

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. Use function block TS_SetLongVariable to change its value
by writing the desired value in the TML variable APOS2.

With parameter Offset From Master you can shift the cam profile versus the master position, by
setting an offset for the slave. The cam table input is computed as the master position minus the
cam offset. For example, if a cam table is defined between angles 100 to 250 degrees, a cam
offset of 50 degrees will make the cam table to execute between master angles 150 and 300
degrees.

You can compress/extend the cam table input. Set the parameter Mult Input Factor with the
correction factor by which the cam table input is multiplied. For example, an input correction factor
of 2, combined with a cam offset of 180 degrees, will make possible to execute a cam table
defined for 360 degrees of the master in the last 180 degrees.

You can also compress/extend the cam table output. Specify through input Mult Output Factor
the correction factor by which the cam table output is multiplied. This feature addresses the
applications where the slaves must execute different position commands at each master cycle, all
having the same profile defined through a cam table. In this case, the drive/motor is programmed
with a unique normalized cam profile and the cam table output is multiplied with the relative
position command updated at each master cycle.

If you intend to use the default or previously defined values for the Mult Input Factor, Mult
Output Factor and/or Offset From Master, you don’t need to send their values. Set to zero their
values if you want the drive/motor to use the values previously defined with other commands (this
option reduces the TML code generated by this function).

Related functions: TS_CamDownload.vi, TS_CamInitialization.vi,
TS_SetCammingSlaveAbsolute.vi, TS_SetCammingMaster.vi,
TS_SetMasterResolution.vi

Associated examples: Example 32

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 42

3.4.1.21 TS_SetCammingSlaveAbsolute.vi

Symbol:

Prototype:

LONG _TS_SetCammingSlaveAbsolute@44(UNSIGNED SHORT INT Run Address, DOUBLE
Limit Variation, SHORT INT Reference Base, SHORT INT Enable Slave, SHORT INT Move
Moment, LONG Offset From Master, DOUBLE Mult Input Factor, DOUBLE Mult Output
Factor);

Parameters:

 Name Description

Run Address
Drive/motor RAM address where the cam table is copied with
function TS_CamInitialization

Limit Variation Slave speed limit value expressed in TML speed units

Reference Base
Specifies how the motion reference is computed: from actual
values of position and speed reference or from actual values of
load/motor position and speed

Enable Slave Enable the electronic camming slave mode

Move Moment Defines the moment when the settings are activated

Offset From Master Cam table offset expressed in TML position units

Input

Mult Input Factor CAM table input scaling factor

 Mult Output Factor CAM table output scaling factor

Output Return TRUE if no error, FALSE if error

Description: The function block programs the active axis to operate as slave in electronic
camming absolute mode. The slave drive/motor executes a cam profile function of the master
drive/motor position. The cam profile is defined by a cam table – a set of (X, Y) points, where X is
cam table input i.e. the master position and Y is the cam table output i.e. the corresponding slave
position. Between the points the drive/motor performs a linear interpolation. In electronic camming
absolute mode the output of the cam table represents the position to reach.

The electronic camming absolute mode may generate abrupt variations on the slave position

reference, mainly at entry in the camming mode. Set parameter Limit Variation to limit the speed

of the slave during travel towards the position to reach. The limitation is disabled if the Limit
Variation is set to zero.

The cam tables are previously stored in drive/motor EEPROM memory with function
TS_CamDownload.vi. After download, previously starting the camming slave, you have to
initialize the cam table, i.e. to copy it from EEPROM memory to RAM memory. Use function
TS_CamInitialization.vi to initialize a cam table. The active cam table is selected through

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 43

parameter Run Address. The Run Address must contain the drive/motor RAM address where
the cam table was copied.

The slave can get the master position in two ways:

1. Via a communication channel (Enable Slave = SLAVE_COMM_CH), from a drive/motor
set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder (Enable
Slave = SLAVE_2ND_ENCODER)

Remark:

1. Set Enable Slave = SLAVE_NONE if you want to program the motion mode parameters
without enabling it.

2. Use function block TS_SetCammingMaster.vi to program a drive/motor as master in
electronic camming. When the reference is read from second encoder or pulse &
direction inputs you don’t need to program a drive/motor as master in electronic camming

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. Use function block TS_SetLongVariable to change its value
by writing the desired value in the TML variable APOS2.

Set the parameter Offset From Master to shift the cam profile versus the master position, by
setting an offset for the slave. The cam table input is computed as the master position minus the
cam offset. For example, if a cam table is defined between angles 100 to 250 degrees, a cam
offset of 50 degrees will make the cam table to execute between master angles 150 and 300
degrees.

You can compress/extend the cam table input. Set the parameter Mult Input Factor with the
correction factor by which the cam table input is multiplied. For example, an input correction factor
of 2, combined with a cam offset of 180 degrees, will make possible to execute a cam table
defined for 360 degrees of the master in the last 180 degrees.

You can also compress/extend the cam table output. Specify through input Mult Output Factor
the correction factor by which the cam table output is multiplied. This feature addresses the
applications where the slaves must execute different position commands at each master cycle, all
having the same profile defined through a cam table. In this case, the drive/motor is programmed
with a unique normalized cam profile and the cam table output is multiplied with the relative
position command updated at each master cycle.

Remark: If the Offset From Master, Mult Input Factor and/or Mult Output Factor are set to zero
the drive/motor will use the value previously set for the parameter or the default value. With this
option the TML code generated by this function is reduced.

Related functions: TS_CamDownload.vi, TS_CamInitialization.vi,
TS_SetCammingSlaveRelative.vi, TS_SetCammingMaster.vi,
TS_SetMasterResolution.vi

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 44

3.4.1.22 TS_CamDownload.vi

Symbol:

Prototype:

LONG _TS_CamDownload@20(CSTR Cam File, UNSIGNED SHORT INT Load Address,
UNSIGNED SHORT INT Run Address, UNSIGNED SHORT INT *Next Load Address,
UNSIGNED SHORT INT *Next Load Address);

Parameters:

 Name Description

Cam File The name of the file containing the cam table description

Load Address
The EEPROM memory address where the cam table is
downloaded

Input

Run Address The RAM address where the cam table is copied at initialization

Next Load Address
Next available EEPROM address from where a cam table can be
downloaded

Next Run Address Next available RAM address where a cam table can be copied
Output

Return TRUE if no error, FALSE if error

Description: The function downloads a cam table in the drive/motor EEPROM memory starting

with address Load Address. The Run Address parameter is required to compute the Next Run
Address. The function returns the next valid memory addresses for cam tables trough output

parameters Next Load Address respectively Next Run Address. If the values returned by the
function are 0 then there is no memory available.

The Load Address and Run Address for the first cam table downloaded are computed by

EasyMotion Studio and displayed in the dialogue Memory Settings. To open the dialogue

Memory Settings select the appropriate application and in Application General Information

press the button Memory Settings. For the next cam tables, if available, the Load Address and

Run Address are the values returned by the previous call function TS_CamDownload

(parameters Next Load Address and Next Run Address).

The cam table description is read from the file Cam File. The file is generated from EasyMotion
Studio and has the extension *.cam.

Steps to follow when using cam tables:

1. Create or import a cam table in EasyMotion Studio. The cam table is saved by
EasyMotion Studio in the application’s directory.

2. Download the cam table in the drive/motor EEPROM memory with TS_CamDownload.vi
3. Initialize the cam table with function TS_CamInitialization.vi
4. Program the drive/motor to operate as slave in electronic camming mode with

TS_SetCammingSlaveAbsolute.vi or TS_SetCammingSlaveRelative.vi. Select the
cam table used with the parameter RunAddress.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 45

Related functions: TS_SetCammingSlaveRelative.vi, TS_SetCammingSlaveAbsolute.vi,
TS_CamInitialization.vi

Associated examples: Example 32

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 46

3.4.1.23 TS_CamInitialization.vi

Symbol:

Prototype:

LONG _TS_CamInitialization(UNSIGNED SHORT INT Load Address, UNSIGNED SHORT INT
Run Address);

Parameters:

 Name Description

Load Address EEPROM memory address where the cam table is downloaded
Input

Run Address RAM address where the cam table is copied at run time

Output Return TRUE if no error, FALSE if error

Description: The function copies a cam table from drive/motor EEPROM memory in the RAM

memory at address Run Address. The cam table was previously downloaded with function

TS_CamDownload.vi at EEPROM address Load Address.

The function must be called for each cam table used by the application.

Related functions: TS_SetCammingSlaveRelative.vi, TS_SetCammingSlaveAbsolute.vi,
TS_CamDownload.vi

Associated examples: Example 32

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 47

3.4.1.24 TS_SetMasterResolution

Symbol:

Prototype:

LONG _TS_SetMasterResolution@4(LONG Master Resolution);

Parameters:

 Name Description

Input Master Resolution
Number of encoder counts per one revolution of the master
position sensor.

Output Return TRUE if no error, FALSE if error

Description: The function sets the TML parameter MASTERRES with the value Master
Resolution.

The master resolution is needed by the electronic gearing or camming slaves to compute
correctly the master position and speed (i.e. the position increment). If master position is not
cyclic (i.e. the resolution is equal with the whole 32-bit range of position), set master resolution to

FULL_RANGE.

Remark: Call function TS_SetMasterResolution.vi before activating the electronic gearing or
camming slave mode with function TS_SetGearingSlave.vi respectively
TS_SetCammingSlaveAbsolute/Relative.vi.

Related functions: TS_SetGearingSlave.vi, TS_SetCammingSlaveAbsolute.vi,
TS_SetCammingSlaveRelative.vi

Associated examples: Example 32

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 48

3.4.1.25 TS_SendSynchronization

Symbol:

Prototype:

LONG _TS_SendSynchronization@4(LONG Period);

Parameters:

 Name Description

Input Period
Time period between two synchronization messages. It is
expressed in drive/motor internal time units

Output return TRUE if no error, FALSE if error

Description: The function enables/disables the synchronization procedure between axes. The

synchronization process is activated when the parameter Period has a non-zero value. The
active axis is set as the synchronization master and the other axes become synchronization

slaves. To disable the synchronization procedure set the Period to zero.

The synchronization process is performed in two steps. First, the master sends a synchronization
message to all axes, including to itself. When this message is received, all the axes read their
own internal time. Next, the master sends its internal time to all the slaves, which compare it with
their own internal time. If there are differences, the slaves correct slightly their sampling periods in
order to keep them synchronized with those of the master. As effect, when synchronization
procedure is active, the execution of the control loops on the slaves is synchronized with those of
the master within a 10µs time interval. Due to this powerful feature, drifts between master and

slave axes are eliminated. The Period represents the time interval in internal units between the
synchronization messages sent by the master. Recommended value is 20ms.

Related functions: TS_SetGearingMaster.vi, TS_SetGearingSlave.vi,
TS_SetCammingMaster.vi, TS_SetCammingSlave.vi

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 49

3.4.2 Motor commands

3.4.2.1 TS_Power.vi

Symbol:

Prototype:

LONG _TS_Power@4(SHORT INT Enable);

Parameters:

 Name Description

Input Enable Enables/disables the power stage of the active axis

Output return TRUE if no error; FALSE if error

Description: The function enables/disables the power stage of the active axis. If Enable =
POWER_ON the power stage is enabled (executes the TML command AxisON). The power

stage is disabled (executes the TML command AxisOFF) when Enable = POWER_OFF.

Related functions: TS_ResetFault.vi, TS_Reset.vi

Associated examples: all examples

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 50

3.4.2.2 TS_UpdateImmediate.vi

Symbol:

Prototype:

LONG _TS_UpdateImmediate@0(void);

Parameters:

 Name Description

Input – –

Output return TRUE if no error, FALSE if error

Description: The function updates the motion mode immediately. It allows you to start a motion
previously programmed. This can be useful for example if you already defined a motion and you
want to start it in a specific context (after testing a condition, event, input port, etc.). The
command can also be useful to repeat the last motion that was already defined and eventually
executed (as for example a relative move).

