The Oscillating Neutrino (experiments)

Summary

- Introduction : Neutrino masses and oscillations
- Neutrino sources and experiments: reactors, accelerators, cosmic rays, sun

Possible evidence for oscillations: Accelerators (LSND) Sun Cosmic Rays (atmospheric neutrinos)

• Future

• Main emphasis : atmospheric neutrinos (MACRO, Superkamiokande)

• Beautiful report Los Alamos Science number 25 " Celebrating the Neutrino" (1998)190 pages it is free!!

Introduction: Milestones in the Oscillating Neutrino

- **1930** Pauli : the "neutrons" to explain the missing energy
- 1934 Fermi : theory of beta decay and the word "neutrino"
- 1956 Reines and Cowan et al.: first direct detection of electron neutrino
- 1957 Pontecorvo : suggestion of neutrino oscillations
- 1963 Lederman Schwartz Steinberg detection of muon neutrino
- 1965 (Reines in South Africa and the KGF experiment in India) : first detection of atmospheric neutrinos

• 1968 Davis et al.: first detection of neutrinos from the SUN. Flux lower than expected.

- 1986 Beginning of the Atmospheric Neutrino Anomaly (IMB - Usa and then Kamiokande Japan)
- 1995 LSND experiment anomaly(Los Alamos)

• 1998 Evidence for Oscillations in the Atmospheric Neutrinos? (Superkamiokande, MACRO, Soudan2...)

Introduction: Direct Measurement of the Neutrino Masses

• based on the missing energy distributions experimental limitations due to the resolution of the energy measurement

• Ve : Beta Decay

 $n \rightarrow p + e^- + v_e$ (N,Z) \rightarrow (N-1,Z+1) + e⁻

Tritium Beta decay using a magnetic spectrometer (Troitsk experiment)

> Tritium(2,1) \rightarrow Helium(1,2)+ em(v_e)<3 eV/c² (98% CL)

• $\nabla \mu$: $\pi \rightarrow \mu + \nu_{\mu}$ decay m(ν_{μ}) < 0.19 MeV/c² (95% CL)

•
$$\nabla_{\tau}$$
 : $e^+e^- \rightarrow \tau^+ \tau^-$
 $\tau^+ \rightarrow 3 \pi^{+-} \nu_{\tau}$ and other decays
 $m(\nu_{\tau}) < 18.2 \text{ MeV/c}^2$ (95% CL)

Introduction: Direct Measurement of the Neutrino Masses Tritium spectrum near the end point

Introduction: The Oscillating Neutrino

• Pontecorvo suggestion :

if we postulate

1) Neutrino have different masses

2) The Weak eigenstate is a mixture of Mass Eingenstate then:

$$\begin{bmatrix} \mathbf{v}_{\boldsymbol{\mu}} \\ \mathbf{v}_{\mathbf{e}} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & | \mathbf{v}_{\mathbf{1}} \\ -\sin(\theta) & \cos(\theta) & | \mathbf{v}_{\mathbf{2}} \end{bmatrix}$$

(θ is called mixing angle)

and the probability of oscillations for two neutrinos is :

$$Posc = \sin^2(2\theta) \sin^2\left(1.27\Delta m^2 \frac{L}{E}\right)$$

(L in meters, E in MeV, $\Delta m^2 = m_1^2 - m_2^2$ in $(eV/c^2)^2$

Introduction: The Oscillating Neutrino

• The results of the experiments is usually given as function of the oscillation probability for two neutrinos, but the general case involves 3 neutrinos

• Oscillating Neutrino crossing the Sun/Earth could have a "Matter Effect" (MSW). This occurs when the two oscillating neutrinos have different interactions in the matter (for example the v_e has interaction with electrons in the matter different from v_{μ} .

• Neutrino oscillations and masses ==>> significant changes to the Standard Model

(==>> Fogli - Altarelli)

• not well defined (Feldman Cousins) also called

exclusion plot (for me is often a confusion plot)

Neutrino sources and experiments

• The experiments are of two kinds :

a) appearance experiments : looking for neutrino of different kind respect to the beam

(LSND experiment) Small values of the mixing angle can be measured several combinations :

 $v_{\mu}v_{\tau}$, $v_{\mu}v_{e}$

b) disappearance experiments : they measures the flux of neutrinos similar to the one in the beam (solar and atmospheric)
Only large values of the mixing angle can be measured

