Detection of high energy cosmic rays with resonant gravitational wave detectors

- The NAUTILUS (Frascati) and EXPLORER (CERN) gravitational bar detectors (ROG collaboration)
- The cosmic ray detectors in NAUTILUS and EXPLORER
- The interaction of the cosmic rays with a bar and the thermoacustical model
- The detection of cosmic rays in NAUTILUS and the surprise due to large amplitude events at very low temperature
 - Measurements on the Frascati linac to verify the thermoacustical model at low temperature (RAP experiment)
 - Conclusions and "exotics" in cosmic rays

e-Print: arXiv:0806.1335 [hep-ex]

Al 2036 bar 2300 Cross section : 2 aluminum shields, container for helium 2000 liters, dilution refrigerator with ³He ⁴He mixture

F Ronga INFN LNF CRIS2008

Al 2036 bar 2300 Cross section : 2 aluminum shields, container for helium 2000 liters, dilution

Mechanical suspension: shields are suspended in a chains and copper wire around the bar 260 db @ I Khz

Auriga Explorer Nautilus

Antenna acquisition and filtering

• The signal is read using a 16 bit ADC sampled at 5KHz.

• Using aliasing the signal is studied normally in the 900 Hz region "the sensible region".

• We use mainly the "adaptive matched filter" (PAstone et al. Nuovo Cim 20 C 1997) to extract a delta-like signal from the noise

• The optimum filter parameters are computed from the noise distribution in a time interval ± 1 h.

• In the bar antenna jargon the **energy is measured in Kelvin**; the typical noise is less than 0.005 K (much lower than the thermodynamical temperature), due to the matched filter

• GPS clocks used for timing and to synchronize antenna and cosmic rays acquisition

Cosmic ray detector in NAUTILUS : streamer gas detector with charge readout

EXPLORER (CERN) in 2003 added scintillators

"cosmic ALEPH" LEP dismissed equipment

11 scintillators in 1 layer anode and dynode charge readout from the two sides saturation ~ 2000 part/m²

2 scintillators in 2 layers

EAS rates in measured in NAUTILUS (Frascati) and EXPLORER (CERN)

- "calibration" done using muons
- rates are different in the upper and in the lower detectors (cryostat effect)
- rates are different because CERN and Frascati are at different heights and have different roofs in the building
- the rate in Explorer (detector under the cryostat) is ~ 2.8 higher than the one in NAUTILUS

giovedì 13 settembre 2012

γ Grunesein parameter

Y = Young module, C= specific heat, α linear thermal expansion coefficient

pois=Poisson module

Thermal acoustical conversion (General case for a single particle) $E_n = \frac{1}{2} \frac{l^2}{V} \frac{G_n^2}{\sigma v^2} \gamma^2 \left(\frac{dE}{dX}\right)^2$

> Allega A.M. & Cabibbo N. Lett Nuovo Cim 38 (1983) 263-A. De Rujula & B. Lautrup, Nucl Phys. B242 (1984) 93-144

G_n cylinder form factor, first order in R/L

F Ronga INFN LNF CRIS2008

giovedì 13 settembre 2012

Thermal acoustical effects:

applications in several sectors

F Ronga INFN LNF CRIS2008

Thermal acoustical effects:

applications in several sectors

Dosimetry and beam monitoring:

Kalinichenko et al

F Ronga INFN LNF CRIS2008

Proceedings of the 2003 Particle Accelerator Conference

Dosimetry and beam monitoring: Kalinichenko et al

Figure 1: Scheme of radiation- acoustic monitoring of therapeutic beam in patient's body-

Proceedings of the 2003 Particle Accelerator Conference

Dosimetry and beam monitoring: Kalinichenko et al

Very high energy neutrinos under=sea Saund , NEMO, ANTARES...

Proceedings of the 2003 Particle Accelerator Conference

Dosimetry and beam monitoring: Kalinichenko et al

Very high energy neutrinos under=sea Saund , NEMO, ANTARES...