Related functions: TS_UpdateOnEvent.vi

Associated examples: Example 5, Example 19

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 51

3.4.2.3 TS_UpdateOnEvent.vi

Symbol:

Prototype:

LONG _TS_UpdateOnEvent@0(void);

Parameters:

 Name Description

Input – –

Output return TRUE if no error, FALSE if error

Description: The function updates the motion mode on next event occurrence. It allows you to
start a motion that was previously programmed at the occurrence of the active event. This can be
useful for example if you already defined a motion and you want to start it when an event occurs.
The command can also be used to repeat the last motion that was already defined and eventually
executed (as for example a relative move), when the event will occur.

Related functions: TS_UpdateImmediate.vi

Associated examples: Example 6, Example 38

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 52

3.4.2.4 TS_Stop.vi

Symbol:

Prototype:

LONG _TS_Stop@0(void);

Parameters:

 Name Description

Input – –

Output return TRUE if no error, FALSE if error

Description: The functions stops the motor with the deceleration rate set in TML parameter
CACC. The drive/motor decelerates following a trapezoidal speed profile. If the function is called
during the execution of an S-curve profile, the deceleration profile may be chosen between a
trapezoidal or an S-curve profile. You can detect when the motor has stopped by setting a motion

complete event with function TS_SetEventOnMotionComplete.vi and waiting until the event

occurs (Wait Event = WAIT_EVENT). When the drive performs torque control the drive is set in
torque external mode with current reference = 0.

Remarks:

• In order to restart after a TS_Stop.vi call you need to set again the motion mode. This
operation disables the stop mode and allows the motor to move

• When TS_Stop.vi is executed it will automatically stop any TML program execution, to
avoid overwriting the command from the TML program

• During abrupt stops an important energy may be generated. If the power supply can’t
absorb the energy generated by the motor, it is necessary to foresee an adequate surge
capacitor in parallel with the drive supply to limit the over voltage.

Related functions: TS_QuickStopDecelerationRate.vi

Associated examples: Example 10, Example 13, Example 16, Example 18, Example 21,
Example 22, Example 24, Example 25, Example 26, Example 27
Example 29, Example 30, Example 31, Example 32, Example 34,
Example 40

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 53

3.4.2.5 TS_SetPosition.vi

Symbol:

Prototype:

LONG _TS_SetPosition@4(LONG Position);

Parameters:

 Name Description

Input Position The value used to set the position, expressed in TML position units

Output return TRUE if no error, FALSE if error

Description: The function sets/changes the referential for position measurement by changing
simultaneously the load position (TML variable APOS) and the target position values (TML
variable APOS), while keeping the same position error. Future motion commands will then be

related to the absolute value, as updated at this point to Position.

Related functions: –

Associated examples: Example 6, Example 12, Example 14, Example 28, Example 32,
Example 35, Example 39

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 54

3.4.2.6 TS_SetTargetPositionToActual.vi

Symbol:

Prototype:

LONG _TS_SetTargetPositionToActual@0(void);

Parameters:

 Name Description

Input – –

Output return TRUE if no error, FALSE if error

Description: The function sets the value of the target position (the position reference) to the
value of the actual load position i.e. TPOS = APOS_LD. The command may be used in closed
loop systems when the load/motor is still following a hard stop, to reposition the target position to
the actual load position.

Remark: The command is automatically done if the next motion mode is set with Reference
Base = FROM_MEASURE. In this case the target position and speed are both updated with the
actual values of the load position and respectively load speed: TPOS = APOS_LD and TSPD =
ASPD_LD.

Related functions: –

Associated examples: Example 28

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 55

3.4.2.7 TS_SetCurrent.vi

Symbol:

Prototype:

LONG _TS_SetCurrent@4(SHORT INT Current Value);

Parameters:

 Name Description

Input Current Value
Value at which the motor current reference is set expressed in drive/motor
internal current units

Output Return TRUE if no error, FALSE if error

Description: The function sets the motor run current with Current Value. The run current is used
by the drive to control the step motor in open loop.

Remark: The command is valid only for configurations with step motor operating in open loop.

Related functions: –

Associated examples: Example 8

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 56

3.4.2.8 TS_QuickStopDecelerationRate.vi

Symbol:

Prototype:

LONG _TS_QuickStopDecelerationRate@8(DOUBLE Deceleration);

Parameters:

 Name Description

Input Deceleration The value written in TML parameter CDEC

Output return TRUE if no error, FALSE if error

Description: The function sets on the active axis the TML parameter CDEC with the value

Deceleration. The drive/motor uses the deceleration rate when:

• The function TS_Stop is executed during a positioning set with

TS_MoveSCurveRelative/Absolute and option Deceleration Type =

TRAPEZOIDAL_SPEED_PROFILE

• Enters in quick stop mode. The drive enters in quick stop mode if an error requiring the
immediate stop of the motion occurs (like triggering a limit switch or following a command
error), the drive/motor enters automatically

Related functions: TS_Stop.vi, TS_MoveSCurveRelative.vi, TS_MoveSCurveAbsolute.vi

Associated examples: Example 34

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 57

3.4.3 Events

3.4.3.1 TS_CheckEvent.vi

Symbol:

Prototype:

LONG _TS_CheckEvent@4(SHORT INT *event);

Parameters:

 Name Description

Input – –

Event Signal if event occurred
Output

return TRUE if no error, FALSE if error

Description: The function checks if the actually active event occurred. If an event was defined

using one of the SetEvent… functions with WaitEvent = NO_WAIT_EVENT then you can check

if the event occurred using the TS_CheckEvent.vi function.

This is an interesting alternative to the case when WaitEvent parameter was set to

WAIT_EVENT in one of the SetEvent… functions. In that case, if the event will not occur, due to

some unexpected problems, the program will hang-up in an internal loop of the SetEvent…
function waiting for the event to occur.

Thus, in order to avoid such a problem, set the WaitEvent parameter to NO_WAIT_EVENT, in

the SetEvent… function, and then call the TS_CheckEvent.vi function from your application. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a
given time period.

Related functions: all SetEvent… functions

Associated examples: Example 24, Example 27

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 58

3.4.3.2 TS_SetEventOnMotionComplete.vi

Symbol:

Prototype:

LONG _TS_SetEventOnMotionComplete@8(SHORT INT Wait Event, SHORT INT Enable
Stop);

Parameters:

 Name Description

Wait Event Specifies if the function waits the event occurrence
Input

Enable Stop On motion complete stop the motion

Output return TRUE if no error, FALSE if error

Description: The function sets an event when the motion is completed. You can use, for
example, this event to start your next move only after the actual move is finalized.

The motion complete condition is set in the following conditions:

• During position control:

o If UPGRADE.11=1, when the position reference arrives at the position to reach
(commanded position) and the position error remains inside a settle band for a
preset stabilize time interval. The settle band is set with TML parameter
POSOKLIM and the stabilize time with TML parameter TONPOSOK. This is the
default condition.

o If UPGRADE.11=0, when the position reference arrives at the position to reach
(commanded position)

• During speed control, when the speed reference arrives at the commanded speed

The motion complete condition is reset when a new motion is started i.e. when the update
command – UPD is executed.

Remark:

1. Use function TS_SetIntVariable.vi to change the settle band and/or the stabilize time.
2. In case of steppers controlled open-loop, the motion complete condition for positioning is

always set when the position reference arrives at the position to reach independently of
the UPGRADE.11 status.

If the Wait Event = WAIT_EVENT, the function will continuously test the status of the drive event,
and will wait until the event occurs. There is a drawback of this situation, if the event will not
occur, due to some unexpected problems. In such a case, the program hangs-up in an internal

loop of the TS_SetEventOnMotionComplete.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 59

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 1, Example 2, Example 4, Example 7, Example 14,
Example 20, Example 24, Example 28, Example 29, Example 31,
Example 32, Example 33, Example 35, Example 37, Example 39,
Example 40

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 60

3.4.3.3 TS_SetEventOnMotorPosition.vi

Symbol:

Prototype:

LONG _TS_SetEventOnMotorPosition@20(SHORT INT Position Type, LONG Position,
SHORT INT Over, SHORT INT WaitEvent, SHORT INT Enable Stop);

Parameters:

 Name Description

Position Type Specifies the motor position type: absolute or relative

Position
The position value that triggers the event expressed in TML
position units.

Over Specifies the condition tested

Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence

Output return TRUE if no error, FALSE if error

Description: It allows you to program an event function of motor position. The events can be:

when the absolute (Position Type = ABSOLUTE_POSITION) or relative (Position Type =
ABSOLUTE_RELATIVE) motor position is equal or over/under Position.

The absolute motor position is the measured position of the motor. The relative position is the
load displacement from the beginning of the actual movement. For example if a position profile
was started with the absolute load position 50 revolutions, when the absolute load position
reaches 60 revolutions, the relative motor position is 10 revolutions.

The condition monitored for the event is set with parameter Over. For Over = OVER the event is

set when the motor position is equal or over the Position. When Over = BELOW the event is set

if the motor position becomes equal or under Position.

If the Wait Event = WAIT_EVENT, the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnMotorPosition.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent… functions

Associated examples: Example 11, Example 12, Example 14

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 61

3.4.3.4 TS_SetEventOnLoadPosition.vi

Symbol:

Prototype:

LONG _TS_SetEventOnLoadPosition@20(LONG Position, SHORT INT Over, SHORT INT
Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description

Position Type Specifies the load position type: absolute or relative

Position
The position value that triggers the event expressed in TML
position units.

Over Specifies the condition tested

Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence

Output return TRUE if no error, FALSE if error

Description: It allows you to program an event function of load position. The events can be:

when the absolute (Position Type = ABSOLUTE_POSITION) or relative (Position Type =
ABSOLUTE_RELATIVE) load position is equal or over/under Position.

The absolute load position is the measured position of the load. The relative position is the load
displacement from the beginning of the actual movement.

The condition monitored for the event is set with parameter Over. For Over = OVER the event is

set when the load position is equal or over the Position. When Over = BELOW the event is set if

the load position becomes equal or under Position.

If the Wait Event = WAIT_EVENT, the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnLoadPosition.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 42

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 62

3.4.3.5 TS_SetEventOnMotorSpeed.vi

Symbol:

Prototype:

LONG _TS_SetEventOnMotorSpeed@20(DOUBLE Speed, SHORT INT Over, SHORT INT
WaitEvent, SHORT INT Enable Stop);

Parameters:

 Name Description

Speed
The speed value that triggers the event expressed in drive/motor
internal speed units.

Over Specifies the condition tested

Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence

Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of motor speed. The events can be: when

the motor speed is over (Over = OVER) or under (Over = BELOW) the Speed parameter.

If the Wait Event = WAIT_EVENT, the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnMotionComplete.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 3, Example 6, Example 12

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 63

3.4.3.6 TS_SetEventOnLoadSpeed.vi

Symbol:

Prototype:

LONG _TS_SetEventOnLoadSpeed@20(DOUBLE Speed, SHORT INT Over, SHORT INT
Wait Event, SHORT INT EnableStop);

Parameters:

 Name Description

Speed
The speed value that triggers the event expressed in drive/motor
internal speed units.

Over Specifies the condition tested

Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence

Output return TRUE if no error, FALSE if error

Description: It allows you to program an event function of load speed. The events can be: when

the load speed is over (Over = OVER) or under (Over = BELOW) the Speed parameter.

If the Wait Event = WAIT_EVENT, the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnLoadSpeed.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 42

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 64

3.4.3.7 TS_SetEventOnTime.vi

Symbol:

Prototype:

LONG _TS_SetEventOnTime@12(UNSIGNED SHORT INT Time, SHORT INT Wait Event,
SHORT INT Enable Stop);

Parameters:

 Name Description

Time Time delay expressed in TML time units

Wait Event Specifies if the function waits the event occurrence Input

Enable Stop On event stop the motion

Output return TRUE if no error, FALSE if error

Description: The function programs an event after a time period equal to the value of the Time
parameter.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnTime.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Remark: The timers start ONLY after the execution of the ENDINIT (end of initialization)
command. Therefore you should not set wait events before executing this command.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 1, Example 2, Example 4, Example 7, Example 13,
Example 17, Example 19

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 65

3.4.3.8 TS_SetEventOnPositionRef.vi

Symbol:

Prototype:

LONG _TS_SetEventOnPositionRef@16(LONG Position, SHORT INT Over, SHORT INT
Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description

Position
The position reference value that triggers the event expressed in
TML position units.