• In both cases the behavior of the counting rates as function L/E is important to identify the oscillation

pattern

Neutrino sources and experiments

Source	Neutrino	L	E	Туре	Δm ²
	Beam	meters	MeV		min
					(eV2)
Reactors	\overline{v}_e	10÷	3	dis.	≈10-3
Chooz		103			
Accellerators	$\overline{v}_{u} v_{u}$	30	70	app \overline{v}_e	≈10-1
low energies	V_{ρ}				
LSND	e				
Accelerators	ν_{μ}	103	26*	app v_{τ}	≈1
high energy	v_e		103		
Nomad					
Chorus					
Atmospheric	$\overline{v}_{\mu} v_{\mu}$	104÷	100 ÷	dis	≈ 10-4
	$\overline{v}_e^{\mu} v_e^{\mu}$	107	106		
Solar	v _e	1011	0.1	dis	10-11
			÷10		
Future : Long	$\overline{v}_{\mu} v_{\mu}$	106	104	app v_{τ}	≈10-3
Base Line				dis	
Beam					

• dis = disappearance, app= appearance

Neutrino sources and experiments : negative results from accelerators

$(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\tau})$

• The signature is a τ produced by ν_{τ} interaction

Neutrino at reactors Chooz France Italy USA

• Gd loaded liquid scintillator to have a good detections of neutrons $(\overline{v}_e \ p = \Longrightarrow e^+ n)$

n capture after 30µsec with 8 Mev signal)

Neutrino sources and experiments : negative results from reactors

Roma III novembre 1998

Possible evidence for oscillations: LNSD results $(v_{\mu} \rightarrow v_{e})$

• the only positive result using neutrino artificially produced

- Los Alamos : 800 MeV proton beam
- neutrino are produced at rest in the following way:

Possible evidence for oscillations: LNSD results (vµ→ ve)

- v_{μ} neutrino are produced from π + decay in fligth
- detection of v_e using quasi-elasting scattering:

$$v_e C \rightarrow e N^*$$

• almost a different experiment : different L, higher energy neutrinos, different signature, different background

LNSD/Karmen disagreement?

Karmen 1 : detector similar to LSND 10 times less statistics 7.3 ± 7.0 event as excess consistent with LSND

Karmen 2 : in progress
 Better veto shielding
 Expected Background 7.8 events
 3 events found
 oscillating signal expected ≈ 1 events (LSND)

• The interpretation depends on the statistical treatment of the data and to the way to give upper limits when the measured numbers are less than the expected background

• Nice paper of Feldman-Cousins on Phys Rev D 1998.

• If you believe to the background evaluation using the Feldman-Cousins preocedures

Karmen2 is inconsistent with LSND at 90% CL.

The Sun as Neutrino Source

• Experiments

Homestake(USA) Chlorine

 $v_e + 37Cl \rightarrow 37Ar^* + e^-$ Eth=0.8 MeV

1 atom /day 25 years of data 37Ar^{*} τ =11 days

SAGE(Russia) and Gallex (Gran Sasso) Gallium

 $v_e + 71Ga \rightarrow 71Ge^* + e^- Eth=0.23 \text{ MeV}$

1 atom/day 71Ge* τ =35 days

Kamiokande and SuperKamiokande (Japan)water ve e → ve e (elastic scattering) Eth=6.5 MeV

SUN GALLEX at Gran Sasso

SUN GALLEX at Gran Sasso

SUN Superkamiokande

SUN: Neutrino flux measurements

 There is a ≈ 50% reduction of the measured flux respect expectations. How reliable are the expectations? A lot of theoretical work in the past years

SUN : Theoretical Predictions

• 39 Experts agree on cross section and systematic Rev Mod Phys Oct 1998

• Bahcal - Pinsonneault revised model 1998

Table 1

Standard Model Predictions (BP98): solar neutrino fluxes and neutrino capture rates, with 1σ uncertaintics from all sources (combined quadratically).

