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5Dipartimento di Fisica dell’Università, via Vetoio (Coppito 1), I-67010, Coppito (L’Aquila), Italy
6INFN, Laboratori Nazionali del Gran Sasso, S.S.

17 bis km 18.910, I-67010, Assergi (L’Aquila), Italy
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Abstract

The statistical association between the output of the Gravitational Wave (GW) detectors EXPLORER

and NAUTILUS and a list of Gamma Ray Bursts (GRBs) detected by the satellite experiments BATSE and

BeppoSAX has been analyzed using cumulative algorithms. GW detector data collected between 1991 and

1999 have been searched for an energy excess in a 10 s interval around the GRB flux peak times. The

cumulative analysis of the data relative to a large number of GRBs (387) allows to push the upper bound

for the corresponding GW burst amplitude down to h = 2.5 × 10−19.

PACS numbers: 04.80.Nn, 07.05.Kf, 98.70.Rz
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I. INTRODUCTION

Since 1991, almost 3000 Gamma Ray Bursts (GRBs) have been detected by the satellite exper-

iments BATSE [1, 2] and BeppoSAX [3, 4]. The large database [5, 6, 7] now available includes

information about the GRB arrival time, duration, intensity in some frequency bands, sky position

of the source, and (for a small GRB subset) redshift. The observation of a large number of GRBs,

which are likely associated to catastrophic events capable of producing large GW signals, has

given the possibility of systematic analysis of the GW detector data around the GRB arrival times.

This is very important, because GW data analysis in association with GRBs can profit of a number

of useful information (GRB time, source position, intensity etc.) and both positive and negative

results could be given a direct astrophysical interpretation. Cumulative data analysis techniques

have been developed to detect a statistically significant association between GW signals and GRBs

[8, 9, 10, 11, 12]. Using for the first time a cross-correlation method applied to the data of two

GW detectors, EXPLORER and NAUTILUS, experimental upper limits were determined for the

amplitude of the GW bursts associated with GRBs [13]. Analyzing the data for 47 GRBs detected

by BeppoSAX, the presence of GW pulses of amplitude h ≥ 1.2× 10−18 was excluded with 95 %

probability, within the time window of ± 400 s. Within the time window of ± 5 s, the upper limit

was improved to h = 6.5 × 10−19.

Searching for an association between the two emissions, the main difficulty arises from the

theoretical uncertainty in the delay between the GRB and GW arrival times. All the theoretical

models presently available [14, 15, 16, 17, 18, 19, 20], and the interpretation of experimental

observations of GRB characteristics [21, 22, 23], foresee that the GRB generation can happen

during different phases of catastrophic events involving binary systems or massive stars. During

some of these phases, the GW emission could happen at the same time of the GRB one. Thus,

it is interesting to apply cumulative techniques making the restrictive hypothesis of simultaneity

of the GRB and GW emissions. Implicitly making this hypothesis, several analyses have been

performed [24, 25, 26]. In [26] an upper limit of h = 1.5 × 10−18 on the average amplitude of

GW associated to GRBs was obtained with the resonant bar detector AURIGA, using 120 GRBs

and an integration time window of 10 s.

According to the present knowledge of the GRB physics, at distance of 1 Gpc, GW burst

signals of the order of h ∼ 10−22 or smaller are expected in association with GRBs. At the time

the data used here were taken, EXPLORER and NAUTILUS were probably the most sensitive GW
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detectors, having a sensitivity for 1 ms duration GW burst with signal-to-noise ratio equal to unity

of about 10−18 in h, further improved in the following years [27]. Thus we expect a null result,

which, however, can be used to set upper limits to the GW flux. The present limits need to be

significantly improved to get useful constraints on current GRB theoretical models. Recently, the

large interferometric GW detectors are beginning to come into operation, and in particular LIGO

is reaching a sensitivity that allows to start looking at correlation with GRBs [28].

In section II the data and the cumulative algorithms used in this work will be described [29].

The results will be shown and discussed in section III.

II. DATA ANDMETHOD

The ROG Collaboration operates two resonant bar detectors: EXPLORER since 1990 at the

CERN laboratory and NAUTILUS since 1995 at the INFN laboratory in Frascati. The two detec-

tors, oriented nearly parallel, are very similar. They consist of massive cylindrical bars 3 m long

made of high quality factor aluminum alloy 5056. The GW excites the first longitudinal mode

of the bar which is cooled to liquid helium temperature to reduce the thermal noise. To measure

the bar strain induced by a GW, a secondary mechanical oscillator tuned to the antenna mode is

mounted on one bar face (as a consequence we have two resonant modes) and a sensor measures

the displacement between the secondary oscillator and the bar face. The frequencies of these res-

onant modes varied slightly during the years, remaining for both antennas in the range 900-940

Hz. The data considered in the present analysis are sampled with a sampling time of 0.2908 s

and processed with an adaptive Wiener filter [30]. The Wiener filtered data represent the energy

innovation (expressed in kelvin) of each of the two modes. For each data sample, the minimum

energy between the two modes is taken, obtaining the “minimum” mode time series, E(t), which

is the one used in this analysis. The probability distribution of E(t) is

f(E) ∝
1

Teff
e
−

E

Teff , (2.1)

where Teff , called effective temperature and expressed in kelvin units, gives an estimate of the

noise. In our analysis data stretches of 30 min duration were considered, centered at the arrival

times of the GRBs. In Fig. 1, the distribution of Teff is shown for 1150 data stretches selected

for the analysis. The upper histogram corresponds to the EXPLORER data, the second one to the

NAUTILUS data.