Over Specifies the condition tested

Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence

Output return TRUE if no error, FALSE if error

Description: It allows you to program an event function of position reference. Setting this event

you can detect when the position reference is over (Over = OVER) or under (Over = BELOW) the

value of parameter Position.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnPositionRef.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 12, Example 32

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 66

3.4.3.9 TS_SetEventOnSpeedRef.vi

Symbol:

Prototype:

LONG _TS_SetEventOnSpeedRef@20(DOUBLE Speed, SHORT INT Over, SHORT INT Wait
Event, SHORT INT Enable Stop);

Parameters:

 Name Description

Speed
The speed reference value that triggers the event expressed in
TML speed units.

Over Specifies the condition tested

Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence

Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of speed reference. Setting this event

you can detect when the speed reference is over (Over = OVER) or under (Over = BELOW) the

value of parameter Speed.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnSpeedRef.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 12, Example 42

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 67

3.4.3.10 TS_SetEventOnTorqueRef.vi

Symbol:

Prototype:

LONG _TS_SetEventOnTorqueRef@16(SHORT INT Torque, SHORT INT Over, SHORT INT
Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description

Torque
The torque reference value that triggers the event expressed in
TML current units.

Over Specifies the condition tested

Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence

Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of torque reference. Setting this event

you can detect when the torque reference is over (Over = OVER) or under (Over = BELOW) the

value of parameter Torque.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnTorqueRef.vi function, waiting for the event to occur.

If the parameter WaitEvent = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 23

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 68

3.4.3.11 TS_SetEventOnEncoderIndex.vi

Symbol:

Prototype:

LONG _TS_SetEventOnEncoderIndex@16(SHORT INT Index Type, SHORT INT Transition
Type, SHORT INT WaitEvent, SHORT INT Enable Stop);

Parameters:

 Name Description

Index Type Specifies the index monitored for transition

Transition Type Specifies the input transition monitored

Wait Event Specifies if the function waits the event occurrence
Input

Enable Stop Stop the motion when at event occurrence

Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor encoder index inputs. You

can monitor the first encoder index (Index Type = Index_1) or the second encoder index (Index
Type = Index_2). The event is trigger by encoder index transition low to high when Transition
Type = TRANSITION_LOW_TO_HIGH or by the transition high to low when Transition Type =
TRANSITION_ HIGH_TO_LOW.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnEncoderIndex.vi function, waiting for the event to occur.

If the parameter WaitEvent = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 27

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 69

3.4.3.12 TS_SetEventOnLimitSwitch.vi

Symbol:

Prototype:

LONG _TS_SetEventOnLimitSwitch@16(SHORT INT Limit Switch Type, SHORT INT
Transition Type, SHORT INT Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description

Limit Switch Type Specifies the limit switch monitored for transition

Transition Type Specifies the input transition monitored

Wait Event Specifies if the function waits the event occurrence
Input

Enable Stop Stop the motion when at event occurrence

Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor limit switch inputs. The
event is set:

• when a transition occurs on limit switch negative if parameter Limit Switch Type =
LSW_NEGATIVE

• when a transition occurs on limit switch negative if parameter Limit Switch Type =
LSW_POSITIVE

You can monitor the limit switch transition low to high when Transition Type =
TRANSITION_LOW_TO_HIGH or the transition high to low when Transition Type =
TRANSITION_ HIGH_TO_LOW.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnLimitSwitch.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = TRUE. Set Enable
Stop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi and all other SetEvent… functions

Associated examples: Example 9, Example 17

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 70

3.4.3.13 TS_SetEventOnDigitalInput.vi

Symbol:

Prototype:

LONG _TS_SetEventOnDigitalInput@16(UNSIGNED CHAR Input Port, UNSIGNED CHAR
Status, SHORT INT Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description

Input Port Specifies the digital input monitored

Status The input status that trigger the event

Wait Event Specifies if the function waits the event occurrence
Input

Enable Stop Stop the motion when at event occurrence

Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor general purpose digital

inputs. The event is set when a transition occurs on digital input Input Port.

You can monitor when the digital input goes high (Status = IO_HIGH) or the digital input goes low

(Status = IO_LOW).

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnDigitalInput.vi function, waiting for the event to occur.

If the parameter WaitEvent = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi and all other SetEvent… functions

Associated examples: Example 5, Example 8, Example 15

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 71

3.4.3.14 TS_SetEventOnHomeInput.vi

Symbol:

Prototype:

LONG _TS_SetEventOnHomeInput@12(UNSIGNED CHAR Status, SHORT INT Wait Event,
SHORT INT Enable Stop);

Parameters:

 Name Description

Status Input port status (High/low)

Wait Event Specifies if the function waits the event occurrence Input

Enable Stop Stop the motion when at event occurrence

Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor general purpose digital
input assigned as home input. The home input is specific for each product and based on the
setup data. The event is set when a transition occurs on home input.

You can monitor when the home input goes high (Status = IO_HIGH) or the home input goes low

(Status = IO_LOW).

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the

TS_SetEventOnHomeInput.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the

TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi and all other SetEvent… functions

Associated examples: Example 28, Example 38 Example 39

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 72

3.4.4 TML jumps and function calls

3.4.4.1 TS_GOTO.vi

Symbol:

Prototype:

LONG _TS_GOTO@4(UNSIGNED SHORT INT address);

Parameters:

 Name Description

Input address The memory address where the jump is made

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML code beginning from the

address until TML instruction END is encountered. The TML code can be stored in the
drive/motor EEPROM memory or in the TML program memory.

Prior calling the TS_GOTO.vi function you have to:

• Create a TML sequence using EasyMotion Studio

• Download the TML code in the drive/motor memory with EasyMotion Studio or subVI
TS_DownloadProgram.vi

• Make sure that a valid instruction is found at address. Otherwise, unpredictable effects
can occur, which can affect the correct operation of the drive/motor.

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_GOTO_Label.vi, TS_CALL.vi,
TS_CALL_Label.vi

Associated examples: Example 29, Example 30

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 73

3.4.4.2 TS_GOTO_Label.vi

Symbol:

Prototype:

LONG _TS_GOTO_Label@4(CSTR Label);

Parameters:

 Name Description

Input Label TML program label where the jump is made

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML code beginning from

label Label until TML instruction END is encountered. The TML code can be stored in the
drive/motor EEPROM memory or in the TML program memory. The selection of the memory type
used for the program is done from Memory Settings.

The string Label must be a valid TML label, defined in EasyMotion Studio prior generating the
setup information.

Prior calling the TS_GOTO_Label.vi function you have to:

• Create a TML sequence using EasyMotion Studio. The commands sequence must start

with Label declaration.

• Select, in the Memory Setting dialogue, from where you want to run the TML program:
TML program or EEPROM.

• Create the COFF file (*.out) with the menu command Application | Motion | Build

• Generate the configuration setup with the menu command Application | Export to
TML_lib… to include the new Label in the setup data

• Download the TML code in the drive/motor memory with EasyMotion Studio or with

function TS_DownloadProgram.vi.

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_GOTO_Label.vi, TS_CALL.vi,
TS_CALL_Label.vi

Associated examples: Example 29

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 74

3.4.4.3 TS_CALL.vi

Symbol:

Prototype:

LONG _TS_CALL@4(UNSIGNED SHORT INT address);

Parameters:

 Name Description

Input address The memory address where the jump is made

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at

address. The TML functions can be stored in the drive/motor EEPROM memory or in the TML

program memory. The function execution ends when the TML instruction RET is encountered.

Prior using the TS_CALL.vi function you have to:

• Create at least one TML function using EasyMotion Studio

• Download the TML code in the drive/motor memory with EasyMotion Studio or function
TS_DownloadProgram

• In the Command Interpreter type the command ?Function_name to retrieve the function
address. Repeat the procedure above for all the functions

• Make sure that a valid TML code subroutine begins at address. Otherwise, unpredictable
effects can occur, which can affect the correct operation of the drive/motor.

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_CALL_Label.vi, TS_CancelableCALL.vi,
TS_CancelableCALL_Label.vi

Associated examples: Example 30

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 75

3.4.4.4 TS_CALL_Label.vi

Symbol:

Prototype:

LONG _TS_CALL_Label@4(CSTR Function Name);

Arguments:

 Name Description

Input Function Name Name of the TML function

Output Return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function Function
Name. The TML functions can be stored in the drive/motor EEPROM memory or in the TML

program memory. The function execution ends when the TML instruction RET is encountered.

The string Function Name must be a valid TML function name, defined in EasyMotion Studio
prior generating the setup information.

Prior using the TS_CALL_Label.vi function you have to:

• Create at least one TML function using EasyMotion Studio

• Generate the configuration setup

• Download the TML code in the drive/motor memory with EasyMotion Studio or function
TS_DownloadProgram

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_CALL.vi, TS_CancelableCALL.vi,
TS_CancelableCALL_Label.vi

Associated examples: Example 30

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 76

3.4.4.5 TS_CancelableCALL.vi

Symbol:

Prototype:

LONG _TS_CancelableCALL@4(UNSIGNED SHORT INT address);

Parameters:

 Name Description

Input address Name of the TML function

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at

address. Use this command if the exit from the called TML function depends on conditions that

may not be reached. In this case, using function TS_Abort.vi you can terminate the function
execution and return to the next instruction after the call. The TML functions can be stored in the
drive/motor EEPROM memory or in the TML program memory.

Prior using the TS_CancelableCALL.vi function you have to:

• Create at least one TML function using EasyMotion Studio

• Download the TML code in the drive/motor memory with EasyMotion Studio or function
TS_DownloadProgram

• Make sure that a valid TML code subroutine begins at address. Otherwise, unpredictable
effects can occur, which can affect to correct operation of the drive/motor.

Remark:

1. You can call only one function at a time using the TS_CancelableCALL. Any cancelable
call issued during the execution of a function called with TS_CancelableCALL is ignored.
This situation is signaled with bit SRL.7.

2. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

3. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_CALL.vi, TS_CALL_Label.vi,
TS_CancelableCALL_Label.vi

Associated examples: -

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 77

3.4.4.6 TS_CancelableCALL_Label.vi

Symbol:

Prototype:

LONG _TS_CancelableCALL_Label@4(CSTR Function Name);

Parameters:

 Name Description

Input Function Name Name of the TML function

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function named

Function Name. Use this command if the exit from the called TML function depends on

conditions that may not be reached. In this case, using function TS_Abort.vi you can terminate
the TML function execution and return to the next instruction after the call. The TML functions can
be stored in the drive/motor EEPROM memory or in the TML program memory.

Prior using the TS_CancelableCALL_Label.vi function you have to:

• Create at least one TML function using EasyMotion Studio

• Select, in the Memory Setting dialogue, from where you want to run the TML program:
TML program or EEPROM.

• Create the COFF file (*.out) with the menu command Application | Motion | Build.

• Generate the configuration setup with the menu command Application | Export to
TML_lib… to include the new function names in the setup data

• Download the TML code in the drive/motor memory with EasyMotion Studio or function

TS_DownloadProgram.vi

Remark:

1. You can call only one function at a time using the TS_CancelableCALL.vi. Any cancelable
call issued during the execution of a function called with TS_CancelableCALL.vi is
ignored. This situation is signaled with bit x from SRL.

2. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

3. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_CALL.vi, TS_CALL_Label.vi,
TS_CancelableCALL .vi

Associated examples: Example 34

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 78

3.4.4.7 TS_ABORT.vi

Symbol:

Prototype:

LONG _TS_Abort@0(void);

Parameters:

 Name Description

Input – –

Output return TRUE if no error, FALSE if error

Description: The function aborts the execution of a TML function launched with a cancelable call.

Related functions: TS_CancelableCALL.vi, TS_CancelableCALL_Label.vi

Associated examples: Example 34

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 79

3.4.5 IO handling

3.4.5.1 TS_SetupInput.vi

Symbol:

Prototype:

LONG _TS_SetupInput@4(UNSIGNED CHAR Port Number);

Parameters:

 Name Description

Input Port Number Port number to be set as input

Output return TRUE if no error, FALSE if error

Description: The function sets the I/O Port Number of the drive/motor as an input port.