Sour	ce Flux	CI	Ga
	$(10^{10} \text{ m}^{-2} \text{s}^{-1})$	(SNU)	(SNU)
рр	$5.94(1.00^{+0.01}_{-0.01})$	0.0	69.6
\mathbf{pep}	$1.39 \times 10^{-2} \left(1.00^{+0.01}_{-0.01} ight)$	0.2	2.8
hep	2.10×10^{-7}	0.0	0.0
⁷ Be	$4.80 imes10^{-1}\left(1.00^{+0.09}_{-0.09} ight)$	1.15	34.4
^{8}B	$5.15 imes10^{-4}\left(1.00^{+0.19}_{-0.14} ight)$	5.9	12.4
^{13}N	$6.05 \times 10^{-2} (1.00^{+0.19}_{-0.13})$	0.1	3.7
$^{15}\mathrm{O}$	$5.32 imes10^{-2}\left(1.00^{+0.22}_{-0.15} ight)$	0.4	6.0
$^{17}\mathrm{F}$	$6.33 imes 10^{-4} \left(1.00^{+0.12}_{-0.11} ight)$	0.0	0.1
Tota	1	$7.7^{+1.2}_{-1.0}$	129^{+8}_{-6}

SUN-Theoretical Predictions

SUN- Superkamiokande

13.5 events/day more than 1 order of magnitude respect to past experiments
enough statistic to look to day/night effects (to see matter effect) and to seasonal variations no effect found

• electronic device ==>> possibility to measure the electron direction and to measure the energy

SUN- Superkamiokande energy distribution

SUN- Superkamiokande Vacuum oscillations (just-so)

SUN- Superkamiokande Matter oscillations

SUN- Conclusions (Global Analysis of Bahcal Krastev Smirnov)

• Input : all experiments + SK Energy dependence, Day/Night data

Matter effect (MSW)
Best solution Confidence Level=7%
Δm²=5 x 10⁻⁶ eV² sin²(θ)= 5.5 x 10⁻³
the large angle solution CL≈1%

• Vacuum oscillations Confidence Level=6% $\Delta m^2=6.5 \ge 10^{-11} eV^2 \sin^2(\theta) = 0.75$

 \bullet Standard Solar Models without oscillations inconsistent with the data at 20 σ

Atmospheric neutrinos : the beam

• Neutrinos are produced in the hadronic cascade produced from the primary cosmic interacting in the atmosphere

• Basic scheme :

$$p+N \rightarrow n \pi / k + ..$$

$$\pi / k \rightarrow \mu + (\mu^{-}) + \nu_{\mu} (\nu_{\mu})$$

$$\mu + (\mu^{-}) \rightarrow e^{+} (e^{-}) + \nu_{e} (\nu_{e})$$

$$+ \nu_{\mu} (\nu_{\mu})$$

==>> at low energies about twice muon neutrinos respect to electron neutrinos.

The first Atmospheric neutrino anomaly

• The contained events with a single muon are less than expected compared with the events with a single electrons

• Note : the "error " for R is from the binomial distribution

Atmospheric neutrinos : Sources of uncertainties in a detailed calculation:

• Experimental data on the cosmic ray spectra and nuclear composition

• Experimental data on proton-nucleus and nucleusnucleus interaction (up to 1000 GeV)

• Data on the strength of the geomagnetic field (at low energies) , solar modulation

• Constraint from the measurement of the muon flux (as function of the height)

• At E >≈1 GeV the effect of the geo-magnetic field is small ==>>:

• UP-DOWN symmetry

• Angular Distributions are almost independent from the theoretical predictions

• R= $\frac{(\mu/e)data}{(\mu/e)MC}$ almost intependent from the

theoretical predictions (±5%)

Atmospheric neutrinos : the beam at low energies (≈1GeV)

Barr et al. (BGS) Honda et al. (HKHM) Bugaev and Naumov (BN) Battistoni et al (Fluka)

• Significant differences in the absolute flux calculation: for example for $\overline{\nu}_{\mu}$ + $\overline{\nu}_{\mu}$ and energies between 0.4 and 1 GeV (flux normalized to BGS)

		Flux ($\overline{\nu}_{\mu} + \overline{\nu}_{\mu}$)	v_e/v_μ
BGS	1		0.48	
HKHM		0.90	0.49	
BN		0.63	0.50	
Fluka		0.86	0.48	

• main difference : different treatment of pion production by the interactions of protons in the atmosphere.

