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Abstract 

In this lecture we introduce from basic principles the main concepts of beam focusing 
and transport in modern accelerators using the beam envelope equation as a convenient 
mathematical tool. Matching conditions suitable to preserve the beam quality are derived 
from the model for significant beam dynamics regimes. An extension of the model to the 
plasma accelerator case is introduced. The understanding of similarities and differences with 
respect to traditional accelerators are also emphasized.  

 

1. – Introduction 

Light sources based on high gain free electron lasers or future high energy linear 
colliders require the production, acceleration and transport up to the interaction point of low 
divergency, high charge density electron bunches [1]. Many effects contribute in general to 
the degradation of the final beam quality, including chromatic effects, wake fields, emission 
of coherent radiation, accelerator misalignments. Space charge effects and mismatch with the 
focusing and accelerating devices typically contribute to emittance degradation of high charge 
density beams [2], hence the control of beam transport and acceleration is the leading edge for 
high quality beam production. In this lecture we introduce from basic principles the main 
concepts of beam focusing and transport in modern accelerators using the beam envelope 
equation as a convenient mathematical tool. Matching conditions suitable to preserve the 
beam quality are derived from the model for significant beam dynamics regimes. An 
extension of the model to the plasma accelerator case is introduced. The understanding of 
similarities and differences with respect to traditional accelerators are also emphasized. A 
more detailed discussion of the previous topics can be found in the many classical textbooks 
on this subject as the one listed in references [3,4,5,6]. 

 

2. – Laminar and non-laminar beams 
 

An ideal high charge particle beam has orbits that flow in layers that never intersect, as 
occurs in a laminar fluid. Such a beam is often called laminar beam. More precisely a laminar 
beam satisfies the following two conditions [6]: 
 

1. All particles at a given position have identical transverse velocities. On the contrary 
the orbits of two particles that start at the same position could separate and later cross 
each other. 

2. Assuming the beam propagates along the z axis, the magnitudes of the slopes of the 
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trajectories in the transverse directions x and y, given by !x z( ) = dx
dz

 and !y z( ) = dy
dz

, 

are linearly proportional to the displacement from the axis z of beam propagation.  
 

Trajectories of interest in beam physics are always confined inside of small, near-axis regions, 
and the transverse momentum is much smaller than the longitudinal momentum, 
px,y << pz ≈ p . As a consequence is convenient in most cases to use the small angle, or 

paraxial, approximation, which allows us to write the useful approximate expressions, 

!x = px
pz
≈
px
p

 and !y =
py
pz
≈
py
p

 

To help understanding the features and the advantages of a laminar beam propagation, 
the following figures compare the typical behavior of a laminar and of a non-laminar (or 
thermal) beam.  

Figure 1 illustrates an example of orbits evolution of a laminar beam with half width 
𝑥!  along a simple beam line with an ideal focusing element (solenoid, magnetic quadrupoles 
or electrostatic transverse fields are usually adopted to this end), represented by a thin lens 
located at the longitudinal coordinate z=0. In an ideal lens focusing (defocusing) forces are 
linearly proportional to the displacement from the symmetry axis z so that the lens maintains 
the laminar flow of the beam.  
 

 
Fig. 1 Particle trajectories and phase space evolution of a laminar beam  

 
The beam of fig. 1 starts propagating completely parallel to the symmetry axis z; in 

this particular case particles have all zero transverse velocity. There are no orbits that cross 
each other in such a beam. Neglecting collisions and inner forces, like Coulomb forces, such a 
parallel beam could propagate an infinite distance with no change in its transverse width. 
When the beam crosses the ideal lens it is transformed in a converging laminar beam. 
Because the transverse velocities after the linear lens are proportional to the displacement off 



— 4 — 

axis, particle orbits define similar triangles that converge to a single point. After passing 
through the singularity at the focal point, the particles follow diverging orbits. We can always 
transform a diverging (or converging) beam to a parallel beam by using a lens of the proper 
focal length, as can be seen reversing the propagation axis of fig. 1.   
The small boxes in the lower part of figure depict the particle distributions in the trace space 
x, !x( ) , equivalent to the canonical phase space x, px ≈ "x p( )  when p is constant i.e. without 

beam acceleration. The phase space area occupied by a ideal laminar beam is a straight line of 
zero thickness. As can be easily verified the condition that the particle distribution has zero 
thickness proceeds from condition 1; the line straightness is a consequence of condition 2. 
The distribution of a laminar beam propagating through a transport system with ideal linear 
focusing elements is thus a straight line with variable length. 

 

 
Fig. 2 Particle trajectories and phase space evolution of a non-laminar beam  

 
Particles in a non-laminar beam have a random distribution of transverse velocities at 

the same location and a spread in directions, as shown in fig. 2. Because of the disorder of a 
non-laminar beam, it is impossible to focus all particles from a location in the beam toward a 
common point. Lenses can influence only the average motion of particles. Focal spot 
limitations are a major concern for a wide variety of applications, from electron microscopy 
to free electron lasers and linear colliders. The phase space plot of a non-laminar beam is not 
anymore a straight line: the beam, as shown in the lower boxes of fig. 2, occupies a wider area 
of the phase space.  