Use the function only if the input selected may also be used as an output. Check the drive/motor
user manual to find what inputs are available. Do this operation only once, first time when you
use the input. If the drive/motor has the inputs separated from the outputs (i.e. none of the input
line can be used as output) you don’t have to use the function.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

• from #0 to #39 for firmware FAxx
1
. The list is unordered, for example, a product with 4

inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31.

• From 0 to 15 for firmware version FBxx
2
. The list is ordered, for example, a product with

5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1, and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of I/Os is used.

Related functions: TS_GetInput.vi, TS_SetupOutput.vi, TS_SetOutput.vi

Associated examples: Example 5, Example 8, Example 10, Example 15, Example 16,
Example 18, Example 30

1
 Represents the firmware versions: F000H, F020H, F005H, F900H or later programmed on Technosoft

drives/motors: IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and
MA)
2
 Represents the firmware versions F500A or later programmed on Technosoft drives: IDM240

CANopen/IDM640 CANopen, IDS640 CANopen

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 80

3.4.5.2 TS_GetInput.vi

Symbol:

Prototype:

LONG _TS_GetInput@4(UNSIGNED CHAR Port Number, UNSIGNED CHAR *In Value);

Parameters:

 Name Description

Port Number Input port number read
Input

In Value Pointer to the variable where the port status is stored

Output return TRUE if no error, FALSE if error

Description: The function returns the status of digital input Port Number. When the function is

executed, the variable In Value, where the input line status is saved, becomes:

• Zero if the input line was low

• Non-zero if the input line was high

If the IO port selected can be used as input or an output, prior to call TS_GetInput.vi, you need to

call TS_SetupInput and configure IO port as input. Check the drive/motor user manual to find
what inputs are available.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

• From #0 to #39 for firmware FAxx
1
. The list is unordered, for example, a product with 4

inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31.

• From 0 to 15 for firmware version FBxx
2
. The list is ordered, for example, a product with

5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1, and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of I/Os is used.

Related functions: TS_SetupInput.vi, TS_SetupOutput.vi, TS_SetOutput.vi

Associated examples: Example 10, Example 15, Example 16, Example 18, Example 30

1
 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:

IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2
 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640

CANopen, IDS640 CANopen

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 81

3.4.5.3 TS_SetupOutput.vi

Symbol:

Prototype:

LONG _TS_SetupOutput@4(UNSIGNED CHAR Port Number);

Parameters:

 Name Description

Input Port Number Port number to be set as output

Output Return TRUE if no error, FALSE if error

Description: The function configures the digital I/O port Port Number of the drive/motor as an
output port.

Use the function only if the selected output may also be used as an input. Check the drive/motor
user manual to find what outputs are available. Do this operation only once, first time when
you use the output. If the drive/motor has the outputs separated from the inputs (i.e. none of the
output line can be used as an input) you don’t have to use the function.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

• from #0 to #39 for firmware FAxx
1
. The list is unordered, for example, a product with 4

inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31

• From 0 to 15 for firmware version FBxx
2
. The list is ordered, for example, a product with

5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1, and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of I/Os is used.

Related functions: TS_GetInput.vi, TS_SetupOutput.vi, TS_SetOutput.vi

Associated examples: Example 14

1
 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:

IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2
 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640

CANopen, IDS640 CANopen

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 82

3.4.5.4 TS_SetOutput.vi

Symbol:

Prototype:

LONG _TS_SetOutput@8(UNSIGNED CHAR Port Number, UNSIGNED CHAR Out Value);

Parameters:

 Name Description

Port Number Output port number to be written
Input

Out Value Output status value to be set

Output return TRUE if no error, FALSE if error

Description: The function set/resets the status of digital output port Port Number of the
drive/motor.

The port status IO_LOW or IO_HIGH is set corresponding to the value of the Out Value
parameter.

If the IO port selected may also be used as input or an output, prior to call TS_SetOutput.vi, you

need to call TS_SetupOutput.vi and configure IO port as output.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

• from #0 to #39 for firmware FAxx
1
. The list is unordered, for example, a product with 4

inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31

• From 0 to 15 for firmware version FBxx
2
. The list is ordered, for example, a product with

5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1 and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of I/Os is used.

Related functions: TS_SetupOutput.vi, TS_SetupInput.vi, TS_GetInput.vi

Associated examples: Example 14

1
 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:

IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2
 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640

CANopen, IDS640 CANopen

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 83

3.4.5.5 TS_GetHomeInput.vi

Symbol:

Prototype:

LONG _TS_GetHomeInput@4(UNSIGNED CHAR *In Value);

Parameters:

 Name Description

Input In Value Pointer to the variable where the port status is stored

Output Return TRUE if no error, FALSE if error

Description: The function returns the status of the general purpose digital input assigned as

home input. Check the drive/motor user manual to find the IO configuration.

When the function is executed, the variable In Value where the input line status is saved
becomes:

• Zero if the input line was low

• Non-zero if the input line was high

If the input port may also be used as output, prior to call TS_GetInput.vi, you need to call

TS_SetupInput.vi and configure it as input.

Related functions: TS_SetupInput.vi, TS_SetupOutput.vi, TS_SetOutput.vi

Associated examples: Example 32, Example 38

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 84

3.4.5.6 TS_GetMultipleInputs.vi

Symbol:

Prototype:

LONG _TS_GetMultipleInputs(CSTR Variable Name, SHORT INT *Status);

Parameters:

 Name Description

Input Variable Name TML variable where the inputs status is saved on the drive

Status Pointer to variable where the value of Variable Name is stored
Output

Return TRUE if no error, FALSE if error

Description: The function reads simultaneously the status of more inputs and save their status in

TML variable Variable Name on the drive/motor. The value of Variable Name is then uploaded

and stored in the Status variable.

For drives/motors programmed with firmware version FAxx
1
 the digital inputs read are:

• Enable input – saved in bit 15 of pszVarName

• Limit switch input for negative direction (LSN) – saved in bit 14 of pszVarName

• Limit switch input for positive direction (LSP) – saved in bit 13 of pszVarName

• General-purpose inputs #39, #38, #37 and #36 – saved in bits 3, 2, 1 and 0 of

pszVarName

If the drive/motor is programmed with firmware version FBxx
2
 then the function reads all the input

lines available of the drive/motor. The digital inputs are numbered from 0 to 15. The input’s

number represents also the position of the corresponding bit from the pszVarName, i.e. input

number x has associated bit x from the pszVarName.

The bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the input is
high. The other bits of the variable are set to 0.

Remark: If one of these inputs is inverted inside the drive/motor, the corresponding bit from the
variable is inverted too. Hence, these bits always show the inputs status at connectors level (0 if
input is low and 1 if input is high) even when the inputs are inverted.

The variable Variable Name is of type integer and must be defined with EasyMotion Studio
before generating the setup files.

Related functions: TS_SetIndexCapture.vi, TS_SetNegativeLimitSwitch.vi,
TS_SetPositiveLimitSwitch.vi

Associated examples: Example 37

1
 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:

IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2
 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640

CANopen, IDS640 CANopen

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 85

3.4.5.7 TS_SetMultipleOutputs.vi

Symbol:

Prototype:

BOOL TML_EXPORT TS_SetMultipleOutputs(CSTR Variable Name, SHORT INT Status);

Parameters:

 Name Description

Variable Name
Intermediary TML variable necessary to store the outputs status to
be set on the drive/motor Input

Status The value with which the outputs are set

Output return TRUE if no error, FALSE if error

Description: The function sets simultaneous more outputs of the drive/motor with the value of

parameter Status. Its value is transferred and stored on the drive in pszVarName TML variable
and from there is used to set the outputs.

Remark: The function is designed for drives/motors programmed with firmware version FAxx
1
.

For drives/motors programmed with firmware version FBxx
2
 use the TS_SetMultipleOutputs2

function.

The outputs are:

• Ready output – set by bit 15 of pszVarName

• Error output – set by bit 14 of pszVarName

• General-purpose outputs: #31, #30, #29, #28 – set by bits 3, 2, 1, and 0 of pszVarName

The outputs are set as follows: low if the corresponding bit in the variable is 0 and high if the
corresponding bit in the variable is 1. The other bits of the variable are not used.

Remark: If one of these outputs is inverted inside the drive/motor, its command is inverted.
Hence, the outputs are always set at connectors level according with the bits values (low if bit is 0
and high if bit is 1) even when the outputs are inverted.

CAUTION: Do not use TS_SetMultipleOututs.vi if any of the 6 outputs mentioned is not on the
list of available outputs of your drive/motor. There are products that use some of these outputs
internally for other purposes. Attempting to change these lines status may harm your product.

Related functions: TS_SetIndexCapture.vi, TS_SetNegativeLimitSwitch.vi,
TS_SetPositiveLimitSwitch.vi

Associated examples: Example 37

1
 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:

IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2
 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640

CANopen, IDS640 CANopen

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 86

3.4.5.8 TS_SetMultipleOutputs2.vi

Symbol:

Prototype:

BOOL TML_EXPORT TS_SetMultipleOutputs2(CSTR Variable Name, SHORT INT Status);

Parameters:

 Name Description

SelectedPorts
Mask for selecting the outputs controlled. Each bit of the
parameter represents an output port. Input

Status Parameter containing the outputs status to be set

Output return TRUE if no error, FALSE if error

Description: The function sets simultaneous the digital outputs of the drive/motor selected with

the SelectedPorts mask using the value of the Status parameter.

Remark: The function is designed for drives/motors programmed with firmware version FBxx
1
.

For drives/motors programmed with firmware version FAxx
2
 use the TS_SetMultipleOutputs

function.

The digital outputs are numbered from 0 to 15 and they form an ordered list, for example, a
product with 3 outputs will have 0, 1 and 2. The input’s number represents also the position of the

corresponding bit from the SelectedPorts mask, i.e. input number x has associated bit x from the

SelectedPorts.

The outputs are set as follows:

• low if the corresponding bit from the SelectedPorts is 1 and the corresponding bit from

Status variable is 0.

• high if it’s the corresponding bit from SelectedPorts is 1 and the corresponding bit from
SelectedPorts is 1.

Related functions: TS_SetIndexCapture.vi, TS_SetNegativeLimitSwitch.vi,
TS_SetPositiveLimitSwitch.vi

Associated examples: –

1
 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640

CANopen, IDS640 CANopen
2
 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:

IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 87

3.4.6 Data transfer

3.4.6.1 TS_SetIntVariable.vi

Symbol:

Prototype:

LONG _TS_SetIntVariable@8(CSTR Variable Name, SHORT INT Value);

Parameters:

 Name Description

Input Variable Name TML parameter name

 Value The value to be written

Output return TRUE if no error; FALSE if error

Description: The function writes the Value in the TML data Variable on the active axis. The TML
data (parameter, variable or user defined variable) is of type long (16-bit).

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_GetIntVariable.vi, TS_SetLongVariable.vi, TS_GetLongVariable.vi,
TS_SetFixedVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 18

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 88

3.4.6.2 TS_GetIntVariable.vi

Symbol:

Prototype:

LONG _TS_GetIntVariable@8(CSTR Variable Name, SHORT INT *Read Value);

Parameters:

 Name Description

Input Variable Name Name of the TML parameter, variable or used defined variable

Read Value Pointer to the variable where the value is stored
Output

return TRUE if no error, FALSE if error

Description: The function reads the value of TML data Variable Name. The TML data
(parameter, variable or user defined variable) is of type integer (16-bit). The value read is saved

in the variable pointed by Read Value.

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_SetIntVariable.vi, TS_SetLongVariable.vi, TS_SetFixedVariable.vi,
TS_GetLongVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 18, Example 20, Example 36, Example 38

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 89

3.4.6.3 TS_SetLongVariable.vi

Symbol:

Prototype:

LONG _TS_SetLongVariable@8(CSTR Variable Name, LONG value);

Parameters:

 Name Description

Variable Name Name of the parameter
Input

Value The value to be written

Output return TRUE if no error, FALSE if error

Description: The function writes the Value in the TML data Variable Name on the active axis.
The TML data (parameter, variable or user defined variable) is of type long (32-bit).