Figure 1: Scheme of radiation- acoustic monitoring of therapeutic beam in patient's body-

Proceedings of the 2003 Particle Accelerator Conference

Dosimetry and beam monitoring: Kalinichenko et al

Very high energy neutrinos under=sea Saund , NEMO, ANTARES...

F Ronga INFN LNF CRIS2008

Proceedings of the 2003 Particle Accelerator Conference

Dosimetry and beam monitoring: Kalinichenko et al

Very high energy neutrinos under=sea Saund , NEMO, ANITARFS dark matter (Picasso experiment)

F Ronga INFN LNF CRIS2008

Cosmic rays rates in the bar - computed

	Vibrational	Deposited	Muons	Ext Air	Hadrons	Total
	Energy E	Energy W		Showers		
	(K)	(GeV)				(events/day)
	$\geq 10^{-5}$	≥ 44.5	15.7	62	29.2	107
	$\geq 10^{-4}$	≥ 141	1.6	8.9	4	14.5
	$\geq 10^{-3}$	≥ 445	0.2	1	0.4	1.6
	$\geq 10^{-2}$	≥ 1410	0.003	0.13	0.06	0.19
	$\geq 10^{-1}$	≥ 4450				0.03
1	1					

Table 1

With the today bar sensitivity events are due mainly to cosmic rays with a primary of energy $>\sim 10^{14} \text{ eV}$

The hadrons measured by Cascade should be and upper limit, because

the bar should contain only ~a few percent of the adronic energy

giovedì 13 settembre 2012

The unexpected result in 1998 :

- more than 1 order of magnitude difference in the rates (or in the energy measured by the antenna)
- the thermo-acustical detection is quite different from the conventional (no threshold in β .. see later....)
- 1) possibility of "exotics" in the interaction or in the particles (cross sections, nuclearites..ecc.)
- 2).... or an effect increasing the sensitivity of the detector ...for example due to the superconductivity
- we decided to proceed with a **dedicated experiment** (RAP rivelazione acustica di particelle) and in the meantime to implement a cosmic ray detector in EXPLORER 14

Nautilus Explorer and small signals: enhancement at T=0.14K! 4 years of data

- an "event" in the antenna language should have a signal many sigma above noise (~10 mKelvin or more)
- adding the antenna output for many cosmic ray signals and subtracting the background out of time we have sensitivity for very small signals (~0.01 mKelvin)

in this plot you see directly the enhancement due to superconductive state : **quantitatively this enhancement is ~ the same observed in RAP (see next slides)**

Fig. 3. Averages of signals with energy $E_{exp} \leq 0.1 K$, grouping data in ranges of particle density Λ . Filled circles NAUTILUS at T = 0.14 K, open circles NAUTILUS at T = 3 K, filled squares EXPLORER at T = 3 K. The data gathered at T = 0.14 K are almost one order of magnitude larger than those collected at T = 3 K.

giovedì 13 settembre 2012

Modification of the thermo-acustical model in a superconductive state

• in addition to the expansion due to the heating we could have a release of additional energy if a local transition from the superconductive (*s*) state to a normal (*n*) state occur, due to the different energies of the *s* and *n* state. This effect has been demonstrated in the "superconductive strip" detector

so two possibilities:

1) no local *s* - *n* transition : normal thermo-acustical model with low temperature parameters

2) *s* - *n* transition : overlapping of two effects :

thermo-acustical with normal state parameters + s - n transition pressure wave

the two effects could have different sign ("interference")

$$\frac{X}{W} = \left[\left(\frac{X}{W} \right)_{trans} \right] + \left[\left(\frac{X}{W} \right)_{norm} \right] = \left[F \left(H_c, \frac{\partial H_c}{\partial T}, \frac{\partial H_c}{\partial P} \right) \right] + \left[B \left(\frac{\alpha}{c_V} \right)_{norm} \right]$$

Allega A.M. & Cabibbo N. Lett Nuovo Cim 38 (1983) 263-

A. De Rujula & B. Lautrup, Nucl Phys. B242 (1984

However we are unable to explain quantitatively the measurements

Event rate putting everything together

using the RAP measurement and correction factors for the different locations NAUTILUS at 0.14 Kelvin

- continuos line : prediction
- now reasonable agreeement taking into account the large uncertainties

Fig. 5. NAUTILUS 1998. The integral distribution of the event rate after the background unfolding, compared with the expected distribution (continuous line). The prediction is computed using the data of Table 1 and using the appropriate value $\alpha_s = 3.7$.