 

3. - The emittance concept 
The phase space surface A occupied by a beam is a convenient figure of merit to 

designate the quality of a beam. This quantity is the emittance εx  and is represented by an 
ellipse that contains the whole particle distribution in the phase space (x,x’), such that 
A = πεx . An analogous definition holds for the (y,y’) and (z,z’) planes. The original choice of 
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an elliptical shape comes from the fact that when linear focusing forces are applied to a beam, 
the trajectory of each particle in phase space lies on an ellipse, which may be called the 
trajectory ellipse. Being the area of the phase space, the emittance is measured in [mm-mrad] 
or more often in [µm].  

The ellipse equation is written as: 
 

(1)                                               γ xx
2 + 2αxx !x +βx !x

2 = εx  
 
where x and x’ are the particle coordinates in the phase space and the coefficients 
αx z( ),βx z( ),γ x z( ) are called Twiss parameters which are related by the geometrical 
condition: 
 
(2)                                                      βxγ x −αx

2 =1  
 

 
 

Fig. 3 Phase space distribution in a skewed elliptical boundary showing relationship of Twiss 
parameters to the ellipse geometry [6]. 
 
As shown in fig. 3 the beam envelope boundary Xmax, its derivative  (Xmax)’ and the maximum 
beam divergency X’max , i.e. the projection on the axis x and x’ of the ellipse edges, can be 
expressed as a function of the ellipse parameters: 
 

(3)                                                      

Xmax = βxεx

Xmax( )! = −α ε
β

!Xmax = γ xεx

#

$

%
%

&

%
%

 

 
According to Liouville theorem the 6D (x,px,y,py,z,pz) phase space volume occupied 
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by a beam is constant, provided that there are no dissipative forces, no particles lost or 
created, and no binary Coulomb collisions between particles. Moreover if the forces in the 
three orthogonal directions are uncoupled, Liouville theorem holds also for each reduced 
phase space (x,px),(y,py),(z,pz) surfaces and hence also emittance remains constant in each 
plane [3].  
Although the net phase space surface occupied by a beam is constant, nonlinear field 
components can stretch and distort the particle distribution in the phase space and the beam 
lose its laminar behavior. A realistic phase space distribution is often well different by a 
regular ellipse, as shown in the fig. 4. 
 

 
 

Fig. 4 – Typical evolution of phase space distribution (black dots) under the effects of non 
linear forces with superimposed the equivalent ellipse (red line). 

 
We introduce, therefore, a definition of emittance that measures the beam quality rather than 
the phase space area. It is often more convenient to associate to a generic distribution function
f x, !x , z( )  in the phase space a statistical definition of emittance, the so called rms emittance:    

 
(4)                                              γ xx

2 + 2αxx !x +βx !x
2 = εx,rms  

 
such that the ellipse projections on the x and x' axes are equal to the rms values of the 
distribution, implying the following conditions: 
 

(5)                                                       

σ x = βxεx,rms

σ x ' = γ xεx,rms

!
"
#

$#  
 
where  



— 7 — 

 (6)                                        

σ x
2 z( ) = x2 = x2

−∞

+∞

∫
−∞

+∞

∫ f x, $x , z( )dxd $x

σ $x
2 z( ) = $x 2 = $x 2

−∞

+∞

∫
−∞

+∞

∫ f x, $x , z( )dxd $x

%

&

'
'

(

'
'

 
 

are the second moments of the distribution function f x, !x , z( ) . Another important quantity 

that accounts for the degree of (x,x’) correlations is defined as: 
 

 (7)                                       σ x !x z( ) = x !x = x !x
−∞

+∞

∫
−∞

+∞

∫ f x, !x , z( )dxd !x   

 

From relations (3) it holds also σ x
! =

σ x !x

σ x

= −αx
εx,rms
βx

, see also eq. (13), which allows us to 

link the correlation moment (7) to the Twiss parameter as: 
 
(8)                                                         σ x !x = −αxεx,rms   
 
One can easily demonstrate using the definitions (6) and (8) that holds the relation: 

αx = −
1
2
dβx

dz
. 