• but practically same value for the ratio v_e/v_{μ}

• BGS theoretical error on $R \approx \pm 5\%$ (warning theoretical errors are generally not gaussian)

• from muon flux measurement in the atmosphere (MASS experiment) Perkins R = 0.49 for E = 1 GeV

Atmospheric neutrinos : the beam at high energies (≈100 GeV)

- the contribution of the kaons is important (50% in the interval 10 < E < 1000)
- comparison of different calculation in a recent paper (Agrawal et al Phys Rev D 53)
- 18 % estimated error on the flux in the interval 10 < E < 1000, 14% error with the muon flux measurement as constraint

• main sources of uncertainty : primary cosmic ray spectra and composition

Neutrino flux respect to the "Bartol" flux

Atmospheric neutrinos : Energies of interest

• The energy of the parent neutrino is dependent from the topology of detected events

- Up to now four basic topology, neutrino energy .3 GeV- 1000 GeV
- "typical" parent neutrino distributions (Kamiokande cuts)

Atmospheric neutrinos : SuperKamiokande UP-DOWN νμ asymmetry

• second anomaly : 6 sigma effect (multiGeV)

SuperKamiokande: vertex measurement

• important for the discrimination of down-going internal events

SuperKamiokande angular distributions

SuperKamiokande Global Fit L/E Plot

• data binned by particle type (e,μ) momentum (7), $\cos(\theta)$ (5) for a total of 79 bins)

- 8 parameters to be minimized (normalization etc)
- scan in the grid Δm^2 , $\sin^2(2\theta)$ (mixing)

 χ^2 no oscillations = 135/69 dof (warning not a true χ^2)

• result for $v_{\mu} \rightarrow v_t$ oscillations

 χ^2 min=65.2/67 dof

• result for $v_{\mu} \rightarrow v_{e}$ oscillations

 χ^2 min= 87.8/67

additional evidence from stopping muons and thoroughgoing muons

SuperKamiokande Neutral currents

 $\nu_{\mu} \leftrightarrow \nu_{\tau} \text{ vs. } \nu_{\mu} \leftrightarrow \nu_{sterile}$

Single π⁰ events are 80% neutral current.

• Full $u_{\mu} \leftrightarrow
u_{sterile}$ mixing reduces NC by $\sim 25\%$

• π^0 /e-like

– Theory Systematic: $\sim 20\%$

$$-\frac{(\pi^{0}/e-\text{like})_{\text{DATA}}}{(\pi^{0}/e-\text{like})_{\text{MC}}} = 0.94 \pm 0.08(\text{stat.}) \pm 0.19(\text{prelim.sys})$$

 ${f N}$ onopole , ${f A}$ strophysics , and ${f C}$ osmic ${f R}$ ay ${f O}$ bservatory

Main features of Macro as v detector

- Large acceptance (~10000 m²sr for an isotropic flux)
- Low downgoing μ rate (~10⁻⁶ of the surface rate)
- ~600 tons of liquid scintillator to measure T.O.F. (time resolution ~500psec)
- ~20000 m² of streamer tubes (3cm cells) for tracking (angular resolution < 1°)

More details in Nucl. Inst. and Meth. A324 (1993) 337.

 MACRO can detect different categories of Neutrino produced Muons.

Pion production at large angle

- Pions produced at large angle from muon interaction in the rock around the detector are a possible source of background for stopping and throughgoing upgoing muons
- 243 upgoing particles + downgoing muons were found in 13.600 h

background in the stopping muon search (5%) and in the through-goind (2%)

Upward-going (through-going) muons and neutrino oscillations

• Reduction factor for $v_{\mu} \rightarrow v_{\tau}$ oscillations with maximum mixing

Upward-going (through-going) muons - 1/β distribution

• the time on the scintillators counters (measured with 0.5 nsec accuracy) is used to measure the flight direction of the tracks from the streamer tube chambers

• wrong time measurements are removed checking the position along the counters measured with the times

data up to October 1998

Upward-going (through-going) flux (MACRO)

• from the shape only (predictions normalized to the data): χ^2 no oscillations = $\approx 24/8 \text{ dof} (P \approx 0.2\%)$ best χ^2 with oscillations in the physical region $\approx 14.2/8 \quad (P \approx 7.7\%)$ maximum mixing, Δm^2 around 0.002 eV^2 $\nu \mu \rightarrow \nu \tau$ combining with the normalization: P no oscillations $\approx 0.3\%$ P with oscillations $\approx 27\%$

Roma III novembre 1998

Upward-going (through-going) flux (MACRO)

Upmu in Other Experiments

Atmospheric neutrinos : internal up events (MACRO)

• Similar cuts used in the through-going muon analysis with the addiction of :

Vertex containment cut

in order to remove the normal upward-going through-going muons (1% after this cut)

• From the montecarlo simulation the event sample is an almost pure sample of single muon events