20

Event rate putting everything together

using the RAP measurement and correction factors for the different locations Normal state

10⁻³

In Explorer biggest event ~360 TeV in 1022 days - expected ~0.1 from the extrapolation at lower energies

Energy W deposited in the bar (TeV)

Application antenna monitoring and

performances study: time resolution

and a constant background p3, gives $\sigma = 3.7ms$. The value of the mean (-1±0.35 ms) should be compared to the expected value of -0.6 ms due to the delay of the antenna electronic chain.

Applications for "exotics particles" searches

(nuclearites ecc..)

limits are higher than the one in other experiment (SLIM 1.4 10⁻¹⁵ MACRO 3 10⁻¹⁶)
but some interest because the detection mechanism is quite simple, no threshold in β
"calorimetric measurement"

$$\frac{dE}{dx} = 480 \frac{\text{GeV}}{\text{cm}} \left[\frac{\beta \theta(m)}{10^{-3}} \right]^2,$$

where the mass dependence is

$$\theta(m) = 1$$
 if $m \le 1.5$ ng,
 $\theta(m) = \left[\frac{m}{1.5 \text{ ng}}\right]^{1/3}$ if $m \ge 1.5$ ng

The END

- No **anomaly** found in the cosmic rays interaction with the bar
- GW like antennas very good "real" calorimeter for cosmic ray showers. Detectors of this kind (at room temperature) could be considered as hadron calorimeters in future arrays(if any..)
- Very strange behavior in superconductive aluminum : interesting problem for solid state

Bar Detector : sensitivity no more competitive with interferometers. But can be useful to monitor galactic events as Supernova, during the interferometers shut down Virgo Sensitivity: evoluzione

giovedì 13 settembre 2012

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

The two independent polarization are shown in the following example (bar and interferometer)

Detectors are sensitive to the polarization and to the angle of incidence

A measurement of the degree of circular polarization determines the inclination of a simple binary orbit.

Interaction of a gravitational wave or an Extensive air shower with a cylindrical

resonant antenna

Cylindrical bar equivalent to an oscillator with two masses and a spring:

M/2 $l = \frac{4L}{\pi^2}$

$$\ddot{\xi}(t) + \omega_0 \frac{\dot{\xi}}{2Q} + \omega_0^2 \xi(t) = l \frac{\ddot{h(t)}}{2} Q = \frac{1}{2} \tau \omega_0$$

Excitation due to a continuous gravitational wave h_{+} :

$$\xi(t) = \frac{1}{2} \frac{l\Omega^2 h_0}{\sqrt{(\omega_0 - \Omega)^2 + 4 \frac{\Omega^2 \omega_0^2}{Q^2}}} \cos(\Omega t)$$

if
$$\Omega = \omega_0$$
: $\xi_0 = \frac{Q}{2} lh_0$

High Q needed! Very small numbers! for a 1 msec GW burst $h = 10^{-20}$ m $\xi_0 \sim 10^{-20}$ m E $\sim 10^{-29}$ joules

Computing the rates in a gravitational bar detector

 three components (muons, hadrons, Extensive Air Showers) -separate calculations up to now

• the maximum energy is in the shower center near the primary original direction

• very large uncertainty in the calculations, particularly for very energetic showers

Calculations:	 E Amaldi G Pizzella Nuovo Cimento 9C 1986 (analytic) F Ricci NIM A 260 491 (1991) (Montecarlo -muons) 			
	 J. Chiang et al (Stanford group) NIM A 311 (1992) 			
	(MC muons - single hadrons)			
	• E. Coccia et al (Nautilus group) NIM A 355 (1995)			
	(MC muons -single hadrons, multi-hadrons, EAS)			
	Nautilus group 2001 Corsika+Geant F Ronga INFN LNF CRIS2008			