Remarks:

3. The available TML data is configuration dependent and is listed in the variables.cfg file
4. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_GetIntVariable.vi, TS_SetIntVariable.vi, TS_GetLongVariable.vi,
TS_SetFixedVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 20, Example 34

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 90

3.4.6.4 TS_GetLongVariable.vi

Symbol:

Prototype:

LONG _TS_GetLongVariable@8(CSTR Variable Name, LONG *Read Value);

Parameters:

 Name Description

Input Variable Name of the parameter

Read Value Pointer to the variable where the parameter value is stored
Output

Return TRUE if no error, FALSE if error

Description: The function reads the value of TML data Variable. The TML data (parameter,
variable or user defined variable) is of type long (32-bit). The value read is saved in the variable

pointed by Read Value.

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_SetIntVariable.vi, TS_SetLongVariable.vi, TS_SetFixedVariable.vi,
TS_GetIntVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 20, Example 24, Example 27, Example 28, Example 34,
Example 35, Example 42

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 91

3.4.6.5 TS_SetFixedVariable.vi

Symbol:

Prototype:

LONG _TS_SetFixedVariable@12(CSTR Variable Name, DOUBLE Value);

Parameters:

 Name Description

Variable Name Name of the parameter
Input

Value The value to be written

Output return TRUE if no error, FALSE if error

Description: The function converts the Value to type fixed and writes it in the TML data Variable
Name on the active axis. The TML data (parameter, variable or user defined variable) is of type
fixed (16 bits integer part, 16 bits fractional part).

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_SetIntVariable.vi, TS_GetIntVariable.vi, TS_SetLongVariable.vi,
TS_GetLongVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 19, Example 34

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 92

3.4.6.6 TS_GetFixedVariable.vi

Symbol:

Prototype:

LONG _TS_GetFixedVariable@8(CSTR Variable Name, DOUBLE *value);

Parameters:

 Name Description

Input Variable Name Name of the parameter

Read Value Pointer where the parameter value is stored
Output

Return TRUE if no error, FALSE if error

Description: The function reads the value of TML data Variable Name from the active axis. The
TML data (parameter, variable or user defined variable) is of type fixed (16 bits integer part, 16
bits fractional part). The value read is converted to double and saved in the variable pointed by
Read Value.

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_SetIntVariable.vi, TS_SetLongVariable.vi, TS_SetFixedVariable.vi,
TS_GetIntVariable.vi, TS_GetLongVariable.vi

Associated examples: Example 19

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 93

3.4.6.7 TS_SetBuffer.vi

Symbol:

Prototype:

LONG _TS_SetBuffer@12(UNSIGNED SHORT INT Address, LONG *Array Values, SHORT
INT Size);

Parameters:

 Name Description

Address Start address where to download the data buffer
Input

Array Values Pointer to the array with data to be downloaded

 Size The number of words to download

Output return TRUE if no error, FALSE if error

Description: The function downloads a data buffer on the active axis. The parameter Array
Values points to the beginning of the array from where the data will be downloaded. The length of

the buffer is set with parameter Size. The data is stored on the drive/motor starting with Address.

The Address can belong to drive/motor EEPROM memory or TML data memory.

Remark: For details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio on line help.

Related functions: TS_GetBuffer.vi

Associated examples: Example 20, Example 39

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 94

3.4.6.8 TS_GetBuffer.vi

Symbol:

Prototype:

LONG _TS_GetBuffer@12(UNSIGNED SHORT INT Address, LONG *Array Values, SHORT
INT Size);

Parameters:

 Name Description

Address Start address from where the data will be uploaded
Input

Array Values Pointer to the array where the uploaded data will be stored

 Size The number of words to upload

Output return TRUE if no error, FALSE if error

Description: The function uploads a data buffer from the active axis. The start address of the

buffer is set with parameter Address and its length is Size. The Address can belong to

drive/motor EEPROM memory or TML data memory. The parameter Array Values points to the
beginning of the array where the uploaded data is stored.

Remark: For details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio on line help.

Related functions: TS_SetBuffer.vi

Associated examples: Example 20, Example 39

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 95

3.4.7 Drive/motor monitoring

3.4.7.1 TS_ReadStatus.vi

Symbol:

Prototype:

LONG _TS_ReadStatus@8(SHORT INT TML Register, SHORT INT *Status);

Parameters:

 Name Description

Input TML Register Registers selection

Status Pointer of the variable where the status is saved
Output

return TRUE if no error; FALSE if error

Description: The function returns drive/motor status information. Depending on the value of TML

Register parameter, you can examine the contents of the Motion Control Register (TML Register
= REG_MCR), Motion Status Register (TML Register = REG_MSR), Interrupt Status Register

(TML Register = REG_ISR), Status Register Low (TML Register = REG_SRL), Status Register

High (TML Register = REG_SRH) or Motion Error Register (TML Register = REG_MER) of the
drive/motor.

Related functions: –

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 96

3.4.7.2 TS_OnlineChecksum.vi

Symbol:

Prototype:

LONG _TS_OnlineChecksum@12(UNSIGNED SHORT INT Start Address, SHORT INT End
Address, SHORT INT *Checksum);

Parameters:

 Name Description

Input Start Address The memory range start address

 End Address The memory range end address

 Checksum Pointer to the variable where the checksum is stored

Output return TRUE if no error, FALSE if error

Description: The function requests from the active axis the checksum of a memory range. The

memory range is defined with parameters Start Address and End Address. The function stores

the checksum received from the drive in variable Checksum.

With function TS_OnlineChecksum.vi you can check the integrity of the data saved in a
drive/motor EEPROM or RAM memory. The memory type is selected automatically function of the

Start Address and the End Address.

Related functions: TS_SetBuffer.vi

Associated examples: Example 39

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 97

3.4.8 Miscellaneous

3.4.8.1 TS_DownloadProgram

Symbol:

Prototype:

LONG _TS_DownloadProgram@8(CSTR File Name, UNSIGNED SHORT INT *Entry Point);

Parameters:

 Name Description

Input pszOutFile The name of the out file generated with EasyMotion Studio

wEntryPoint Start address of downloaded file
Output

return TRUE if no error, FALSE if error

Description: The function downloads a COFF formatted file to the drive/motor, and returns the

entry point of that file. Parameter File Name specifies the name of the object file to be
downloaded. If the operation is successful, the function will return the entry point (start address)

of the downloaded code in the Entry Point parameter. You can use this address to launch the

execution of the downloaded code, by using it as the input argument of the TS_GOTO.vi or

TS_CALL.vi functions.

The COFF file is generated from EasyMotion Studio with menu command Application | Motion |
Build and is saved in the application directory. You can download several such applications in
different locations of the drive internal memory, and execute them according to your application

status, with the TS_GOTO.vi or TS_CALL.vi functions.

Related functions: TS_GOTO.vi, TS_CALL.vi

Associated examples: Example 29, Example 30

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 98

3.4.8.2 TS_Execute.vi

Symbol:

Prototype:

LONG _TS_Execute@4(CSTR Commands);

Parameters:

 Name Description

Input Commands String containing the TML source code to be executed.

Output return TRUE if no error, FALSE if error

Description: The function executes the TML commands entered in TML source code format (as
is entered in the Command Interpreter), from a string containing that code. Use this function if you
want to send a specific motion sequence, directly written in TML language.

Build a string Commands containing the source TML code and then call the TS_Execute.vi
function in order to compile the code and to send on-line the associated TML object commands.

If a compile error occurs, the function returns a FALSE, otherwise it returns TRUE.

Related functions: TS_ExecuteScript.vi

Associated examples: Example 9, Example 10, Example 11, Example 13, Example 20,
Example 25, Example 39, Example 41

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 99

3.4.8.3 TS_ExecuteScript.vi

Symbol:

Prototype:

LONG _TS_ExecuteScript@4(CSTR File Name);

Parameters:

 Name Description

Input File Name
The name of the file containing the TML source code to be
executed.

Output Return TRUE if no error, FALSE if error

Description: The function executes TML commands entered in TML source code format (as is
entered in the Command Interpreter) from a script file. Use this function if you want to send a
specific motion sequence, directly written in TML language.

Define a data file File Name containing the source TML code you want to send to the drive and

then call the TS_ExecuteScript.vi function in order to compile the code and to send on-line the
associated TML object commands.

If a compile error occurs, the function returns a FALSE, otherwise it returns TRUE.

Related functions: TS_Execute.vi

Associated examples: Example 25

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 100

3.4.8.4 TS_GetOutputOfExecute.vi

Symbol:

Prototype:

LONG _TS_GetOutputOfExecute@8(CSTR Output, SHORT INT Max Chars);

Parameters:

 Name Description

Output
String containing the TML source code generated at the last
library function call. Input

Max Chars The maximum numbers of characters to return in the string

Output return TRUE if no error, FALSE if error

Description: The function returns the TML output source code of the last previously executed
TML_LIB_LabVIEW library function call. Use this function if you want to examine the TML code
that is generated when you call one of the functions of the TML_LIB_LabVIEW library.

The code is returned in the Output string. Set the maximum number of characters to be returned

as the value of the Max Chars parameter.

Related functions: TS_Execute.vi

Associated examples: Example 41

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 101

3.4.8.5 TS_Save.vi

Symbol:

Prototype:

LONG _TS_Save@0(void);

Parameters:

 Name Description

Input – –

Output return TRUE if no error; FALSE if error

Description: The function saves the actual values of all the TML parameters with setup data from
the active data RAM memory into the EEPROM memory, in the setup table. Through this
command, you can save all the setup modifications done, after the power on initialization.

Related functions: TS_Reset.vi, TS_Save.vi

Associated examples: Example 20

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 102

3.4.8.6 TS_ResetFault.vi

Symbol:

Prototype:

LONG _TS_ResetFault@0(void);

Parameters:

 Name Description

Input – –

Output return TRUE if no error; FALSE if error

Description: The function gets out the active axis from the FAULT status in which it enters when

an error occurs. After a TS_ResetFault.vi execution, most of the errors bits from Motion Error

Register are cleared (set to 0), the Ready output (if present) is set to the ready level, the Error
output (if present) is set to the no error level and the drive/motor returns to normal operation.

Remarks:

• The TS_ResetFault.vi execution does not change the status of MER.15 (enable input on
disabled level), MER.7 (negative limit switch input active), MER.6 (positive limit switch
input active) and MER.2 (invalid setup table)

• The drive/motor will return to FAULT status if there are errors when the function is
executed

Related functions: TS_Power.vi

Associated examples: Example 36

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 103

3.4.8.7 TS_Reset.vi

Symbol:

Prototype:

LONG _TS_Reset@0(void);

Parameters:

 Name Description

Input – –

Output return TRUE if no error; FALSE if error

Description: The function resets the active axis. After reset the drive/motor will load the values of

TML parameters set during setup phase. If the drive/motor is configured to run in the ‘Autorun’
mode, it will automatically execute after reset the TML code stored in the E2ROM memory (if
there is such a program).

Remark: If during drive/motor operation you have changed the setup parameters and want to use
them after the reset, call function TS_Save.vi prior TS_Reset.vi. The function TS_Save.vi stores
in the drive/motor EEPROM memory the actual values of all TML parameters.

Related functions: TS_Power.vi, TS_DownloadProgram.vi, TS_GOTO.vi, TS_Save.vi

Associated examples: Example 20, Example 36

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 104

3.4.8.8 TS_GetLastErrorText.vi

Symbol:

Prototype:

CSTR _TS_GetLastErrorText@0(void);

Parameters:

 Name Description

Input – –

Output return A text related to the last occurred error

Description: The function returns a text related with the last occurred error during a
TML_LIB_LabVIEW function execution. You can visualize this text in order to see what the
problem was.