By substituting the Twiss parameter defined by (5) and (8) into the condition (2) we 
obtain [5]: 

(9)                                                 σ x '
2

εx,rms

σ x
2

εx,rms
−

σ xx '

εx,rms

"

#
$$

%

&
''

2

=1  

Reordering the terms is (8) we end up with the definition of rms emittance in terms of the 
second moments of the distribution: 
 

(10)                              εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )  

 
where we omit, from now on, the subscribed x in the emittance notation: εrms = εx,rms . Rms 
emittance tells us some important information about phase space distributions under the effect 
of linear or non-linear forces acting on the beam. Consider for example an idealized particle 
distribution in phase space that lies on some line that passes through the origin as illustrated 
in fig. 5. 
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Fig. 5 - Phase space distributions under the effect of linear (left) or non-linear (right) forces 

acting on the beam 
 
Assuming a generic correlation of the type !x =Cxn and computing the rms emittance 
according to (10) we have: 
 

(11)                          εrms
2 =C x2 x2n − xn+1 2

    
n =1    ⇒    εrms = 0
n >1    ⇒    εrms ≠ 0

$
%
&

'&

   

 

When n=1 the line is straight and the rms emittance is εrms = 0 . When n>1 the relationship is 
nonlinear, the line in phase space is curved, and the rms emittance is in general not zero. Both 
distributions have zero area. Therefore, we conclude that even when the phase-space area is 
zero, if the distribution lies on a curved line its rms emittance is not zero. The rms emittance 
depends not only on the area occupied by the beam in phase space but also on distortions 
produced by non-linear forces.  

If the beam is subject to acceleration it is more convenient to define what is called the 
rms normalized emittance, for which the transverse momentum px is used instead of the 
divergence: 

 

(12)                                εn,rms = σ x
2σ px

2 −σ xpx
2 = x2 px

2 − xpx
2( )  

 
The reason for introducing a normalized emittance is that the transverse momenta px of the 
particles are unaffected by longitudinal acceleration, while the divergences of the particles are 
reduced during acceleration because !x = px / p  when p increases. Thus acceleration reduces 
the un-normalized emittance but does not affect the normalized emittance. Assuming small 
energy spread within the beam, the normalized and un-normalized emittances can be related 
by the approximated relation:

 
. 

 
4. – The rms envelope equation  
 

We are now interested to follow the evolution of the particle distribution during beam 
transport and acceleration. One can take profit of the first collective variable defined in eq. 

εn,rms ≈ βγ εrms
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(6), the second moment of the distribution termed rms beam envelope, to derive a differential 
equation suitable to describe the rms beam envelope dynamics [7]. To this end lets compute 
the first and second derivative of σ x [4]: 
 

(13)        

dσ x

dz
=
d
dz

x2 =
1
2σ x

d
dz

x2 =
1
2σ x

2 x !x =
σ xx '

σ x

d 2σ x

dz2
=
d
dz
σ xx '

σ x

=
1
σ x

dσ xx '

dz
−
σ xx '
2

σ x
3 =

1
σ x

x '2 − x !!x( )−σ xx '
2

σ x
3 =

σ x '
2 + x !!x
σ x

−
σ xx '
2

σ x
3

 

 
Rearranging the second derivative (13) we obtain a second order non linear differential 
equation for the beam envelope evolution: 

(14)                                                !!σ x =
σ x
2σ x '

2 −σ xx '
2

σ x
3 −

x !!x
σ x

   

or in a more convenient form using the rms emittance definition (10):  

(15)                                                  !!σ x +
1
σ x

x !!x =
εrms
2

σ x
3  

In the equation (15) the emittance term can be interpreted mathematically as an outward 
pressure on the beam envelope produced by the rms spread in trajectory angle, which is 
parameterized by the rms emittance.  

Lets now consider for example the simple case with x !!x = 0 , describing a beam 

drifting in the free space. The envelope equation reduces to: 
(16)                                                         σ x

3 !!σ x = εrms
2  

With initial conditions σ o,σ o
! at zo , depending on the upstream transport channel, equation 

(16) has a hyperbolic solution:  

(17)                                  σ z( ) = σ o +σ o
! z− zo( )( )

2

+
εrms
2

σ o
2 z− zo( )2  

Considering the case σ o
! = 0 (beam at waist) and using definition (5) the solution (17) is often 

written in terms of the β  function as:  

(18)                                               σ z( ) =σ o 1+
z− zo
βw

"

#
$

%

&
'

2

 

This relation indicates that without any external focusing element the beam envelope 

increases from the beam waist by a factor 2  with a characteristic length βw =
σ o
2

εrms
 as shown 

if fig 6. 
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Fig. 6 – Schematic representation of the beam envelope behavior near the beam waist. 

 
The solution (18) is exactly analogous to that of a Gaussian light beam for which the beam 
width w = 2σ ph  increases away from its minimum value at the waist wo  with characteristic 

length ZR =
πwo

2

λ
 (Rayleigh length) [4]. This analogy suggests that we can identify an 

effective emittance of a photon beam as εph =
λ
4π  

.  

