Summary

The **unexpected large amplitude** cosmic rays in the superconductive NAUTILUS Frascati bar GW detector

The **unexpected large amplitude** cosmic rays in the superconductive NAUTILUS Frascati bar GW detector

The interaction of the cosmic rays with a bar and the thermo-acoustical model in normal and superconductive aluminum

The **unexpected large amplitude** cosmic rays in the superconductive NAUTILUS Frascati bar GW detector

The interaction of the cosmic rays with a bar and the thermo-acoustical model in normal and superconductive aluminum

The RAP experiment (Rivelazione Acustica Particelle) on the Frascati linac to measure the vibrational amplitude at low temperatures

The **unexpected large amplitude** cosmic rays in the superconductive NAUTILUS Frascati bar GW detector

The interaction of the cosmic rays with a bar and the thermo-acoustical model in normal and superconductive aluminum

The RAP experiment (Rivelazione Acustica Particelle) on the Frascati linac to measure the vibrational amplitude at low temperatures

Conclusions

The **unexpected large amplitude** cosmic rays in the superconductive NAUTILUS Frascati bar GW detector

The interaction of the cosmic rays with a bar and the thermo-acoustical model in normal and superconductive aluminum

The RAP experiment (Rivelazione Acustica Particelle) on the Frascati linac to measure the vibrational amplitude at low temperatures

Conclusions

e-Print: **arXiv:1105.4724** [gr-qc] in press on Nuclear Instruments and Methods in Physics Research

M. Bassanb,c, B. Buonomoa, G. Cavallarie, E. Cocciab,c, S. D'Antoniob, V. Fafoneb,c, L.G. Foggettaa,1, C. Ligia,*, A. Marinia, G. Mazzitellia, G. Modestinoa, G. Pizzellac,a, L. Quintieria, F. Rongaa, P. Valented, S.M. Vinkoa,2

F Ronga INFN LNF TAUP2011

Al 2036 bar 2300 Cross section : 2 aluminum shields, container for helium **2000 liters**, dilution refrigerator with ³He ⁴He mixture

F Ronga INFN LNF TAUP2011

Al 2036 bar 2300 Cross section : 2 aluminum shields, container for helium 2000 liters, dilution Mechanical suspension: shields are suspended in a chains and copper wire around the bar 260 db @ I Khz

The hadrons measured by Cascade should be and upper limit, because the bar should contain only ~a few percent of the hadronic energy

Interaction of a particle with a bar: Thermo-Acoustical model

Ionization energy lost is converted in thermal heating and therefore pressure wave

γ Grunesein parameter

Y = Young module, C= specific heat, α linear thermal expansion coefficient

pois=Poisson module

Thermal acoustical conversion (General case for a single particle) $E = \frac{1 l^2 G_n^2 G_n^2}{dE}$

$$E_n = \frac{1}{2} \frac{l^2}{V} \frac{G_n^2}{\rho v^2} \gamma^2 \left(\frac{dE}{dX}\right)^2$$

Allega A.M. & Cabibbo N. Lett Nuovo Cim 38 (1983) 263-A. De Rujula & B. Lautrup, Nucl Phys. B242 (1984) 93-144

G_n cylinder form factor, first order in R/L

F Ronga INFN LNF TAUP2011

The thermo-acoustical model in a superconductive state

• in addition to the expansion due to the heating we could have a release of additional energy if a local transition from the superconductive (*s*) state to a normal (*n*) state occur, due to the different energies of the *s* and *n* state. This effect has been demonstrated in the "superconductive strip" detector

The thermo-acoustical model in a superconductive state

• in addition to the expansion due to the heating we could have a release of additional energy if a local transition from the superconductive (*s*) state to a normal (*n*) state occur, due to the different energies of the *s* and *n* state. This effect has been demonstrated in the "superconductive strip" detector

so two possibilities:

1) no local *s* - *n* transition : normal thermo-acoustical model with low temperature parameters

2) *s* - *n* transition : overlapping of two effects :

thermo-acoustical with normal state parameters + s - n transition pressure wave

the two effects could have different sign ("interference")

$$\frac{X}{W} = \left[\left(\frac{X}{W} \right)_{trans} \right] + \left[\left(\frac{X}{W} \right)_{norm} \right] = \left[\mathcal{F} \left(H_c, \frac{\partial H_c}{\partial T}, \frac{\partial H_c}{\partial P} \right) \right] + \left[B \left(\frac{\alpha}{c_V} \right)_{norm} \right]$$