Related functions: –

Associated examples: all

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 105

3.4.9 Data logger

3.4.9.1 TS_SetupLogger.vi

Symbol:

Prototype:

LONG _TS_SetupLogger@20(UNSIGNED SHORT INT Logger Address, UNSIGNED SHORT
INT Logger Length, UNSIGNED SHORT INT *Array Addresses, UNSIGNED SHORT INT
Count Address, UNSIGNED SHORT INT Logger Period);

Parameters:

 Name Description

Logger Address
The address of the logger buffer in drive/motor memory, where
data will be stored during logging

Logger Length The length in words of the logger buffer

Array Addresses
Pointer to the array containing the drive/motor memory addresses
to be logged

Count Address The number of memory addresses to be logged

Input

Logger Period
Time interval between two consecutive data logging expressed in
drive/motor time units

Output return TRUE if no error, FALSE if error

Description: The function sets the parameters of the data logger on the active axis. Use this
function if you want to perform data logging at the drive/motor level during the motion execution
and analyze it at the PC level.

Set the Logger Address parameter with the starting address of the drive/motor data memory

buffer where a number of Logger Length data points of logged data will be stored.

The addresses of TML data logged are stored in an array of length Count Address. Parameter

Array Addresses points to the beginning of the array where the uploaded data will be stored.

Remark The number of data sets which can be stored will be determined as the integer part of
the ratio Logger Length / Count Address.

The parameter Logger Period sets how often the TML data is logged. The period can have any
value between 1 and 7FFF.

Remark: Be careful when using the data logger functions! Incorrect settings related to data logger
buffer location and size may lead to improper operation of the drive, with unpredictable results.

Related functions: TS_StartLogger.vi, TS_UploadLoggerResults.vi, TS_CheckLoggerStatus.vi

Associated examples: Example 33

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 106

3.4.9.2 TS_StartLogger.vi

Symbol:

Prototype:

LONG _TS_StartLogger@8(UNSIGNED SHORT INT Logger Address, UNSIGNED CHAR
Logger Type);

Parameters:

 Name Description

Logger Address
The address of the logger buffer in drive/motor memory, where
data will be stored during logging Input

Logger Type Specifies when the logging occurs

Output Return TRUE if no error, FALSE if error

Description: The function starts the data logger on the active axis. The function may be called

only after the initialization of the data logger with the TS_SetupLogger.vi function.

Use the parameter Logger Type to set if the data logging process must be done in the slow

control loop (Logger Type = LOGGER_SLOW), or in the fast control loop (Logger Type =

LOGGER_FAST).

Related functions: TS_SetupLogger.vi, TS_UploadLoggerResults.vi, TS_CheckLoggerStatus.vi

Associated examples: Example 33

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 107

3.4.9.3 TS_CheckLoggerStatus.vi

Symbol:

Prototype:

LONG _TS_CheckLoggerStatus@8(UNSIGNED SHORT INT Logger Address, UNSIGNED
SHORT INT *Logger Status);

Parameters:

 Name Description

Input Logger Address
The address of the logger buffer in drive/motor memory, where
data will be stored during logging

Logger Status
Number of points still remaining to capture; if it is 0, the logging is
completed Output

Return TRUE if no error, FALSE if error

Description: The function checks the data logger status on the active axis. Use this function in
order to check if the data logging process is still running, or if the data logging process was

ended. The function returns the Logger Status parameter, whose value indicates how many

points are still to be captured. If Logger Status = 0 the data logging process is finished.

The function may be called only after the start of the logging process with the TS_StartLogger.vi
function.

Related functions: TS_ SetupLogger.vi, TS_StartLogger.vi, TS_UploadLoggerResults.vi

Associated examples: Example 33

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 108

3.4.9.4 TS_UploadLoggerResults.vi

Symbol:

Prototype:

LONG _TS_UploadLoggerResults(WORD wLogBufferAddr, WORD* arrayValues, WORD&
countValues);

Parameters:

 Name Description

Logger Address
The address of the logger buffer in drive/motor memory, where
data will be stored during logging

Array Values Pointer to the array where the uploaded data is stored on the PC
Input

Count Values The size of Array Values, expressed in WORDs

Count Values The number of uploaded data
Output

return TRUE if no error, FALSE if error

Description: The function uploads the data logged from the active axis. Use this function to
upload the data stored during the data logger execution. Before calling the function, you must

declare a data buffer in the PC program, starting at the Array Values address, with a size equal

to the Count Values parameter.

The TS_UploadLoggerResults.vi function will fill the Array Values data buffer with the data
transferred from the drive, and will also return the actual number of transferred data words, in the

Count Values parameter. Once the data is transferred, you can use it for data analysis, graphical
representation.

Remark:
1. Prior uploading the data logged, call function TS_CheckLoggerStatus.vi to test the end of

data logging.
2. The number of data sets which were stored will be determined as the integer part of the

ratio [length / Count Address] where length and Count Address are setup
parameters defined when calling the TS_SetupLogger.vi function

The uploaded data is stored in consecutive data sets, i.e. the first set of Count Address words

will contain the first logged point for the selected variables, the second set of Count Address
words will contain the second logged point for the selected variables, and so on. The following

table illustrates this data structure for an example of 4 logged variables.

Data WORD Meaning

1 Variable 1, point 1

2 Variable 2, point 1

3 Variable 3, point 1

4 Variable 4, point 1

5 Variable 1, point 2

6 Variable 2, point 2

7 Variable 3, point 2

… …

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 109

Related functions: TS_ SetupLogger, TS_StartLogger, TS_ CheckLoggerStatus

Associated examples: Example 33

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 110

3.4.10 Drive setup

3.4.10.1 TS_LoadSetup.vi

Symbol:

Prototype:

SHORT INT _TS_LoadSetup@4(CSTR Setup Directory);

Parameters:

 Name Description

Input Setup Directory Name of the directory where are the setup files

Output Return The index associated to the setup

Description: The function loads a drive/motor configuration setup in the PC application. The
configuration setup is generated from EasyMotion Studio or EasySetUp and stored in two files:

setup.cfg and variables.cfg. With string Setup Directory you specify the absolute or relative path
of the directory with the setup files. The function returns an index associated to the configuration
setup. Use the value returned to associate the configuration setup with the corresponding axis.

Remark: The function must be called for each configuration setup only once in your program, in
its initialization part.

Related functions: TS_SetupAxis.vi, TS_SetupGroup.vi, TS_SetupBroadcast.vi

Associated examples: all examples

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 111

3.4.10.2 TS_SetupAxis.vi

Symbol:

Prototype:

LONG _TS_SetupAxis@8(UNSIGNED CHAR Axis ID, SHORT INT Setup Index);

Parameters:

 Name Description

Axis ID Axis ID of the drive/motor
Input

Setup Index Configuration index generated by TS_LoadSetup

Output return TRUE if no error, FALSE if error

Description: The function associates a configuration setup to the drive/motor having Axis ID.

The configuration setup is identified through Setup Index.

The function must be called for each axis of the motion system, only once in your program, in the
initialization part, before any attempt to send messages to that axis.

Remarks:

1. The Axis ID parameter must be identical with the value set during drive/motor setup.
2. Use function TS_LoadSetup.vi to obtain the configuration setup identifier.

Related functions: TS_LoadSetup.vi, TS_SetupGroup.vi, TS_SetupBroadcast.vi

Associated examples: all examples

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 112

3.4.10.3 TS_SetupGroup.vi

Symbol:

Prototype:

LONG _TS_SetupGroup@8(UNSIGNED CHAR Group ID, SHORT INT Setup Index);

Arguments:

 Name Description

Group ID Group ID number. It must be a value between 1 and 8
Input

Setup Index Name of the data file storing the setup axis information

Output return TRUE if no error, FALSE if error

Description: The function associates to the group of drives/motors a configuration setup

identified through Setup Index. The configuration setup is used by TML_LIB when sends

commands towards axes that have the Group ID.

The function must be called for each group defined in the motion system, only once in your
program, in the initialization part, before any attempt to send messages to that group.

Remarks: Use function TS_LoadSetup.vi to obtain the configuration setup identifier.

Related functions: TS_LoadSetup.vi, TS_SetupAxis.vi, TS_SetupBroadcast.vi

Associated examples: all examples

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 113

3.4.10.4 TS_SetupBroadcast

Symbol:

Prototype:

LONG _TS_SetupBroadcast@4(SHORT INT Setup Index);

Parameters:

 Name Description

Input Setup Index Name of the data file storing the setup axis information

Output return TRUE if no error, FALSE if error

Description: The function sets the configuration setup used by TML_LIB when issuing broadcast

commands. The configuration setup is identified through Setup Index.

Remarks: Use function TS_LoadSetup.vi to obtain the configuration setup identifier.

Related functions: TS_LoadSetup.vi, TS_SetupAxis.vi, TS_SetupGroup.vi

Associated examples: –

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 114

3.4.10.5 TS_DriveInitialization.vi

Symbol:

Prototype:

LONG _TS_DriveInitialization@0(void);

Parameters:

 Name Description

Input – –

Output Return TRUE if no error, FALSE if error

Description: The function initializes the active axis. It must be executed when the drive/motor is
powered or after a reset with function TS_Reset.vi. The function call should be placed after the
functions TS_SetupAxis.vi and TS_SelectAxis.vi and before any functions that send messages to
the axis.

Related functions: TS_LoadSetup.vi, TS_SetupAxis.vi, TS_SelectAxis.vi

Associated examples: all examples

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 115

3.4.11 Drive administration

3.4.11.1 TS_SelectAxis.vi

Symbol:

Prototype:

LONG _TS_SelectAxis@4(UNSIGNED CHAR Axis ID);

Parameters:

 Name Description

Input Axis ID The Axis ID where the commands are sent

Output return TRUE if no error, FALSE if error

Description: The function selects the currently active axis. All further function calls, which send
TML messages on the communication channel, will address the messages to this active axis.

Call the function only after the setup of the axis (after calling the TS_SetupAxis.vi function) for

the same axis (with the same Axis ID).

In a single axis motion system, call this function only once in your program. In a multiple axis
configuration, call this function each time you want to redirect the communication to another axis
of the system.

Related functions: TS_SelectGroup.vi

Associated examples: all examples

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 116

3.4.11.2 TS_SelectGroup.vi

Symbol:

Prototype:

LONG _TS_SelectGroup(UNSIGNED CHAR Group ID);

Parameters:

 Name Description

Input Group ID The Group ID where the commands are sent

Output Return TRUE if no error, FALSE if error

Description: The function selects the currently active group. All further function calls, which send
TML messages on the communication channel, will address these messages to this active group.

The active group is set with parameter Group ID. It must be a value between 1 and 8.

Remark: The function must be called after the group setup i.e. after calling the
TS_SetupGroup.vi function.

Related functions: TS_SelectAxis.vi

Associated examples: Example 26

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 117

3.4.11.3 TS_SelectBroadcast.vi

Symbol:

Prototype:

LONG _TS_SelectBroadcast@0(void);

Parameters:

 Name Description

Input – –

Output Return TRUE if no error, FALSE if error

Description: The function enables TML_LIB to issue the broadcast messages, i.e. all further
function calls, which send TML messages on the communication channel, will address these
messages to all the axes.

Remark: The function must be called after the broadcast setup i.e. after calling the
TS_SetupBroadcast.vi function.

Related functions: TS_SelectAxis.vi, TS_SelectGroup.vi

Associated examples: -

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 118

3.4.12 Communication setup

3.4.12.1 TS_OpenChannel.vi

Symbol:

Prototype:

SHORT INT _TS_OpenChannel@16(CSTR Device Name, UNSIGNED CHAR Type,
UNSIGNED CHAR HostID, UNSIGNED LONG Baud rate);

Parameters:

 Name Description

Device Name The communication channel to be opened

Type The type of the communication channel

HostID Axis ID for the PC
Input

Baud Rate Communication baud rate

Output Return The file descriptor of the or -1 if error

Description: The function opens the communication channel specified with parameter Device
Name.