For an effective transport of a beam with finite emittance is mandatory to make use of 
some external force providing beam confinement in the transport or accelerating line. The 
term x !!x  accounts for external forces when we know !!x  given by the single particle 

equation of motion: 

(19)                                                        dpx
dt

= Fx  

Under the paraxial approximation px << p = βγmc  the transverse momentum px  can be 
written as px= p !x = βγmoc !x , so that:  

(20)                                    dpx
dt

=
d
dt

p !x( ) = βc d
dz

p !x( ) = Fx  

and the transverse acceleration results to be:  

(21)                                                !!x = −
p!

p
!x + Fx
βcp

 

It follows that:  

(22)                              x !!x = −
p!

p
x !x +

xFx
βcp

= −
p!

p
σ xx ' +

xFx
βcp

 

 

Inserting eq. (22) in eq. (15) and recalling eq. (13)
 
σ x
! =

σ x !x

σ x

, the complete rms envelope 

equation results to be: 
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(23)                                           !!σ x +
p!

p
!σ x −

1
σ x

xFx
βcp

=
εn,rms
2

γ 2σ x
3  

where we have included the normalized emittance εn,rms = γεrms . Notice that the effect of 

longitudinal accelerations appears in the rms envelope equation as an oscillation damping 

term, called “adiabatic damping”, proportional to !p
p

. The term xFx  represents the moment 

of any external transverse force acting on the beam, as the one produced by a focusing 

magnetic channel. 

 
5. – External forces  
 

Lets now consider the case of external linear force acting on the beam in the form 
Fx = k

2x . It can be focusing or defocussing according to the sign. The moment of the force 
results to be: 

(24)                                           xFx = 
k2 x2

βcp
=  k2

βcp
σ x
2  

and the envelope equation becomes: 

(25)                                           !!σ x +
γ !

γ
!σ x  kext

2 σ x =
εn,rms
2

γ 2σ x
3  

where we have explicitly used the momentum definition p = γmc  for a relativistic particle 

with β ≈1  and defined the normalized focusing strength kext
2 =

k2

γmoc
2 . 

Typical focusing elements are quadrupoles and solenoids [3]. The magnetic 
quadrupole field in Cartesian coordinates is given by: 

(26)                                                      
Bx = Bo

y
d
= !Boy

By = Bo
x
d
= !Box

"

#
$$

%
$
$

 

where d is the pole distance and !Bo the field gradient. The force acting on the beam is 

F⊥ = qvz "Bo yĵ − xî( )  that, when Bo  is positive, is focusing in the x direction and defocusing in 

y. The focusing strength is kquad
2 =

q !Bo
γmoc

.  

In a solenoid the focusing strength is given by: ksol
2 =

qBo
2γmoc

!

"
#

$

%
&

2

. Notice that the solenoid is 

always focusing in both directions, an important properties when the cylindrical symmetry of 
the beam must be preserved. On the other hand being a second order quantity inγ  it is more 
effective at low energy. 
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It is interesting to consider the case of a uniform focusing channel without acceleration 
described by the rms envelope equation: 
 

(27)                                                      !!σ x + kext
2 σ x =

εrms
2

σ x
3  

By substituting σ x = βxεrms  in (27) one obtains an equation for the “betatron function” 

βx z( )  that is independent on the emittance term:  

 

 (28)                                               !!βx + 2kext
2 βx =

2
βx

+
!βx
2

2βx

 

Equation (28) containing only the transport channel focusing strength and being independent 
on the beam parameters, suggests that the meaning of the betatron function is to describe the 
transport line characteristic by itself. The betatron function reflects exterior forces from 
focusing magnets and is highly dependent on the particular arrangement of quadrupole 

magnets. The equilibrium, or matched, solution of eq. (28) is given by βeq =
1
kext

=
λβ
2π

 as one 

can easily verify. This result shows that the matched βx  function is simply the inverse of the 
focusing wave number, or equivalently is proportional to the “betatron wavelength” λβ  

 
6. - Space charge forces 

Another important force acting on the beam is the one produced by the beam itself due 
to the internal Coulomb forces. The net effect of the Coulomb interaction in a multi-particle 
system can be classified into two regimes [3]: 

- Collisional regime, dominated by binary collisions caused by close particle 
encounters  

- Collective regime or space charge regime, dominated by the self-field produced by 
the particle’s distribution that varies appreciably only over large distances compare to the 
average separation of the particles.  
A measure for the relative importance of collisional versus collective effects in a beam with 
particle density n  is the relativistic Debye length:  

(29)                                                    λD =
εoγ

2kBTb
e2n

 

where the transverse beam temperature Tb  is defined as kBTb = γmo v⊥
2 , and kB is the 

Boltzmann constant. As long as the Debye length remains small compared to the particle 
bunch transverse size the beam is in the space charge dominated regime and is not sensitive to 
binary collisions. Smooth functions for the charge and field distributions can be used in this 
case and the space charge force can be treated like an external applied force. The space-
charge field can be separated into linear and nonlinear terms as a function of displacement 
from the beam axis. The linear space-charge term defocuses the beam and leads to an increase 
in beam size. The nonlinear space-charge terms increase also the rms emittance by distorting 
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the phase-space distribution. Under the paraxial approximation of particle motion we can 
consider the linear component only. We shall see in the next paragraph that also the linear 
component of the space charge field can induce emittance growth when correlation along the 
bunch are taken in to account. 

