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Abstract

A search for periodic gravitational-wave signals from isolated neutron stars
in the NAUTILUS detector data is presented. We have analyzed half a
year of data over the frequency band 〈922.2; 923.2〉 Hz, the spindown range
〈−1.463 × 10−8; 0〉 Hz/s and over the entire sky. We have divided the data
into two day stretches and we have analyzed each stretch coherently using
matched filtering. We have imposed a low threshold for the optimal detection
statistic to obtain a set of candidates that are further examined for coincidences
among various data stretches. For some candidates we have also investigated
the change of the signal-to-noise ratio when we increase the observation time
from 2 to 4 days. Our analysis has not revealed any gravitational-wave signals.
Therefore we have imposed upper limits on the dimensionless gravitational-
wave amplitude over the parameter space that we have searched. Depending
on frequency, our upper limit ranges from 3.4×10−23 to 1.3×10−22. We have
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attempted a statistical verification of the hypotheses leading to our conclusions.
We estimate that our upper limit is accurate to within 18%.

PACS numbers: 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We present results of the search of the NAUTILUS (a resonant bar detector [1]) data for
periodic gravitational-wave (GW) signals. We search the band 〈922.2; 923.2〉 Hz and the
spindown range 〈−1.463 × 10−8; 0〉 Hz/s over the entire sky. We analyze NAUTILUS data
collected in the year 2001. We divide the data into stretches of 2 sidereal days. Each stretch
of data is analyzed coherently using matched filtering in the form of the F-statistic [2, 3]. We
have analyzed slightly more than half a year of data.

Previous analyses of bar detector data for periodic GW signals were: the search of the
galactic center and the globular cluster 47 Tucanae with the ALEGRO detector [4], the search
of the galactic center using the EXPLORER detector data [5] and an all-sky search using the
EXPLORER data [6, 7]. LIGO (Laser Gravitational Wave Observatory) data were searched
for known pulsars [8–10], over the entire sky [11] using the coherent method and over all the
sky using incoherent methods [12, 13]. Currently LIGO data are analyzed over the entire sky
by the Einstein@Home project [14].

In section 2 we present the data analysis methods used in our search. In section 3
we outline our search procedure. In section 4 we discuss the analysis of the candidates.
This analysis consists of two parts: the first part is the search for coincidences between the
candidates each obtained from a different stretch of data and the second part is an investigation
of the increase of the signal-to-noise ratio of candidates when we increase the observation
time from 2 to 4 days. In section 5, we impose upper limits on amplitudes of the gravitational
waves in the parameter space that we have searched.

2. Data analysis methods

In order to search for gravitational waves from long-lived periodic sources we have used the
maximum likelihood (ML) method. For the case of Gaussian noise the ML method consists
of linearly filtering the data with a template matched to the signal that we are searching for.
The main complication of the matched filtering is that the signal depends on several unknown
parameters. This requires evaluation of the likelihood function over a large parameter space.
In order to minimize the computation time we use several data analysis tools. Firstly we find
the maximum likelihood estimators of some parameters (four in the case of a GW signal from
a rotating neutron star that we are searching for) in a closed analytic form, thereby reducing
the dimensionality of the parameter space that we have to search. The likelihood function over
the reduced parameter space is called the F-statistic and it is derived in [2]. Secondly we
analyze data of length equal to an integer multiple of a sidereal day. This leads to a considerable
simplification of the F-statistic and consequently reduces the number of numerical operations
to evaluate it. The F-statistic for observation time equal to an integer number of sidereal days
is given in section III of [15]. Thirdly we use optimal numerical algorithms, in particular
the fast Fourier transform (FFT) in order to calculate the F-statistic efficiently. Fourthly we
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minimize the number ofF-statistic calculations over the parameter space by solving a covering
problem for this space [16, 17]. Let us explain the latter two data analysis tools in more detail.
The response of a bar detector to a gravitational-wave signal from a spinning neutron star is
summarized in section 2.1 of [7].