4



FIG. 1: Histograms of the effective temperature of the “minimum” mode of the Wiener filtered data com-

puted in the 1150 time intervals of 30 min around each GRB time.

As regards the quality of the GW data, in order to improve the sensitivity of the analysis, we

only consider the data stretches with effective temperature lower than 15 mK. In addition, we

request that the ratio between the standard deviation and the average of each GW data stretch

(this ratio is expected to be unity for an exponential distribution) lies between 0.8 and 1.5. These

selection criteria restrict the data set to 387 GRBs. As GRB arrival time, we define the time of

the flux peak on the 1024 ms trigger time scale extracted from the Flux and Fluence Table of

BATSE Current GRB Catalog [7], while for BeppoSAX the GRB peak time is given by the time

of the peak flux on a 1 s integration time. The GRB data also provide the angular position of each

source, which is an important parameter, because the sensitivity of a cylindrical bar GW detector

is strongly dependent on the angle θ between the propagation direction of the wave and the axis of

the cylinder.

The histogram of Fig. 2 shows the distribution of sin4 θ for the 387 GRBs corresponding

to the selected data stretches with Teff ≤ 15 mK. The distribution has been compared to the

theoretical distribution expected for isotropic sources by the Kolmogorov test [31]. The result of
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FIG. 2: Experimental histogram of sin
4 θ for the 387 GRB in the selected time intervals of 30 min around

each GRB time (net area). The distribution is compared to theoretical isotropic distribution (solid line).

The four regions of increasing sin
4 θ, separated by vertical lines, correspond to the data subsets separately

analyzed to look for a correlation with sin4 θ.

the test indicates a compatibility more than 0.9 in terms of probability. It means that in the present

analysis there is no privileged direction. As we can note, the data sample is large enough to look

for a statistical correlation between the presence of a GW energy excess at zero delay and the value

of sin4 θ. For this, the data set is divided into four equally populated ranges of sin4 θ, as indicated

in Fig. 2 by the vertical lines, then these regions will be separately analyzed.

In the present work we use two algorithms, both based on coherent averages performed over the

selected GW data stretches synchronized using the GRB flux peak time as a common reference in

order to show a possible energy excess at zero-delay time within an integration time of 10 s [32].

The first algorithm computes the average of the data stretches corresponding to each GRB:

we construct a new data stretch where at each time there is the average of the values, at that

same time, of all the measured data stretches. The averaged energy at zero-delay is the measured

physical quantity to be compared with the distribution of the same averages taken at all the other

times, constituting the background.

The second algorithm, which is a new one for this kind of analysis, differs from the first one

since it uses the median of the data instead of the average. This is a robust way to detect the

effect of many small synchronized contributions rather than that of a single or of a few very large
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signals. Indeed, it is easy to understand that a few intense spikes increase the variance of the

average much more than that of the median. This is important also because the noise distribution

of GW detectors data is affected by significant non-gaussian tails, thus the occurrence of intense

spurious noise spikes is not as unfrequent as it would be for an ideal detector with gaussian noise.

III. RESULTS AND DISCUSSION

In this work cumulative algorithms were used, searching for an energy excess above the back-

ground of the GW data at the GRB arrival time. Thus the results of this analysis, in terms of

signal detected or upper limits, represent the average GW flux associated to each GRB and re-

leased simultaneously to the gamma emission, within a given time interval, telling nothing about

the possibility of a much earlier and time-scattered GW emission. The analysis of a much larger

time interval (30 min around the GRB time), which is performed in this work, has the purpose of

estimating the background statistical distribution of the physical quantity that, computed at zero

delay, is assumed to be the indicator of correlation with GRBs.

FIG. 3: Cumulative average (Ea) and cumulative median (Em) of the GW detector energy as a function of

the GW-GRB delay.
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In Fig. 3 the result of the application of the average algorithm is shown. The averaged GW

detector energy innovation is plotted as a function of time, relative to the GRB flux peak time.

In the same figure, the result of the application of the second algorithm is also reported. In this

case, for each 10 s interval, the median of the distribution of the GW detector energy innovation

measured in that interval is shown, as a function of the GW-GRB delay.

From the average and median time series shown in Fig. 3, Ea(t) and Em(t), we consider the

average and median value at zero delay, Ea(0) and Em(0), and compute the time averages < Ea >

and < Em >, and the standard deviations σa and σm of the values at all other times, finding:

average : Ea(0) = 9.91 mK, < Ea > = 10.01 mK, σa = 0.17 mK;

(3.1)
median : Em(0) = 6.33 mK, < Em > = 6.30 mK, σm = 0.13 mK.