For a bunched beam of uniform charge distribution in a cylinder of radius R and 
length L, carrying a current Î  and moving with longitudinal velocity vz = βc , the linear 
component of the longitudinal and transverse space charge field are approximately given by 
[8]: 

(30)                                            

€ 

Ez(ζ ) =
ˆ I L

2πε0R2βc
h ζ( )  

(31)                                            

€ 

Er(r,ζ ) =
ˆ I r

2πε0R2βc
g ζ( )

 
 
The field form factor is described by the functions:  
 

(32)                                  

€ 

h ζ( ) = A + (1−ζ )2 − A +ζ 2 + 2ζ − 1( )$ 
% & 

' 
( )  

(33)                                     

€ 

g ζ( ) =
(1−ζ )

2 A2 + (1−ζ )2
+

ζ

2 A2 +ζ 2
 

 

where 

€ 

ζ =
z
L

 is the normalized longitudinal coordinate along the bunch and 

€ 

A =
R
γL  is the 

beam aspect ratio. The field form factors account for the longitudinal variation of the fields 
along the bunch. As 

€ 

γ  increases 

€ 

g ζ( ) → 1  and 

€ 

h ζ( ) → 0  thus showing that space charge fields 
mainly affect transverse beam dynamics. It shows also that an energy increase corresponds to 
a bunch lengthening in the moving frame !L = γL  leading to a vanishing longitudinal field 
component, as in the case of a continuous beam in the laboratory frame.  

To evaluate the force acting on the beam one must account also for the azimuthal 
magnetic field associated with the beam current, that in cylindrical symmetry is given by 

Bϑ =
β
c
Er . Thus the Lorentz force acting on each single particle is given by: 

(34)                                      Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2
 

The attractive magnetic force, which becomes significant at high velocities, tends to 
compensate for the repulsive electric force. Therefore space charge defocusing is primarily a 
non-relativistic effect and decreases as γ −2 .  

In order to include space charge forces in the envelope equation lets start writing the 
space charge forces produced by the previous fields in Cartesian coordinates: 

(35)                                                   Fx =
eÎx

2πγ 2ε0σ x
2βc

g ζ( )  

Then computing the moment of the force we need: 
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(36)                               !!x =
Fx
βcp

=
eIx

2πε0γ
3moβ

3c3σ x
2 g ζ( ) =

ksc ζ( )
βγ( )3σ x

2
x

  
where we have introduced the generalized beam perveance  

(37)                                                    ksc ζ( ) = 2 Î
IA
g ζ( )

 

normalized to the Alfven current IA =
4πεomoc

3

e
=17kA . Notice that in this case the perveance 

(37) explicitly depends on the slice coordinate ζ . Now we can calculate the term that enters 
in the envelope equation for a relativistic beam:  
 

 (38)                                             x !!x =
ksc
γ 3σ x

2 x2 = ksc
γ 3

  

leading to the complete envelope equation: 

(39)                                        !!σ x +
γ !

γ
!σ x + kext

2 σ x =
εn,rms
2

γ 2σ x
3 +

ksc
γ 3σ x  

From the envelope equation (39) we can identify two regimes of beam propagation: 
space charge dominated and emittance dominated. A beam is space charge dominated as long 
as the space charge collective forces are largely dominant over the emittance pressure. In this 
regime the linear component of the space charge force produces a quasi-laminar propagation 
of the beam as one can see by integrating one time eq. (36) under the paraxial ray 
approximation !x <<1 . A measure of the relative importance of space charge effects versus 
emittance pressure is given by the laminarity parameter, defined as the ratio between the 
space charge term and the emittance term:  

 (40)                                                       

€ 

ρ =
ˆ I 

2IAγ
σ 2

εn
2  

When ρ greatly exceeds unity, the beam behaves like a laminar flow (all beam particles move 
on trajectories that do not cross) and transport and acceleration require a careful tuning of 
focusing and accelerating elements in order to keep laminarity.  Correletated emittance 
growth is typical in this regime which can be conveniently made reversible if proper beam 
matching conditions are fulfilled, as discussed in the next paragraph. When  

€ 

ρ < 1 the beam is 
emittance dominated (thermal regime) and the space charge effects can be neglected. The 
transition to thermal regime occurs when 

€ 

ρ ≈ 1  corresponding to the transition energy  
 

(41)                                                          

€ 

γ tr =
ˆ I 

2IA

σ 2

εn
2
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For example a beam with 

€ 

ˆ I =100 A 

€ 

εn=1 µm and 

€ 

σ=300 µm is leaving the space charge 
dominated regime and is entering the thermal regime at the transition energy of 131 MeV. 
From this example one may conclude that space charge dominated regime is typical of low 
energy beams. Actually for applications like linac driven Free Electron Lasers peak current 
exceeding kA are required. Space charge effects may recur if bunch compressors are active at 
higher energies and a new energy threshold with higher Î has to be considered. 
 