Fast Fourier transform. Estimates have shown [20, 21] that for the bandwidth and the spindown
range that we search we need to take into account in our templates only one spindown parameter
in order to match the signal. Consequently the phase modulation function φ(t) of the waveform
is given by

φ(t) = ω0t + ω1t
2 + (ω0 + 2ω1t)

n0 · rd(t)

c
, (1)

where ω0 is an angular frequency and ω1 is the spindown parameter, n0 is the constant unit
vector in the direction of the star in the Solar System Barycenter (SSB) reference frame (it
depends on the right ascension α and the declination δ of the source) and rd is the vector
joining the SSB with the detector and c is the speed of light. The detection statistic F involves
two integrals of the form

F =
∫ T0

0
x(t)a(t) e−iφ(t) dt, (2)

where x(t) is the data stream and a(t) is the amplitude modulation function that depends on
δ and α. The above integral is not a Fourier transform because the frequency ω0 in the phase
multiplies the term n0 · rd(t) which is a nonlinear function of time. In order to convert the
integral into a Fourier transform we introduce the following interpolation procedure. The
phase φ(t) (equation (1)) can be written as

φ(t) = ω0[t + φm(t)] + φs(t), (3)

where

φm(t) := n0 · rd(t)

c
, (4)

φs(t) := ω1t
2 + 2

n0 · rd(t)

c
ω1t. (5)

The functions φm(t) and φs(t) do not depend on the angular frequency ω0. We can write
integral (2) as

F =
∫ T0

0
x(t)a(t) e−iφs(t) exp{−iω0[t + φm(t)]} dt. (6)

We see that integral (6) can be interpreted as a Fourier transform (and computed efficiently
with an FFT), if φm = 0. In order to convert equation (6) to a Fourier transform we introduce
a new time variable tb, so-called barycentric time [2, 18],

tb := t + φm(t). (7)

In the new time coordinate integral (6) is approximately given by (see [2], section IIID)

F ∼=
∫ T0

0
x[t (tb)]a[t (tb)] e−iφs[t (tb)] e−iω0tb dtb. (8)

Thus in order to compute integral (6), we first multiply the data x(t) by the function
a(t) exp[−iφs(t)] for each set of the parameters ω1, δ, α and then resample the resulting
function according to equation (7). At the end we perform the FFT.
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The covering problem. The covering problem is to find the minimum number of templates
in the parameter space [17], so that the fractional loss in signal-to-ratio is not less than
1 − MM (MM is the minimal-match parameter introduced by Owen [22]). In order to solve
the covering problem we introduce a useful approximate model of the gravitational-wave
signal from a rotating neutron star. The model relies on (i) neglecting all spindowns in the
phase modulation due to motion of the detector with respect to the SSB; and (ii) discarding
the component of the vector rd (connecting the SSB and the detector) which is perpendicular
to the ecliptic plane. These approximations lead to the following phase model of the signal:

φlin(t) = ω0t + ω1t
2 + α1μ1(t) + α2μ2(t), (9)

where α1 and α2 are new constant parameters,

α1 := ω0(sin α cos δ cos ε + sin δ sin ε), (10)

α2 := ω0 cos α cos δ, (11)

where ε is the obliquity of the ecliptic and where μ1(t) and μ2(t) are known functions of time,

μ1(t) := R
y

ES(t) + R
y

E(t) cos ε, (12)

μ2(t) := Rx
ES(t) + Rx

E(t). (13)

Rx
ES is the x-component of the vector joining the center of Earth and the SSB and Rx

E is the
x-component of the vector joining the center of Earth and the detector. R

y

ES(t) and R
y

E(t)

are the corresponding y-components. We also neglect the slowly varying modulation of the
signal’s amplitude, so finally we approximate the whole signal h(t) by

h(t) = A0 cos(φlin(t) + φ0), (14)

where A0 and φ0 are the constant amplitude and initial phase, respectively. The above signal
model is called linear because it has the property that its phase given by equation (9) is
a linear function of the parameters. We have shown [19] that the above model is a good
approximation to the accurate response of the detector to the GW signal in the sense that the
Fisher matrix for the linear model reproduces well the Fisher matrix for the accurate model.
Thus, whenever a Fisher matrix is needed we can use the Fisher matrix for the linear model
as an approximation to the Fisher matrix for the accurate model. The great advantage of the
linear model is that components of its Fisher matrix are constant, independent of the values
of the parameters. In order to solve the covering problem for the parameter space we use the
Fisher matrix as a metric on the parameter space. Because the components of the Fisher matrix
are constant the grid is uniform what greatly simplifies its construction. In our search, as a
grid we use the hypercubic lattice [16]. However we have an additional constraint. In order
to apply the FFT algorithm the nodes of the grid must coincide with the Fourier frequencies.
We have constructed a suitable grid by performing rotations and dilatations of the original
hypercubic lattice. We construct the grid in the parameters ω0, ω1, α1, α2 and then transform
it to parameters ω0, ω1, δ, α for which the F-statistic is calculated.