The communication channel type is set with parameter Type. The TML_LIB_LabVIEW supports
the following communication types:

• serial RS-232

o Type = CHANNEL_RS232 for PC serial port

o Type = CHANNEL_VIRTUAL_SERIAL for virtual serial interface
1

• serial RS-485

o Type = CHANNEL_RS485 for an RS-485 interface board or an RS-232/RS-485
converter

• CAN-bus

o Type = CHANNEL_IXXAT_CAN for IxxAT PC to CAN interface

o Type = CHANNEL_SYS_TEC_USBCAN for Sys Tec USB to CAN interface

o Type = CHANNEL_PEAK_SYS_PCAN_PCI for ESD PC to CAN interface

o Type = CHANNEL_ESD_CAN for PEAK System PCAN-PCI interface

o Type = CHANNEL_PEAK_SYS_PCAN_ISA for PEAK System PCAN-ISA

o Type = CHANNEL_PEAK_SYS_PCAN_PC104 for PEAK System PC/104

o Type = CHANNEL_PEAK_SYS_PCAN_USB
o Type = CHANNEL_PEAK_SYS_PCAN_DONGLE for PEAK System Dongle

interfaces

1
 Contact Technosoft for more details regarding the virtual serial channel.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 119

• Ethernet

o Type = CHANNEL_XPORT_IP for XPort adapter/bridge between Ethernet and
RS-232 from Lantronix.

Depending on the communication channel type, the parameter Device Name can be:

• For serial communication: ‘COM1’, ‘COM2’, ‘COM3’….

• For virtual serial interface is the name of the dll file that implements the serial interface

• For CAN-bus communication: ‘1’, ‘2’, ‘3’…

• For Ethernet communication: ‘192.168.19.52’, ‘technosoft.masterdrive.ch’…

The HostID parameter represents the Axis ID of the PC in the system. The value of HostID is set
as follows:

• For serial RS-232 the HostID is equal with the axis ID of the drive connected to the PC
serial port

• For serial RS-485 and CAN-bus the HostId must be a unique value. Attention! Make
sure that all the drives/motors from the network have a different address

• For Ethernet communication the HostID is equal with the axis ID of the drive connected
to the serial port of the Ethernet adapter.

Set the communication speed with the Baud Rate parameter. The accepted values are:

• For serial communication and Ethernet: 9600, 19200, 38400, 56000 or 115200 kbps.

• For CAN-bus: 125, 250, 500, 1000 kbps

Remark: You can open several communication channels but only one can be active in an
application at one moment. You can switch between the communication channels with function
TS_SelectChannel.vi.

Related functions: TS_SelectChannel.vi, TS_CloseChannel.vi

Associated examples: all examples

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 120

3.4.12.2 TS_SelectChannel.vi

Symbol:

Prototype:

LONG _TS_SelectChannel@4(SHORT INT fd);

Parameters:

 Name Description

Input fd The communication channel file descriptor

Output return TRUE if no error, FALSE if error

Description: The function selects as active the communication channel described by parameter

fd. All commands send towards the drives/motors will use the selected communication channel.

Remarks:

1. Use function TS_OpenChannel.vi to open the communication channels
2. The function TS_SelectChannel.vi is not required in application with only one

communication channel

Related functions: TS_OpenChannel.vi, TS_CloseChannel.vi

Associated examples: all examples

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 121

3.4.12.3 TS_CloseChannel.vi

Symbol:

Prototype:

void _TS_CloseChannel@4(SHORT INT fd);

Parameters:

 Name Description

Input fd The communication channel file descriptor

Output – –

Description: The function closes the communication channel described by parameters fd. With

fd = -1 the function closes the channel previously selected with function TS_SelectChannel.vi.
This function must be called at the end of the application. It will release the communication

channel resources, as it was allocated to the program when the TS_OpenChannel.vi function
was called.

Related functions: TS_OpenChannel.vi, TS_SelectChannel.vi

Associated examples: all examples

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 122

4 Examples

This chapter presents a collection of applications implemented in LabVIEW, which use the

functions of the TML_LIB_LabVIEW library. The examples are intended to provide you a first,

basic insight about using the TML_LIB_ LabVIEW library to implement your motion control
applications.

The examples are based on the hypothesis that the drive is already initialized, i.e. the setup code
is already downloaded into the drive (see section 2.3 for details), so that you’ll directly start
sending motion commands from the PC to the drive.

Remark: Most TML_LIB_LabVIEW subVIs return a Boolean TRUE if they execute correctly, and
a FALSE if any error occurred (incorrect parameters, failed operation at PC level). You should
check after each function call if there was an error or not. In case of error use the subVI
TS_GetLastTextError.vi to obtain a description of the error occurred. Thus, a VI implemented with
TML_LIB_LabVIEW subVIs should look like this:

The examples automatically launch at run control panels which display the status of some drive
variables (as speed, position, current, etc.).

Remark: The examples and the control panels are built for configurations with Technosoft drive
IBL2403-CAN. For other drives/motors generate the setup data and modify the examples and the
control panels to accommodate the IO configuration of your drive/motor.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 123

Figure 4.1. Drive status control panel

Figure 4.2 Motion speed control panel

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 124

Figure 4.3 Motion position control panel

Figure 4.4 IO control panel for IBL2403 - CAN

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 125

4.1 Example 1. Profiled positioning movement followed by a speed
profile jogging

This example implements a relative positioning movement, waits until the motion is finished, then
starts moving the motor with a constant speed.

The VI front panel allows you to setup the parameters for the position profile and speed profile. If
an error occurs, you’ll see the error message in the ERROR text box.

Remark:. For a better readability of the other examples, the error message field was introduced
in the VI screen only for this example. You can add it if needed for the other examples, too.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 126

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 127

4.2 Example 2. Positioning movement; wait a while; speed jogging;
stop after a time period

This example implements a relative positioning movement, waits until the motion is finished, then
stays stopped for a given time interval. After this time interval, the motor starts moving with a
constant speed. After another time interval, the motor is stopped.

The VI front panel allows you to setup the parameters of the first speed profile, second speed
profile, the time interval for which the motor remains stopped and the time interval after which the
motor is stopped.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 128

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 129

4.3 Example 3. Speed profile with two acceleration values
This example implements a speed movement having two different acceleration values during
motor start: one acceleration value for speeds below a given level, and another acceleration value
for speeds greater than the speed level. The motor is stopped after a time interval.

The VI front panel allows you to setup the parameters of the first speed profile and to set the
acceleration for the second speed profiles.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 130

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 131

4.4 Example 4. Speed jogging; wait a time period; positioning
movement

This example implements a speed movement for a given time period, followed by a relative
positioning. The VI allows you to setup the parameters of the speed and position profile.

The VI front panel allows you to setup the parameters of the speed and position profiles.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 132

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 133

4.5 Example 5. Speed jogging; wait for an input port to be triggered;
positioning movement

This example implements a speed movement until a digital input of the drive is set to low. At that
moment, a positioning movement with a different maximum speed is executed. The VI allows you
to setup the parameters of the speed and position profiles. While the application is running, set to
low the IN#37 digital input of the drive, in order to stop the motion.

The VI front panel allows you to setup the parameters of the speed and position profiles.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 134

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 135

4.6 Example 6. Absolute position motion profile with different
acceleration / deceleration rate

This example implements a position profile movement having different acceleration and
deceleration values. One acceleration value is used at motor start. As the slew speed is reached,
another acceleration value is set, thus the deceleration will be executed with the new value.

Note that in order to get this behavior, two conditions must be observed:

• The reference position must be big enough, so that the reference speed is a trapezoidal
one (reaches the slew speed)

• The motor must reach slew speed during the acceleration part of the motion profile

The VI front panel allows you to setup the parameters of the first and of the second position
profiles.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 136

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 137

4.7 Example 7. Positioning movement; speed jogging; wait a time
period, then stop

This example implements a position profile movement followed by a speed profile jogging. After a
time interval of movement on the speed profile, the motion is stopped.

The VI front panel allows you to setup the parameters of the first speed profile, the second speed
profile and the second speed profile travel time interval.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 138

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 139

4.8 Example 8. Repeat a motion at input port set, with current
reduction between motions

This example implements a repetitive position profile movement. The motion is repeated for a
given number of times, each time when a digital input port is set to low level. Between the
motions, while waiting for a new start, the motor current is set to a low, stand-by value. At motion
start (when the digital input port level is set to low), the current is set to a run-time value. Each
time the position is doubled as compared with the previous value.

Remark: This example can be used only with stepper open loop configuration.

The VI front panel allows you to setup the parameters of the position profile.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 140

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 141

4.9 Example 9. Move to the positive limit switch, reverse to the
negative limit switch

This example activates the limit switches of the drive, and then implements a jogging movement
in the positive direction, until the positive limit switch is reached. At that moment, the motor is
stopped, and a jogging movement is started in the negative direction (at negative speed) until the
negative limit switch is reached. There the motor is stopped again.

The VI front panel allows you to setup the parameters of the speed profile.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 142

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 143

4.10 Example 10. Move between limit switches until an input port
changes its status

This example implements a jogging movement between the positive and the negative limit
switches, until a digital input changes its status. At that moment, the movement is stopped.

The VI front panel allows you to setup the parameter of the speed profile.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 144

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 145

4.11 Example 11. Move forward and backward at 2 different speeds,
for a given distance

This example implements a forward jogging movement, over a given relative distance, followed by
a movement in the opposed direction, over the same relative distance, with a different jogging
speed. The movement is repeated for a given number of times.

The VI front panel allows you to setup the parameters of the first and second speed profiles.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 146

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 147

4.12 Example 12. Speed profile, followed by profiled positioning at a
given speed

This example implements a jogging movement, until a given speed reference, when an absolute
positioning is started. During this positioning motion, the position profile is changed at a given
value of the reference.

The VI allows you to setup the parameters of the speed profile, the first position profile and the
second position profile.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 148

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 149

4.13 Example 13. Speed control with external reference

This example implements a speed control or position control function of user selection. When the

user selects Analogue the drive uses the values read from analogue input Reference for

positioning. With selection Online the drive is programmed to use the reference received online
from the PC.

In the VI front panel select the reference type used and then press the GO button.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 150

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 151

4.14 Example 14. Profiled positioning, with output port status
changing at a given position

This example implements a profiled positioning movement, and commutes the status of a digital
output port of the drive, at a given motor position value.

The VI front panel allows you to setup the parameters of the position profile.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 152

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 153

4.15 Example 15. Execute a jogging speed motion, until the home
input is captured

This example implements a profiled speed movement, until the home input capture is detected. At
that moment, the motion is stopped.

The VI front panel allows you to setup the parameters of the speed profile. While the application is
running, set the digital input port IN#38 to low, in order to stop the motor.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 154

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 155

4.16 Example 16. Different motions based on the status of two digital
inputs of the drive

This example implements different movements, based on the status of two digital input ports of
the drive. The code continuously read the status of these ports and based on their values
executes a speed profile (if first input is set to low), a position profile (if second input is set to low),
or stops the motion and exit (if both inputs are set to low at the same time).

The VI front panel allows you to setup the parameters of the position profile and speed profile.
While the application is running, set to low IN#37, in order to execute a position profile, or set to
low the IN#38, in order to execute a speed profile. Then set to low both the IN#37 and IN#38 at
the same time, in order to stop the motion.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 156

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 157

4.17 Example 17. Move between limit switches. Power-off if blocked
on a limit switch

This example implements a jogging movement, until the positive limit switch is reached. At that
point, the motion is reversed, until the negative limit switch is reached, then the motion is stopped.
The program checks if, after reversing the motion at positive limit switch reach, this limit switch
continues to be ON, after a given time period. In this case, the drive is powered-OFF, as this can
represent an emergency situation.

The VI front panel allows you to setup the parameters of the speed profile. Set to low the LSP
input in order to reverse the motion. During the reverse motion, set to low the LSN input, in order
to stop the motor. If the LSP input is set to low for a longer time, at its reach, the drive is powered-
OFF.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 158

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 159

4.18 Example 18. Jog at a speed computed from an A/D signal, until a
digital input is reset

This example implements a jogging movement, with the jogging speed computed from the value
read to an A/D channel input of the drive. At start, the program reads the A/D channel value, and
stores it into the drive memory, as the offset on that channel. Then, it continuously read the A/D
input and set the reference jogging speed proportional with the difference between the actual A/D
input and the initial offset value. The motion continues until a digital input of the drive is set to low.