7. - Correlated emittance oscillations 

When longitudinal correlations within the bunch are important, as the one induced by 
the space charge effects, the beam envelope evolution is generally dependent also on the 
bunch coordinate ζ . In this case the bunch should be considered as an ensemble of N 

longitudinal slices of envelope  whose evolution can be computed from N slice 
envelope equations equivalent to (39) provided that the bunch parameters refer to each single 
slice: γ s,  !γ s,  ksc,s = kscg ζ( ) . Correlations within the bunch may cause emittance oscillations 

that can be evaluated, once an analytical or numerical solution [8] of the slice envelope 
equation is known, by using the following correlated emittance definition: 

(42)                                       

where the average is performed over the entire slice ensemble. In the simplest case of a 2 
slices model the previous definition reduces to: 
(43)                                               

that represents a simple and useful formula for an estimation of the emittance scaling [9].  
The total normalized rms emittance is the given by the superposition of the correlated and 
uncorrelated terms as :  

(44)                                                εn,rms = γ εrms
2 +εrms,cor

2  

 
 

 
Fig. 7 - Schematic representation of a nearly matched beam in a long solenoid. The dashed 

€ 

σ s z,ζ( )

εrms,cor = σ s
2 !σ s

2 − σ s !σ s
2

εrms,cor = σ1 !σ 2 −σ 2 !σ1
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line represent the reference slice envelope fully matched to the Brillouin flow condition. The 
other slice envelopes are oscillating around the equilibrium solution. 

 
An interesting example to consider here, showing the consequences of a non perfect 

beam matching, is the propagation of a beam in the space charge dominated regime nearly 
matched to an external focusing channel ( ), as illustrated in fig. 7. To simplify our 
computations we can neglect acceleration, as in the case of a simple beam transport line. The 
envelope equation for each slice, indicated as σ s , reduces to: 

 

(45)                                                  σ s
!! + kext

2 σ s =
ksc,s
σ s

 

A stationary solution, called Brillouin flow, is given by:  
 

(46)                                                  σ s,B =
1
kext
2

Îg ζ( )
2γ 3IA

 

 
where the local dependence of the current 

€ 

ˆ I s = ˆ I g ζ( )  within the bunch has been explicitly 
indicated. This solution represent the matching conditions for which the external focusing 
completely balances the internal space charge force. Unfortunately since kext has a slice 
independent constant value, the Brillouin matching condition cannot be achieved at the same 
time for all the bunch slices. Assuming there is a reference slice perfectly matched with an 
envelope 

€ 

σ r,B , the matching condition for the other slices can be written as: 
 

(47)                                                 σ sB =σ rB +
σ rB

2
δIs
Î

!

"
#

$

%
&  

 
with respect to the reference slice. Considering a small perturbation 

€ 

δs from the equilibrium in 
the form  
 
(48)                                                        σ s =σ s,B +δs  
 
and substituting in the equation (45) we can obtain a linearized equation for the slice offset:  
 

(49)                                                       δs!! + 2kext
2 δs = 0  

 
which has a solution given by: 
 

(50)                                                    δs = δo cos 2kextz( )  

 
where 

€ 

δo =σ so −σ sB  is the amplitude of the initial slice mismatch that we assume for 

€ 

kext = ksol
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convenience the same for all slices. Inserting (50) in (48) we get the perturbed solution: 
 

(51)                                                σ s =σ s,B +δo cos 2kextz( )  

 
Equation (51) shows that slice envelopes oscillate altogether around the equilibrium solution 
with the same frequency for all slices ( 2kext , often called plasma frequency) dependent only 
on the external focusing forces. This solution represents a collective behavior of the bunch 
similar to the one of the electrons subject to the restoring force of ions in a plasma. Using the 
two slices model and eq. (51) the emittance evolution (43) results:  
 

(52)                                         εrms,cor =
1
4
ksolσ rB

ΔI
Î
δo sin 2kextz( )

  
 
where 

€ 

ΔI = ˆ I 1 − ˆ I 2 . Notice that in this simple case envelope oscillations of the mismatched 
slices induce correlated emittance oscillations which periodically goes back to zero, showing 
the reversible nature of the correlated emittance growth. Is, in fact, the coupling between 
transverse and longitudinal motion induced by the space charge fields that allows 
reversibility. With a proper tuning of the transport line length or of the focusing field one can 
compensate for the transverse emittance growth at the expenses of the longitudinal emittance. 

At first it may seem surprising that a beam with a single charge species can exhibit 
plasma oscillations, which are characteristic of plasmas composed of two-charge species. But 
the effect of the external focusing force can play the role of the other charge species to 
provide the necessary restoring force that is the cause of such collective oscillations, as shown 
in fig. 8. The beam can be actually considered as a single component, relativistic, cold 
plasma.  
 