X amplitude W energy

Very difficult to have a reliable prediction⁶

the energy delivered in the bar

B/W=constant

 B/W not constant for T<TC

the sign of B/W becomes negative for T<TC==>> initial compression of the bar apparently complicated behavior

Figure 9: Synoptic view of the data for temperature $T \leq 1.6$ K, the transition temperature is about 0.9 K. The plot shows the measured B/W (with sign) vs temperature T and deposited energy W. The most relevant feature of this plot are: a constant value of B/W for $T \geq T_c$, the change of sign of B/W for $T \leq T_c$ and the dependence on W of B/W for $T \leq T_c$. The experimental data are the open circles. The shadowed regions are interpolations of the data. The point at the lowest temperature T = 0.14 K is obtained from the cosmic ray NAUTILUS data.

- the non linearity for T<Tc and the complicated behavior is due to saturation effects. A typical electron produces a transition in a cylinder of 1μ radius. With an electron beam having 10^9 particles the cross section switched to normal is 30 cm^2 larger than the beam cross section (20 cm^2)
- the sign of B/W becomes negative because both effects (local heating and transition from s to n) are like a "compression".
- this model suggest a relation of the kind:

- the non linearity for T<Tc and the complicated behavior is due to saturation effects. A typical electron produces a transition in a cylinder of 1μ radius. With an electron beam having 10^9 particles the cross section switched to normal is 30 cm^2 larger than the beam cross section (20 cm^2)
- the sign of B/W becomes negative because both effects (local heating and transition from s to n) are like a "compression".
- this model suggest a relation of the kind:

$$\frac{B}{W} = a + (b(T) - a) \exp\left(\frac{-W}{p_0 \ \rho \ C_I(T)}\right)$$
$$b(T) = p_1 + p_2 T + p_3 T^2$$

- the non linearity for T<Tc and the complicated behavior is due to saturation effects. A typical electron produces a transition in a cylinder of 1μ radius. With an electron beam having 10^9 particles the cross section switched to normal is 30 cm^2 larger than the beam cross section (20 cm^2)
- the sign of B/W becomes negative because both effects (local heating and transition from s to n) are like a "compression".
- this model suggest a relation of the kind:

$$rac{B}{W} = a + (b(T) - a) \exp\left(rac{-W}{p_0 \
ho \ C_I(T)}
ight)$$

$$b(T) = p_1 + p_2 T + p_3 T^2$$

- a~2.25×10-10 mJ-1 is the constant value of B/W forT >Tc and b
 (T) the value of B/W for T <Tc and W →0
- CI is the integrated specific heat between T and the critical temperature
- 4 free parameters p

$$\frac{B}{W} = a + (b(T) - a) \exp\left(\frac{-W}{p_0 \ \rho \ C_I(T)}\right)$$

 $b(T) = p_1 + p_2 T + p_3 T^2$

Fit result $\chi^2/d.o.f. = 368/286 = 1.29$

> the model of De Rujula Cabibbo et al. with the of two effects when T<Tc is correct. But only for small value of the energy (as in the case of cosmic rays).

- The fit can be used to find B/W when W->0
- measurements necessary due the approximations in the model and to the poor knowledge of low temperature parameter

Summary of the RAP measurements

Nautilus data at T=0.14 K and predictions using the RAP 4.9 enhancement

NAUTILUS 1998 T=0.14 K

Agreement : No exotics!

Figure 13: NAUTILUS 1998, at T = 0.14 K. The integral distribution of the event rate after the background unfolding, compared with the expected distribution (continuous line). The prediction is computed using the data of Table 4 and using the value $\delta_s = 5.7$ measured by RAP. The good agreement suggests the absence of anomalous components of cosmic rays or anomalous interactions of cosmic rays with a superconductive bar. Modified from Ref. [34].

• **Strange behavior** in superconductive aluminum : change of sign of the initial amplitude and enhancement of ~ 4.9 (in energy ~24)

- **Strange behavior** in superconductive aluminum : change of sign of the initial amplitude and enhancement of ~ 4.9 (in energy ~24)
- No anomaly found in the cosmic rays interaction with the bar.