89% of the events are due to ν_{μ}

Atmospheric neutrinos : internal down +stopping events (MACRO)

• almost 50% of downgoing events and 50% of upgoing events (n time information)

• The double ratio of the low energy events is independent from the theoretical predictions. Only statistical errors and errors due to the acceptance (10% conservative for both analysis):

• P no oscillations $\approx 8\%$

Summary for MACRO

MACRO **Upgoing Muons** (Through-going) : E_V≈100 GeV

• Peak probability $\nu_{\mu} \rightarrow \nu_{\tau}$	27%
(max mixing and $\delta m^2 \approx$ a few units in 10-3)	
 Probability for No oscillations 	0.3%

Low energy events: $E_{V} \approx 4 \text{ GeV}$

	R=data/predict No Oscil	No oscillations	With oscillations 10-3<δm2<10-2
Internal Up	0.56±0.15	1	0.58
Internal Down +	0.72±0.19	1	0.79
Stopping Up Double Ratio	0.77±0.14	1	0.73

Conclusion: a $\nu\mu$ --> $\nu\tau$ with oscillation with maximum mixing is consistent with all the MACRO Data

Only Warning : The peak probability for the angular distributions of the Upgoin Muons (Through-going) is low (7.7%) ==>> Statistical Fluctuation or Hidden Physics?

Evidence for oscillations: Atmospheric neutrinos Summary

 Negative results omitted Frejus : not in contradiction for low Δm2 Baksan IMB in contradiction but wrong!

Evidence for oscillations: Summary

Figure 16: Allowed and excluded regions for $\nu_{\mu} \leftrightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \leftarrow$ oscillations.

Evidence for oscillations: Summary

Experiment	Anomaly	Probability	≥2	L/E
-		>5σ=	Experiments	Signature
		5.7x10-5	with different techniques	
*	$\overline{V_{\rho}}$ ve	No	No	No
LSND (accellerator)	apper.			
**	ve	Yes?	Yes	No
SUN	disapper			
***	νμ	Yes	Yes	Yes
Atmosperic	disapper			

• Are all the experiments true?

• If the answer is yes the interpretation needs 3 neutrinos oscillations or a new neutrino (sterile)

===>> next talks

Future

• LSND anomaly

 MiniBone at Fermilab approved data 2001
 proposal at CERN (LoI 216)

• SUN anomaly

1)Borex (Gran Sasso) liquid scintillator detection : electron scattering low threshold Be7 neutrinos should see 0 ? data 2000

2)Kamland (Kamioka) similar to BOREX + reactor measurements using the nuclear power reactors in Japan data 2000

3)SNO

1000 Tons D2O detection: Cherenkov radiation Helium-3 proportional counter tubes for neutrons

Charged Current Neutral Current Reaction Electron Scattering

ne + d ----> p + p + enx + d ----> p + n + nx e + nx ----> e- + nx

data 1999

Roma III novembre 1998

Future

Atmospheric Neutrinos and Long-Base line beams

Figure 1: Energy distribution of interacting (with charged current) atmospheric neutrine and antineutrinos, and of the ν_{μ} in three LBL experiments. All calculations assume the absence of neutrino oscillations. For atmospheric neutrinos the solid (dashed) lines at calculated with the the Bartol [8] (Honda et al. [9]) The scale of the vertical axis absolute, note however that the LBL fluxes are multiplied by constant factors.

Future Atmospheric Neutrinos and Long-Base line beams

• two possibility for the experiments:

- a) disappeance
- b) TAU appearance

• The value of Δm^2 suggested by the atmospheric neutrino measurements is quite low.

• With the planned beam problems with appearance experiments if $\Delta m^2 \leq 10^{-3}$

Beams

- KEK (Japan) Kamiokande E≈ 1-2 GeV L=250 Km detector SuperKamiokande and near detectors low energy data 1999
- Fermilab Soudan2 (USA) E≈10 GeV L=730 Km detector MINOS appearance/disappearance approved but ...

• CERN - Gran Sasso E≈10 GeV L=730 Km Recommended Proposed experiments Icarus, NOE, Aquarich, Opera, Nice

Scientific Committee recommendation: appearance experiments a new experiment for atmospheric neutrinos

Future

Future

• Experiments are difficult and expensive but now :

Exiciting times for neutrino physics!

- Fundamental questions.
- Long time scales

• very interesting challenges for young peoples