 
Fig. 8 – The restoring force produced by the ions (green dots) in a plasma may cause electron 
(red dots) oscillations around the equilibrium distribution. In a similar way the restoring force 
produced by a magnetic field may cause beam envelope oscillations around the matched 
envelope equilibrium. 
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It is important to bear in mind that beams in linacs are also different from plasmas in some 
important respects [5]. One is that beam transit time through a linac is too short for the beam 
to reach thermal equilibrium. Also, unlike a plasma, the Debye length of the beam may be 
larger than or comparable to the beam radius, so shielding effects may be incomplete. 
 
8. - Matching conditions in a Plasma Accelerator 
 

The concepts developed for the beam transport in the previous sections can be applied 
in a straightforward way for the case of a plasma accelerator [10] giving important 
information about the critical topic of beam-plasma matching conditions. To this end we 
introduce a simplified model for the plasma and for the resulting fields acting on the beam in 
order to be able to write an envelope equation for the accelerated beam.  

In this section we are interested in the case of external injection of particles in a 
plasma wave, in the so called “bubble” regime, that could be excited by a short intense laser 
pulse [10,11] or by a driving electron beam [12,13] with beam density nbnear to the plasma 
density no  , nb > no . A very simplified model for the plasma behind the driving pulse is 
illustrated in Figure 9. We will consider a spherical uniform ion distribution, as indicated by a 
dashed circle, with particle density . This model is justified by the fact that in this regime 
the fields are linear in longitudinal and transverse directions, at least in the region of interest 
for particle acceleration, as the one produced by a uniform ion distribution within a sphere of 

radius  where λp = 2πc
εom
noe

2  is the plasma wavelength. A more detailed 

treatment [14] shows that the correct scaling is Rsphere = 2
nb
no
σ r  , where σ r  is the driving 

beam rms radius, that for a uniform cylindrical driving bunch gives Rsphere =
4eI

π 3mc3εo

λp

2
. 

 

 
Fig. 9 – Schematic representation of the longitudinal wake field (black line) and ion 

distribution (red area) behind a driving laser or particle beam [11]. 
 

The field produced by the ions and experienced by a witness electron beam is purely 

no

Rsphere ≈
λp

2
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electrostatic, being the ions at rest in the laboratory frame on the time scale of interest, and is 
simply given by:  

 

(53)                                                   Er =
eno
3εo

r  

 
 i.e. it has a radial symmetry (other authors, see for example [12], consider a uniform charged 

cylindrical ion column producing a transverse field of the form Er =
eno
2εo

r ). The ion sphere is 

“virtually” moving along z with the speed βd of the driving pulse due to the plasma electron 
collective oscillation, even if the source of the field remains at rest in the laboratory frame. 
There are also magnetic fields produced by the plasma electron displacement but, as shown in 
ref. [15], the net effect on a relativistic beam is negligible.  

The accelerating component of the field is linearly increasing from the moving sphere 

center zc = βdct : 

 

(54)                                                           Ez ζ( ) = eno
3εo

ζ
 

 

where ζ = z− zc , and has a maximum on the sphere edge at ζ =
λp

2
. The corresponding 

energy gained by a witness electron is given by γ = γo +αLact  where  is the accelerating 

length in the plasma and α ζ( ) =
eEz ζ( )
mc2

=
1
3
2πc
λp

!

"
##

$

%
&&

2

ζ  is the normalized accelerating gradient. 

The energy spread accumulated by a bunch of finite rms length is given by 

δγ
γ
=

δαLacc
γo +αLacc

≈
δα
α

=
σ z

λp

, showing that ultra-short electron bunches are required to keep 

energy spread below 1%. In this simplified model beam loading effects are not considered as 
well as beam slippage with respect to the driving pulse. 

The transverse (focusing) field:  
 

(55)                                                                

 
at a distance x off the propagation axis is independent of ζ  so that correlated emittance 
growth is not typically induced by the ion focusing field.  
In fig. 10 are shown the plasma wavelength and the longitudinal and transverse fields 

experienced by a test particle located at x=1 µm and ζ =
λp

4
 versus typical plasma densities, 

Lacc

σ z

Ex =
eno
3εo

x
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according to eqs. (54, 55). 
 

 
Fig. 10 - Plasma wavelength (left), longitudinal (center) and transverse (right) fields versus 

typical plasma densities experienced by a test particle located at x=1 µm and ζ =
λp

4
. 