- **Strange behavior** in superconductive aluminum : change of sign of the initial amplitude and enhancement of ~ 4.9 (in energy ~24)
- No **anomaly** found in the cosmic rays interaction with the bar.
- Cosmic rays are not an important noise at the moment. But **useful tool** to have a continous monitor of very small amplitude signals (<1 mKelvin). Useful in "cumulative searches" like gamma ray bursts".

- **Strange behavior** in superconductive aluminum : change of sign of the initial amplitude and enhancement of ~ 4.9 (in energy ~24)
- No **anomaly** found in the cosmic rays interaction with the bar.
- Cosmic rays are not an important noise at the moment. But **useful tool** to have a continous monitor of very small amplitude signals (<1 mKelvin). Useful in "cumulative searches" like gamma ray bursts".
- Application to exotic particle searches (nuclearites..)

- **Strange behavior** in superconductive aluminum : change of sign of the initial amplitude and enhancement of ~ 4.9 (in energy ~24)
- No **anomaly** found in the cosmic rays interaction with the bar.
- Cosmic rays are not an important noise at the moment. But **useful tool** to have a continous monitor of very small amplitude signals (<1 mKelvin). Useful in "cumulative searches" like gamma ray bursts".
- Application to exotic particle searches (nuclearites..)
- Cosmic rays can be also a noise in GW interferometers (mirrors). Two mechanism : one similar to the bar, the other produces a pendulum oscillation. Not a problem for the next generation advanced detector, but the calculation for muons of Yamamoto et al., Phys. Rev. D 78 (2008) should be extended to include E.M. and hadronic showers.

Additional slides

Strange Quark Matter (nuclearites, strangelets) E. Witten, Phys. Rev. D30 (1984) 272A. De Rujula, L. Glashow, Nature 312 (1984) 734

Nuclearites : core + electrons , neutral, A > 10⁶ CDM candidate
 Strangelets : positively charged, A < 10⁶ Cosmic ray component

21/11/2007 L Patrizii

CSN2- LNL Nov07

Application: nuclearites searches in anti- coincidend with the CR detector

Previous results (Explorer) Ph Rev 47 1992

Application: nuclearites searches in anti- coincidence with the CR detector

Application: nuclearites searches in anti- coincidence with the CR detector

Application: nuclearites searches in anti- coincidend with the CR detector

$$\frac{dE}{dx} = 480 \frac{\text{GeV}}{\text{cm}} \left[\frac{\beta \theta(m)}{10^{-3}} \right]^2,$$

where the mass dependence is

$$\theta(m) = 1 \text{ if } m \le 1.5 \text{ ng },$$

$$\theta(m) = \left[\frac{m}{1.5 \text{ ng}}\right]^{1/3} \text{ if } m \ge 1.5 \text{ ng }. \quad \underline{1}$$

- limits are much higher than the one in other experiments (SLIM 1.4 10⁻¹⁵ MACRO 3 10⁻¹⁶)
- but some interest because the detection mechanism is quite simple, no threshold in β
 "calorimetric measurement"
 for some masses
 limits < than DM matter limit

Previous results (Explorer) Ph Rev 47 1992

Cosmic rays rates in the bar - computed

	Vibrational	Deposited	Muons	Ext Air	Hadrons	Total
	Energy E	Energy W		Showers		
	(K)	(GeV)				(events/day)
	$\geq 10^{-5}$	≥ 44.5	15.7	62	29.2	107
	$\geq 10^{-4}$	≥ 141	1.6	8.9	4	14.5
	$\geq 10^{-3}$	≥ 445	0.2	1	0.4	1.6
	$\geq 10^{-2}$	≥ 1410	0.003	0.13	0.06	0.19
	$\geq 10^{-1}$	≥ 4450				0.03
Table	1					

With the today bar sensitivity events are due mainly to cosmic rays with a primary of energy $>\sim 10^{14} \text{ eV}$

Application antenna monitoring and

performances study: time resolution

Fig. 12. EXPLORER 2003-2006 : Time difference (seconds) between cosmic rays with $\Lambda \geq 100 \frac{particles}{m^2}$ and the maximum of the filtered antenna signal, with a cut $E \geq 36 T_{eff}$. The fit with a gaussian , with parameters p0=peak, p1=mean, p2= σ and a constant background p3, gives $\sigma = 3.7ms$. The value of the mean (-1±0.35 ms) should be compared to the expected value of -0.6 ms due to the delay of the antenna electronic chain.