Atmospheric Neutrino Induced Muons

f M onopole , f A strophysics , and f C osmic f R ay f O bservatory

USA-ITALY Collaboration Bari,Bologna,Boston,Caltech,Drexel,Indiana,Frascati,Gran Sasso,L'Aquila,Lecce,Michigan,Napoli,Pisa, Roma I, Texas,Torino

Summary:

• Upward-going (through-going) muons produced by neutrino interactions in the rock below the detector. MACRO and other experiments

•Muons produced by neutrino interactions inside the detector or stopping muons

Main features of Macro as v detector

- Large acceptance (~10000 m²sr for an isotropic flux)
- Low downgoing μ rate (~10⁻⁶ of the surface rate)
- ~600 tons of liquid scintillator to measure T.O.F. (time resolution ~500psec)
- ~20000 m² of streamer tubes (3cm cells) for tracking (angular resolution < 1°)

More details in Nucl. Inst. and Meth. A324 (1993) 337.

 MACRO can detect different categories of Neutrino produced Muons.

Pion production at large angle

- Pions produced at large angle from muon interaction in the rock around the detector are a possible source of background for stopping and throughgoing upgoing muons
- 243 upgoing particles + downgoing muons were found in 13.600 h

background in the stopping muon search (5%) and in the through-goind (2%)

Upward-going (throughgoing) muons and neutrino oscillations

• Reduction factor for $\nu_{\mu} ~ \varnothing \nu_{\tau}$ oscillations with maximum mixing

Upgoing Muons E>1 GeV

Upgoing muons - data set

1st SMI	construction	6 SMD		ATT	TCO
Mar '89	Nov '91	Dec '92	Jun '93	Apr '94	Dec '97
1.4 yr		0.43 yr		2.8	9 yr
~2.3x10 ⁶	μ↓	3x10⁰ μ↓		~18x	10º μ↓
26 μ ↑		51 μ ↑		398	8 μ ↑

DATA ANALYSIS

- Four independent analyses
- β evaluation:

Streamer tube track

Z (Main cut : agreement z-streamer and z-TOF)

- when 3 counters are intercepted (~50% of tracks) : β from linear fit of times vs position $\Rightarrow \chi^2$ cut
- for 2 counters events additional background cuts (mainly to cut multiple and showering muons)

Upward-going (throughgoing) muons - 1/β distribution

Upward-going (through-going) muons -Results

Total number of events:4	79
background (wrong β)	9
background (pion from muon)	8
Internal neutrino interactions	11
Total	451
Prediction	612±17%
Bartol neutrino Flux ±14%	
Morfin Tung cross section 9%	
(better agreement experimental da	ta 100 GeV)
Lohmann muon energy loss 5%	
R=data/prediction=	0.74

 $\pm 0.0035(stat) \pm 0.04(systemat.) \pm 0.13(theoretical)$

$E\mu > 1 \text{ GeV}$

 χ^2 test on the angular distribution on the first 9 bins with prediction normalized to data :

• χ^2 minimum in the physical region =15.8 for maximum mixing and Δm^2 around 0.002 eV² ($v_{\mu} \rightarrow v_{\tau}$)

- χ^2 minimum in the non physical region = 12.5 (mixing>1)
- $\chi^2 = 26.1$ for no -oscillations

Probability from angular distribution and total number of events $\nu\mu \rightarrow \nu\tau$

• The Peak probabilities (for maximum mixing) are in the same regions

- Probability for No oscillations
- Similar Plot for ν_μ --> sterile neutrino (Liu-Smirnof 1997) best probability

0.1%

2%

Confidence regions for oscillation parameters

- Problem of the physical boundaries
 sin²(2θ) bounded by zero and 1
- No "standard" approach up to now
- Feldman- Cousins Phys Rev D 57 (April 1998):

Rules for setting confidence intervals based on Montecarlo simulations.

Example in the paper : neutrino oscillations

• The confidence regions with this method are different from past methods (and generally smaller).

Confidence regions for oscillation parameters (Feldman-Cousins)

• Note : In this kind of plots there is **no information** on the goodness of the agreement of data with the hypothesis You assume that the model is correct (Pbest=17%).

• The regions are smaller than the one expected from the "sensitivity" (statistical fluctuation?)