 
As discussed in the previous sections the transverse beam dynamics can be 

conveniently described by means of a proper envelope equation. To this end let us consider 
the single particle equation of motion:  

 

(56)                                              !!x =
Fx
βcp

=
e2no

3εoγmc
2 x =

kp
2

3γ
x

 
 

where kp =
ne2

εomc
2 is the plasma wave number. The moment of the force acting on the beam 

particles is given by  

(57)                                                      x !!x =
kp
2

3γ
x2 =

kp
3γ
σ x
2   

Inserting in the envelope equation we obtain: 

(58)                                              !!σ x +
!γ
γ

!σ x +
kp
2

3γ
σ x =

εn
2

γ 2σ x
3 +

ksc
o

γ 3σ x  
 

An equilibrium solution of the previous equation has not yet been found, nevertheless 
some simplification is still possible and an approximated matching condition exists. As one 
can see there are two focusing terms, the adiabatic damping and the ion focusing, and two 
defocusing terms, the emittance pressure and the space charge effects. To compare the 
relative importance of the first two terms is more convenient to rewrite the previous equation 
with the new variable σ x = γσ x leading to the equation: 

 

(59)                                            !!σ xx +
!γ
2γ
"

#
$

%

&
'

2

+
kp
2

3γ

"

#
$
$

%

&
'
'
σ x =

εn
2

σ x
3 +

ko
sc

γ 2 σ x  
 
The beam is space charge dominated, as already discussed in section 6, when:  
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(60)                                                  

and ion focusing dominated when:  
 

(61)                                                          η =
4γkp

2

3 !γ 2 >>1  

With the typical beam parameters of a plasma accelerator: 1 kA peak current, 2 µm 
normalized emittance, injection energy γo=300 and spot size about 3 µm, we have ρ <1  and 
η >1 . It follows that the envelope equation can be well approximated by the following 
reduced expression: 

(62)                                                    !!σ xx +
kp
2

3γ
σ x =

εn
2

γ 2σ x
3    

with γ z( ) = γo +αz . Looking for a particular solution in the form σ x = γ
−1/4σ o  we obtain: 

(63)                                                    5
16

!γ 2 +
1
3
γkp

2"

#
$

%

&
'σ o =

γεn
2

σ o
3  

that for η >1  has a simple solution σ o =
3εn
kp

 giving the matching condition of the beam 

with the plasma: 

(64)                                                   σ x = γ
−1/4σ o =

3
γ

4
εn
kp

  

In fig. 11 are shown the matched beam envelope given by eq. (64) with normalized emittance 
of 2 µm and injection energy γ=300 versus the plasma density. In the same figure is shown 
also the evolution of the beam envelope in a 10 cm long plasma with density 1016 cm-3, 
corresponding to an accelerating field of 5 GV/m (extraction energy γ=1300) and focusing 
field of 60 MV/m.  
 

 
Fig. 11 - Matched beam envelope with normalized emittance of 2 µm and injection energy 
γ=300 versus the plasma density (right) and the evolution of the beam envelope in a 10 cm 

ρ =
ko
sc σ x

2

εn
2γ 2

=
ko
scσ x

2

εn
2γ

>>1
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long plasma with density 1016 cm-3, corresponding to an accelerating field of 5 GV/m and 
focusing field of 60 MV/m. 
 

Notice that the beam experiences focusing as γ increases and the beam density 
increases leading to a significant perturbation of the plasma fields. A possible solution to 
overcome this effect is to taper the plasma density along the channel in order to achieve beam 
transport with constant envelope. 

It is an interesting exercise to see the effect of a plasma density vanishing as 

n z( ) = γo
γ z( )

no , giving kp
2 =

e2no
εomc

2
γo
γ
=
γo
γ
ko,p
2 . In this case the envelope equation (58) without 

space charge effects becomes: 

(65)                                               !!σ xx +
!γ
γ

!σ x +
γoko,p

2

3γ 2
σ x =

εn
2

γ 2σ x
3  

which admits a constant equilibrium solution: 

(66)                                                  σ x =
3
γo

4
εn,
ko,p

 

Figure 12 shows the plasma density along the accelerating section and the resulting 

equilibrium beam envelope given by eq. (66) with the same beam parameters as of fig. 11  

 
Fig. 12 - Plasma density along the accelerating section (left) and the resulting equilibrium 

beam envelope given by eq. (66) (right). 

 

On the other hand before injection in the plasma accelerator, the beam has to be 
focused to the matching spot given by (64) to prevent envelope oscillations that may cause 
emittance growth and an enhancement of betatron radiation emission. It has been proposed 
[16] to shape the plasma density profile in order to gently capture the beam by means of the 

increasing ion focusing effect. For example by varying the plasma density as n z( ) =
γ z( )
γo

no  at 

the entrance of the plasma column, the envelope eqution (58) can be written as  
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(67)                                                 !!σ xxx +
ko,p
2

3γo
σ x =

εn
2

γ 2σ x
3  

 with kp
2 =

e2no
εomc

2
γ
γo
=
γ
γo
ko,p
2 . This equation has a particular solution assuming that !!γ be 

negligible: 

(68)                                                          σ x = 3γo4 εn
γko,p  

showing that with a proper choice of the initial plasma density the beam envelope can be 
gently matched to the accelerating plasma channel. 
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