The distributions show a good fit with the gaussian curves. For example, the agreement is shown

in Fig. 4 for the distributions relative to the Fig. 3.

FIG. 4: Distributions of the median and of the average of the GW detector energy value (see Fig. 3) and

gaussian fits.

With respect to the dependence of the observed energy value on sin4 θ, at zero-delay, the source

direction information was used by separately analyzing the GRBs whose average sin4 θ factor is
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FIG. 5: SNR of the excess at zero delay of the GW-median, as a function of sin
4 θ.

within a given interval during the 30 min interval. The result of this analysis, shown in Fig. 5,

was obtained applying the median algorithm to four subsets of GRBs, whose possible GW sources

would be increasingly well-placed in the sky relative to the antenna axis, as expressed by their

average value of sin4 θ. The quantity plotted in Fig. 5 is, for each subset, the signal-to-noise ratio,

defined as:

SNR ≡
Em(0)− < Em >

σ
, (3.2)

where Em(0) is the value of the median at zero delay, < Em > and σ are the average and standard

deviation of all the values at non-zero delay in the cumulative median time series (see Fig. 3). The

vertical bars indicate the uncertainty in SNR as deduced from the ones in < Em > and σ. No clear

correlation (i.e. with SNR > 1) is visible in the data with the average value of sin4 θ.

IV. UPPER LIMIT EVALUATION

Fig. 4 shows that both the average and median distributions are close to normal. This allows

us to represent the sensitivity of the experiment as a function of h and to evaluate an upper limit,

using the same approach followed in our previous GRB-GW coincidence analysis [13], based on

the likelihood rescaled to its value for background alone (R function, called also relative belief
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update function [33]). In fact, in the Bayesian approach we are implicitly following, the likelihood

has the role of modifying our knowledge according to the scheme posterior ∝ R × prior. In

presence of a signal with energy Es we expect to measure an energy Eb larger by some quantity δ

with respect to the case of no signal, that is:

Eb = En + δ, (4.1)

where En is due to noise. We indicate the measurement at zero time delay with E0. Thus the

expected normal distribution is

f(E0|δ) ∼ e−(E0−(En+δ))2/2σ2

, (4.2)

where σ is the experimental standard deviation. We find the relative belief updating ratio R

R(δ) =
f(E0|δ)

f(E0|δ = 0)
= e−(δ2

−2E0δ+2Enδ)/2σ2

. (4.3)

Using the quantities defined in the previous section, we can compute the functions Ra(δa) and

Rm(δm), in the case of the average and median algorithm respectively, and so we obtain an upper

limit, or, better, an upper sensitivity bound on the value of δa and δm. If we take conventionally

R(δ) = 0.05, we determine

δa(5%) ∼ 0.33 mK, δm(5%) ∼ 0.35 mK. (4.4)

In order to find the relation between the increase δa and the corresponding value Es of the signals

that would generate it, we have to take into account that, as we discussed in section II, we take

time averages of 10 s, and this leads to a loss in sensitivity, since the signal due to a GW burst

would usually be shorter than 10 s. We evaluate this sensitivity loss in a factor 3.

In the case of the median algorithm, a further factor comes out: in the hypothesis of Es much

smaller that En, the distribution of En + Es remains exponential (as it was for En) and so if the

average energy increases by Es the median value increases by Es ln 2.

The energies Ea,m
s corresponding to the values δa,m(5%) are then

Ea
s ∼ 1 mK, Em

s ∼ 1.5 mK. (4.5)

The signal energy Es is determined by the value of the Fourier transform H(f) of the GW in

the detector frequency band; computation of the GW burst amplitude h requires a model for the

signal shape. A conventionally chosen shape is a featureless pulse lasting a time τg and giving
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FIG. 6: Relative belief updating ratio as a function of h, using the average (solid line) and median (dashed

line) algorithms.

a constant Fourier spectrum over a frequency band equal to 1/τg. Assuming the detector band

within this range, for optimal orientation one has:

h =
H

τg
=

1

τg

L

v2
s

√

kEs

M
, (4.6)

where vs = 5.4 km s−1 is the sound velocity in aluminum, L and M are the length and the mass of

the bar, respectively. We conventionally assume a GW burst duration τg = 1 ms, so the Es values

of Eqn. 4.5 correspond to two quite close values for the sensitivity bound in h:

ha ∼ 2.5 × 10−19, hm ∼ 3.1 × 10−19. (4.7)

The behaviour of the relative belief updating ratio R as a function of h is given in Fig. 6, in both the

average and median cases. We notice that in both cases, R ( 1 in the region with h ≤ 2 × 10−20:

this means that the detectors were not sensitive enough to appreciate such small amplitudes, and

hence nothing can be learned from the experiment in that region of h.
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V. CONCLUSIONS

A large sample of GRBs (387) was used, to search for an association between the GW detector

data and GRBs at zero delay. No statistically significant excess was observed at zero delay, within

the time resolution of 10 s. We performed an analysis based on a Bayesian approach, obtaining an

upper bound on the GW burst amplitude associated with GRB of h ∼ 2.5 × 10−19.
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