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Nautilus (the first cooled at 100 mK in 1998)
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10°

A big surprise in 1998!!!

(Nautilus first detection of cosmic rays in a GW detector)

Rate much larger !!

Integral number

Hadrons as measured in the
scade experiment

Nautilus data

Calculation
(Corsika +Geant)

107 Cev 107 107

The hadrons measured by Cascade should be and upper limit, because

the bar should contain only ~a few percent of the hadronic energy



Interaction of a particle with a
bar: Thermo-Acoustical model

lonization energy lost is converted in thermal
heating and therefore pressure wave

_’
PANRA
<4— —»

po b0
p YVO / e

b= 3 (1-2% pois) Y

vy Grunesein parameter

Y =Young module, C= specific heat, a linear thermal expansion coefficient

pois=Poisson module F Ronga INFN LNF TAUP201 |



Thermal acoustical conversion
(General case for a single particle)

10I° G’ (dE)
E, = Y
2V pv dX

Allega AM. & Cabibbo N. Lett Nuovo Cim 38 (1983) 263-
A. De Rujula & B. Lautrup, Nucl Phys. B242 (1984) 93-144

G, cylinder form factor, first order in R/L
( Barish-Liu Phys Rev Lett 61 1988)

/ . ( m, cosf )\

S1N
dE) | 2L

dX 7R cos6
L

T =275*10° (
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The thermo-acoustical model 1n a
superconductive state

e 1n addition to the expansion due to the heating we could have a release of additional
energy if a local transition from the superconductive (s) state to a normal (n) state
occur, due to the different energies of the s and n state. This effect has been
demonstrated in the “superconductive strip” detector




The thermo-acoustical model 1n a
superconductive state

in addition to the expansion due to the heating we could have a release of additional
energy if a local transition from the superconductive (s) state to a normal (n) state
occur, due to the different energies of the s and n state. This effect has been
demonstrated 1n the “superconductive strip” detector

so two possibilities:
1) no local s - m transition : normal thermo-acoustical model with low
temperature parameters
2) s - n transition : overlapping of two effects :
thermo-acoustical with normal state parameters + § - n transition pressure
wave
the two effects could have different sign (“interference”)

+

X) ' X amplitude W energy

JH_ OH, \-' Very difficult to have a rellable
I prediction
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* annealed, purity > 99%
* 2 PZ24 ceramics in parallel
glued to the bottom center
e A~10°V/m

e 2 Pz24 ceramics in parallel
embedded in the bar
e A~107V/m
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(Tc~0.85K)
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Typical RAP results for 0.9< T <2K
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RAP results for T< critical
temperature

- B/W not constant for
@' T<TC

0.2

the sign of B/'W
becomes negative for
T<TC==>> 1nitial
compression of the bar

B/Wvs Wand T - data

0.2

04
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behavior

- 08
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Figure 9: Synoptic view of the data for temperature T < 1.6 K, the transition temperature is
about 0.9 K. The plot shows the measured B/W (with sign) vs temperature T and deposited
energy W. The most relevant feature of this plot are: a constant value of B/W for T > T,
the change of sign of B/W for T < T. and the dependence on W of B/W for T < T.. The
experimental data are the open circles. The shadowed regions are interpolations of the data.

The point at the lowest temperature T = 0.14 K is obtained from the cosmic ray NAUTILUS
data.




RAP results tor T< critical temperature
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* the non linearity for T<Tc and the complicated behavior 1s due to
saturation effects. A typical electron produces a transition in a
cylinder of 1u radius. With an electron beam having 10° particles
the cross section switched to normal 1s 30 cm? larger than the
beam cross section (20 cm?)

* the sign of B/W becomes negative because both effects (local
heating and transition from s to n) are like a “compression”.

* this model suggest a relation of the kind:
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b(T) = p1 + poT + p3T™




RAP results tor T< critical temperature

* the non linearity for T<Tc and the complicated behavior 1s due to
saturation effects. A typical electron produces a transition in a
cylinder of 1u radius. With an electron beam having 10° particles
the cross section switched to normal 1s 30 cm? larger than the
beam cross section (20 cm?)

* the sign of B/W becomes negative because both effects (local
heating and transition from s to n) are like a “compression”.

* this model suggest a relation of the kind:

% =a+(b(T)—a)exp( il )

po p C1(T)
b(T) = p1 + p2T + paT*
e a-~-2.25x10-10 md-1 is the constant value of B/W forT >Tcand b
(T) the value of B/W for T <Tcand W —0

e Clis the integrated specific heat between T and the critical
temperature

e 4 free parameters p



RAP results for T< critical temperature

Po P CI(T))

b(T') = p1 + p2T + psT*?