Confidence regions Sensitivity

90% Contour for an experiment like MACRO Assuming oscillations in the best point and assuming to detect the number of events predicted (a sort of "Sensitivity")

Upmu in Other Experiments

Experiment	Depth m water	Muon Rate UPMU resp # MACRO		Eth. (GeV)
Baksan	850	96	558	1
IMB	1570	23	430	1.8
Kamiokande	2700	4	364	3
Macro	3700	1	451	1

sec $^{-1}$ E_{th} > 1 GeV 8 8 Baksan 96 7 7 Macro 97 6 Kamiokande 96 6 IMB 91 5 -- 5 Bartol flux 42 4 -4 Ŧ СIJ 3 3 ₽ ₽ Flux * 10 ⁻¹³ 2 -2 1 · 1 0-[+0 -0.2 -0.8 -0.6 -1 -0.4 0 COS(Zenith)

Upmu in Other Experiments

• To compare data flux are scaled to a common threshold (1 GeV) using the **theoretical prediction for neutrino flux and assuming no neutrino oscillations.**

• This correction could be quite large (for Superkamiokande factor 1.7)

• Some difference in the data near the vertical. The reason could be due to the background (up to almost 2 order of magnitude of difference due to the different rock depths) Upmu in Other Experiments Angular Distribution

• Lipari -Lusignoli (Ph Rev D 57) : the shape of the angular distribution is quite stable for different neutrino fluxes and interaction cross sections

$$S = \frac{\int_{-1/2}^{0} f(\cos(\theta)) d\cos(\theta)}{\int_{-1}^{-1/2} f(\cos(\theta)) d\cos(\theta)}$$

• S in the data is bigger the one predicted

	Data	Prediction
Baksan	1.82±0.18	1.50
IMB	1.79±0.18	1.53
Kamiokande	1.91±0.21	1.56
MACRO 97	2.01±0.46	1.50

Upward-going (throughgoing) muons - checks on the systematics

• Several independent analyses

• Check with a separate electronics/acquisition system (the one for neutrino stellar collapse) for the event with 3 counters. No track required. ==>> Almost another experiment!!

Upward-going (throughgoing) muons - checks on the systematics

• Measurement of the down-going muon rate with the same cuts for the upgoing-muons and check with the predicted I(h)

Continous line : flux measured previously and predicted from I(h) Dotted line : flux mesured with the upgoing-muon cuts (except beta)

Upward-going muons (Internal)

• Similar cuts used in the through-going muon analysis with the addiction of :

Vertex containement cut

in order to remove the normal upward-going through-going muons (1% after this cut)

• From the montecarlo simulation the event sample is an almost pure sample of single muon events

89% of the events are due to ν_{μ}

Upward-going muons (Internal) - $1/\beta$ distribution

Upward-going muons (Internal) - Angular Distribution

Upward-going muons (Internal)

• Ratio between data and prediction

R= 85/160 events= 0.53 ± 0.06 (stat) ± 0.05 (syst) ± 0.13 (theoretical)

(Bartol neutrino flux 20 % uncertainty-Lipari et al low energy cross sections 13% uncertainty)

• The shape of the angular distribution is in agreement with prediction (no "deficit" on the vertical)

• all this is in agreement with a model of oscillation with maximum mixing and δm^2 bigger than a few units in 10-4 eV2

Upward-going muons (Internal) - Angular Distribution

Down-going muons (Internal) - and stopping muons

• The internal Down-Going and the stopping muons topologies inside MACRO are similar: one scintillator in the bottom layer and >=3 streamer tube layers giving a **track**.

• Fiducial volume cut in order to avoid edge effects

• Final selection based on scanning on a randomly mixed sample of data events and simulated events

• Two samples (the difference is in the minimum amount of material)

Sample	R min	νμ	data	Background	data-	Expected
	gr/cm2			(pion)	background	
В	100	90%	125	5	120	170
С	160	94%	66	1	65	98

R (sample B) = 0.71 ± 0.07 (statist) ± 0.07 (sys) ± 0.18 (theor)

Down-going muons (Internal) - and stopping muons- Angular distribution

• Shape of the angular distributions in agreement with expectations

Conclusions

MACRO **Upgoing Muons** (Through-going) : E_V≈100 GeV

• Peak probability $\nu_{\mu} \rightarrow \nu_{\tau}$	17%
 Probability for No oscillations 	0.1%
• Peak Probability $\nu_{\mu} \rightarrow \nu$ sterile	2%

Low energy events:

Ev≈5 GeV

	R=data/predict No Oscil	No oscillations	With oscillations 10-3<8m ² <10-2
Internal Up	0.53±0.15	1	0.56
Internal	0.71±0.21	1	0.73
Down +			
Stopping Up			
Conclusion	n: a νμ>	ν _τ oscill	ation with
maximum	mixing and δ	m ² ≈ a fev	w units in 10-3
eV ² is cons	sistent with al	ll the MAG	CRO Data

Only Warning :

The peak probability for the angular distributions of the Upgoing Muons (Through-going) is low (4.6%) ==>> Statistical Fluctuation or Hidden Physics?

Sterile neutrino

Cos(Zenith)