Run the application. Change the value of the AD5 channel in order to modify the speed reference
value. Set the status of the digital input port IN#37 to low, in order to stop the motion.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 160

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 161

4.19 Example 19. Speed control, with drive interrogation / setup of TML
speed parameters

This example implements a jogging movement with two levels of speed reference. The program
directly reads the TML speed reference and measured values, and decides the moments when to
change the speed reference. The change is done also directly at the level of TML variables into
the drive memory.

The VI front panel allows you to setup the parameters of the speed profile.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 162

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 163

4.20 Example 20. Setup positioning motion, using tables stored into
drive memory

This example uses information locally stored in the drive internal memory, in order to set up
motion parameters. Initially, the program stores 2 tables containing different values for reference
positions. Then, as an example of using this information, it reads the value of an A/D channel of
the drive and, based on the read value, selects one of the tables. The selected table is read from
memory, and the motion is imposed based on a value read from that table at an internal location
where the reference is stored.

Remarks:
1. The tables’ write operation should be done only once if the tables are stored into the

EEPROM memory of the drive
2. Be careful when selecting the tables’ memory location, as writing at incorrect addresses can

affect the correct operation of the drive.

Change the AD5 channel level, in order to set a value that will choose which element to extract
from the memory buffer. Then run the application. The motor will start a position profile with a
position reference value according to the element extracted from the memory buffer.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 164

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 165

4.21 Example 21. Setting the Digital External motion mode

This example programs the drive to operate with external digital reference. The external position
reference is computed from pulse & direction signals.

Run the application. While the application is running, apply pulses to the ‘Pulse’ input of the drive

(IN#38). Set the ‘Direction’ input (IN#37) to low or high level, in order to change motion direction.

Remark: For this example you have to setup the drive to read the digital external reference from
pulse & direction inputs.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 166

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 167

4.22 Example 22. Test the voltage mode, with event on voltage
reference

This example activates the test voltage mode on a drive. A variable voltage vector is generated
on motor phases, with prescribed increment and maximum value. For AC motor configurations,
the voltage vector can also be rotated, with a prescribed initial and increment angle.

Setup the maximum voltage and the voltage increment parameters. If the drive controls an AC

motor, set the Theta0, Dtheta parameters, else set them to 0. Then run the application.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 168

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 169

4.23 Example 23. Test torque mode, with event on torque reference

This example activates the test torque mode on a drive. A variable current vector is generated on
motor phases, with prescribed increment and maximum value. For AC motor configurations, the
current vector can also be rotated, with a prescribed initial and increment angle.

Setup the maximum torque and the torque increment parameters. If the drive controls an AC

motor, set the Theta0, Dtheta parameters, else set them to 0. Then run the application.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 170

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 171

4.24 Example 24. Profiled positioning and speed movement, with
event test from PC side

This example starts a profiled positioning, and performs testing of motion complete event by drive
interrogation from the PC. It also checks if the position value does not exceed some critical
reverse value. Once the positioning is completed, the motor begins a speed profile movement. If
an error has occurred during positioning (i.e., a wrong position value is reached, instead of a
motion complete event), the motor is stopped.

Such an approach can be very useful in order to avoid entering an infinite waiting loop. All event-
related TML_LIB functions can be set to wait until the programmed event occurs. If the event
does not occur, due to an error, then the PC program will not return any longer from the event
function, and will be blocked.

If such a case appears, use the approach from this example instead, i.e. program an event
without waiting for it to occur inside the event programming function. Instead, check the event

using the TS_CheckEvent function, as well as perhaps other drive variables, etc. Thus, you can
decide if an error has occurred, and the PC program will not be blocked anymore.

The VI front panel allows you to set the parameters for positioning profile and speed profile.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 172

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 173

4.25 Example 25. Movement as defined in an external file containing
TML source code

This example opens an external TML source code file, compile each instruction and send it on-
line to the drive. Such an approach can be very useful in order to send a fixed sequence of
several TML instructions, eventually implementing some specific functionality.

The application requires a file containing valid TML source code. For this example you can use

the sample file, Ex25TML.txt, provided with the library. The file is installed in the sub-directory

Example Files of the TML_LIB_LabView installation directory.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 174

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 175

4.26 Example 26. Positioning command to a group of axes

This example shows how to send commands to a group of drives. The example programs a group
of drives to execute a relative positioning. The group has two drives with Axis ID = 1 respectively
Axis ID = 2 and are connected in a CAN-bus network. The drive with Axis ID = 1 is connected to
PC via RS232 link.

The VI front panel allows you to setup the parameters of the position profile.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 176

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 177

4.27 Example 27. Jogging motion until the index capture is detected,
then position on index

This example programs an axis to move with a jog speed until index capture is detected. When
the index input transition is detected the motor is stopped and then positioned to the captured
position. If the capture index is not detected and the position limit is reached the motor is stopped.

Power on the drive, modify the speed profile parameter in the VI dialog, rotate manually the motor
shaft, then run the application.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 178

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 179

4.28 Example 28. Speed jogging until home found, position to home,
and set position to zero

This example can be used to detect the system home position and to set the absolute position to
0 at the home point. It moves the motor at constant speed until the home capture is detected.
Then the motor is positioned at the home position and the absolute and the reference position
values are reset.

First modify the speed profile parameter, and then run the application. While the application is
running, set to low the IN#38 digital input in order to generate the home position capture.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 180

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 181

4.29 Example 29. Download a COFF format file & send a positioning
command on-line

This example can be used to download a COFF format file containing a TML application
generated from EasyMotion Studio to the drive. This allows you to distribute the intelligence
between the PC and the drives/motors in complex multi-axis applications. Thus, instead of trying
to command each step of an axis movement, you can program the drives/motors using TML to
execute complex tasks and inform the master when these are done.

The application requires a COFF file containing valid TML code. For this example you can use the

sample file, Ex29RAM.out, provided with the library. The file is installed in the sub-directory

Example Files of the TML_LIB_LabView installation directory.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 182

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 183

4.30 Example 30. Download a COFF format file, then call TML functions

The example downloads a COFF format file (*.out) in the drive memory, then execute the TML
code included in the downloaded code. The COFF file is generated with EasyMotion Studio
based on a TML application. The addresses and the names of the functions are listed in the

variables.cfg .

The example first downloads the *.out file containing this code and then, based on the status of

a digital input port – selects which function to execute, and launches it using the function

TS_CALL.

Note that, when you call a function stored in the drive memory, it executes until a RETurn TML
instruction is found. At that moment, the drive enters the waiting loop executed prior to the launch

of the CALL command. Meanwhile, any command sent on-line from the PC will have a higher
execution priority.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 184

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 185

4.31 Example 31. Set up the Master and Slave Gearing Mode; use the
drives in gearing mode

This example programs the drive with Axis ID = 2 as master and the drive with Axis ID = 1 as
slave in electronic gearing mode. It initializes the master and the slave with the appropriate
parameters, and then it starts a motion on the master. At the end of the gearing mode operation, it
disables both the master and the slave from this operation mode.

The VI front panel allows you to set for the master drive the parameters of the speed profile and
the gear ratio for the slave drive.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 186

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 187

4.32 Example 32. Set up Master and Slave in electronic cam Mode; use
the drives in cam mode

This example shows how to set up the electronic cam mode on the master, as well as on the
slave axes, in a multiple-axis structure. It initializes the master and the slave with the appropriate
parameters. It also downloads an electronic cam table file on the slave axis drive. Then it starts a
motion on the master. At the end of the electronic cam mode operation, it disables both the
master and the slave from this operation mode.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 188

The VI front panel allows to set the for the master axis the parameters of the position profile and
to select the for slave axis the load address and the run address for the cam table.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 189

4.33 Example 33. Usage of data logger to upload real-time stored data
from the drive

This example shows how to setup the data logger on a drive, to start data logging, check its end
and upload the logged data from the drive to the PC.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 190

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 191

4.34 Example 34. Homing procedures based on pre-stored TML
sequences on the drive

This example shows you how to execute a homing motion, based on the existence on the drive of
a specific motion sequence containing the TML code needed to implement the homing.

The search for the home position can be done in numerous ways. In order to offer maximum
flexibility, the TML does not impose the homing procedures but lets you define your own,
according with your application needs.

Basically a homing procedure is a TML function and by calling it you start executing the homing

procedure. The call must be done using the function TS_CancelableCALL_Label. This
command offers the possibility to abort at any moment the homing sequence execution (with

function TS_Abort). Therefore, if the homing procedure can’t find the home position, you have the
option to cancel it.

During the execution of a homing procedure bit 8 of Status Register Low part is set. Hence you

can find when a homing sequence ends, either by monitoring the bit 8 from SRL or by
programming the drive/motor to send a message to your host when the bit changes. As long as a
homing sequence is in execution, you should not start another one. If this happens, the last

homing is aborted and a warning is generated by setting bit 7 from SRL

Remark: In motion programming tools like EasyMotion Studio, Technosoft provides for each
intelligent drive/motor a collection of up to 32 homing procedures. These are predefined TML
functions, which you may call after setting the homing parameters. You may use any of these
homing procedures as they are, or use them as a starting point for your own homing routines.

Before using any homing method from the TML_LIB environment you need to perform the
following steps:

• Create in EasyMotion Studio a project for your drive/motor

• Setup the drive/motor and download the setup table. After the download reset the
drive/motor to activate

• Select Homing Modes view. In this view you can see all the homing procedures defined
for your drive/motor, together with a short description of how it works. In order to select a
homing procedure, check its associated button. You may choose more then homing
procedure, if you intend to use execute different homing operations in the same
application.

• Download the homing procedure with menu command Application | Motion | Download
Program

• Generate the configuration setup for TML_LIB with menu command Application | Export
to TML_LIB

You are now prepared to build your PC application, which will call one of the homing methods
from the drive memory. The idea is that you’ll set up, from the PC, some of the parameters
needed during the homing procedure, then you’ll call one of the homing functions stored on the
drive, and eventually you’ll test the status of the homing process until it will be finished.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 192

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 193

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 194

4.35 Example 35. Positioning with S-Curve profile for speed; speed
jogging

The example shows how to program a relative position followed by an absolute positioning. The
speed has an S-Curve shape for both motions.

The VI front panel allows you to set the parameters for the relative and absolute positioning.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 195

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 196

4.36 Example 36. Reset FAULT state

The example shows how to restore the drive normal operation from FAULT state. The drive is
programmed to do a relative positioning. The drive enters in FAULT state when you block the
motor shaft during the motion. In the FAULT state:

• The drive/motor is in AXISOFF with the control loops and the power stage deactivated

• Ready and error outputs (if present) are set to the not ready level, respectively to the
error active level. When available, ready greed led is turned off and error red led is turned
on

The FAULT state is reset when you press a key; the drive power stage remains disabled.

The VI front panel allows you to Run the example and block the motor shaft to trigger the Control
error protection and the FAULT status.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 197

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 198

4.37 Example 37. Read multiple inputs/set multiple outputs

The example shows how to read multiple outputs from the drive. The program remains in a loop
until one of the inputs changes its status moment when the motor begins an absolute positioning.
When the motion is complete the state of several outputs is set.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 199

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 200

4.38 Example 38. Positioning when an event on home input occurs

The example shows how to program a positioning triggered by an event on home input. The event
is set when the home input goes low.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 201

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 202

4.39 Example 39. Write/read in the drive memory

The example writes/reads a data block in the drive EEPROM memory. The write operation is
verified with a checksum. After the homing procedure the drive makes a positioning with the
position command read from the EEPROM.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 203

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 204

4.40 Example 40. View binary code of a TML command

The example returns the binary code of a TML command MODE PP.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 205

4.41 Example 41. Speed jog and positioning with direction change

The example programs a speed profile followed by a position profile. The drive switches from
speed control to position control when the event function of reference speed is set. When the
event set function of motor position is triggered the motion is stopped and restarted in the
opposite direction with a speed profile. The motion ends when the event set function of load
speed is set.

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 206

© Technosoft 2006 TML_LIB_LabVIEW – User Manual 207

This page is empty