B
w =a+(b(T)—a)exp(

Fit result x2/d.o0.f. = 368/286 = 1.29

> the model of De Rujula Cabibbo et al. with the of two effects
when T<Tc 1s correct. But only for small value of the energy
(as 1n the case of cosmic rays).
* The fit can be used to find B/W when W->0
* measurements necessary due the approximations in the model
and to the poor knowledge of low temperature parameter




Summary of the RAP
measurements

RAP measurement - summary

 The value at T<Tc are
— - obtained from the fit for
m predictions | W (EnﬁrgY)->O

B/W x 10'°

- Small disagreement also
forT 1-4 K

Enhancement of ~ 4.9 for
T~0.1-02 K
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Nautilus data at T=0.14 K and predictions
using the RAP 4.9 enhancement

NAUTILUS 1998 T=0.14 K

Agreement : No exotics!
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Figure 13: NAUTILUS 1998, atT = 0.14 K. The integral distribution of the event rate after
the background unfolding, compared with the expected distribution (continuous line). The
prediction is computed using the data of Table and using the value §; = 5.7 measured by
RAP. The good agreement suggests the absence of anomalous components of cosmic rays or
anomalous interactions of cosmic rays with a superconductive bar. Modified from Ref. [34].
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e Strange behavior in superconductive aluminum : change of sign
of the 1nitial amplitude and enhancement of ~ 4.9 (in energy ~24)

 No anomaly found in the cosmic rays interaction with the bar.

e Cosmic rays are not an important noise at the moment. But useful
tool to have a continous monitor of very small amplitude signals
(<1 mKelvin). Useful 1in “cumulative searches” like gamma ray
bursts™ .

e Application to exotic particle searches (nuclearites..)

e Cosmic rays can be also a noise in GW interferometers (mirrors).
Two mechanism : one similar to the bar, the other produces a
pendulum oscillation. Not a problem for the next generation advanced
detector, but the calculation for muons of Yamamoto et al., Phys. Rev.
D 78 (2008) should be extended to include E.M. and hadronic

showers. o
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Strange Quark Matter (nuclearites, strangelets)
E. Witten, Phys. Rev. D30 (1984) 272A. De Rujula, L. Glashow, Nature 312 (1984) 734

* Aggregates of u, d, s quarks + electrons

of ~ equal number, density: 3.5 x 10'4 g cm=3, e
* Ground state of nuclear matter (E/A < 930 MeV). ¥
* Stable for any baryon number A (few < A< 1057),

..a qualitative picture... NUCLEARMATTER  STRANGE MATTER

M (GeV) 10¢ 07 1012 1015 1018

» Nuclearites : core + electrons , neutral, A > 10¢ CDM candidate

» Strangelets : positively charged, A <106 Cosmic ray component

21/11/2007 L Patrizii CSN2- LNL Nov07



Application: nuclearites searches in anti- coincidenc
with the CR detector
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Application: nuclearites searches in anti- coincidenc
with the CR detector

’

dE _ 400 GeV | BOim) ‘
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e limits are much higher than the
one 1n other experiments
(SLIM 1.4 10-1> MACRO 3 10-19)
* but some interest because
the detection mechanism 1s quite
simple, no threshold in f5 _
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Cosmic rays rates 1n the bar -
computed

Vibrational

Energy E

Deposited
Energy W
(GeV)

Ext Air

Showers

(events/day)

> 107"
> 1073
> 1072
> 10"

2 44.5
> 141
> 445
> 1410
> 4450

107
14.5
L6
0.19
0.03

Table 1

With the today bar sensitivity events
are due mainly to cosmic rays with a

primary of energy >~1014eV

'(Quantum limit

Today sensitivity

EVENTS/DAY

1

Events

0,1

Energy (K)
18




Application antenna monitoring and

performances study: time resolution
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At (cosmic event - antenna event) (s)

Fig. 12. EXPLORER 2003-2006 : Time difference (seconds) between cosmic rays
with A > 100 ‘%ﬁl” and the maximum of the filtered antenna signal, with a cut
E > 36 T.rs. The fit with a gaussian , with parameters p0=peak, pl=mean, p2=c
and a constant background p3, gives o = 3.7ms. The value of the mean (-1+0.35
ms) should be compared to the expected value of -0.6 ms due to the delay of the
antenna electronic chain.