The linear parametrization has one more application. We use it in order to calculate the
threshold for the F-statistic corresponding to a certain false alarm probability. Namely, using
the linear parametrization we divide the parameter space into cells as explained in [2, 20]. All
the cells are exactly the same and their number Nc is easily calculated using the Fisher matrix
(see section IIIB of [20]). The false alarm probability α is the probability that F exceeds
threshold Fo in one or more cells and is given by

α = 1 − [1 − PF (Fo)]
Nc, (15)

where PF is the false alarm probability for a single cell.
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Figure 1. Estimation of the two-sided amplitude spectrum of the NAUTILUS data in the year
2001 and the rms error of the estimate. The thick line shows the estimate and the two thin lines
correspond to the 1σ error.

3. Search procedure

We have searched the data collected by the NAUTILUS detector in the year 2001. The
bandwidth of 〈922.2; 923.2〉 Hz, where the detector is most sensitive, has been analyzed.
We have divided the data into stretches which span two sidereal days. We have assumed a
minimum pulsar spindown age τmin equal to 1000 years and so we have searched the negative
frequency time derivatives in the range of 〈−1.463 × 10−8; 0〉 Hz/s. For this τmin and 2 days
of the observation time it is sufficient to include only one spindown in the phase [21, 20].
Each two day sequence was analyzed coherently using the F-statistic. We have used the
constrained hypercubic grid as explained in the previous section. For the grid construction
we have assumed the minimal-match parameter MM = √

3/2 [22]. Using this minimal-
match value our grid consists of around 3.1 × 1013 grid points (219 frequency bins, ∼103

spindowns, ∼6 × 104 sky positions). The threshold on 2F corresponding to 1% false alarm
probability has been calculated using equation (15) and is around 72. In order to compensate
the loss of signal-to-noise ratio (SNR) due to the discreteness of the grid, imperfect templates
and numerical approximation in evaluation of the F-statistic (resampling procedure) we have
adopted two lower thresholds on 2F equal to 40 and 50. We have registered parameters
of all templates which crossed the threshold of 40. For threshold crossings of 50 we have
performed a verification procedure. The verification procedure consisted of calculating the
F-statistic for the template parameters of the candidate using a 4 day stretch of data involving
the original two day stretch. For a true gravitational-wave signal by this procedure one would
expect an increase of signal-to-noise ratio by

√
2. In total, we have analyzed 93 two day data

stretches. In figure 1 we have presented the two-sided amplitude spectrum of the NAUTILUS
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Figure 2. Histogram of the frequencies of candidates obtained in the search of all 93 two day data
stretches above a 2F threshold of 50.

detector data that we have analyzed. The spectrum was obtained in the following way. We
have estimated the power spectrum density in each of the 93 two day data sequences and then
we have taken the square root of the average of the 93 power spectra. We see that the best
sensitivity is around 5×10−22 Hz−1/2. Moreover, we have obtained the rms error of our power
spectrum estimate by calculating the variance from the estimates of the spectra of in each of
the 93 data segments. The relative 1σ error in the amplitude power spectrum is around 18%.

During the search we have obtained 537 665 380 candidates above the 2F-threshold of
40 and 9 038 817 above the 2F-threshold of 50.

4. Analysis of the candidates

4.1. Signal-to-noise ratio of the candidates

In figure 2 we have plotted a histogram of the frequencies of all the candidates above the
2F threshold of 50. The histogram shows an excess of candidates in the frequency band of
〈922.4; 922.6〉 Hz. This excess is a result of the presence of a periodic interference in the data
that appears as a series of harmonics in the bandwidth of the detector. One of the harmonics is
located in the subband 〈922.2; 923.2〉 Hz. The effect of the harmonic is visible in our estimate
of the spectrum (figure 1) and appears as a bump in the band 〈922.5; 922.6〉 Hz.

As a first step in the candidate analysis we have calculated the increase in signal-to-noise
ratio when we increase the observation time from 2 to 4 days. This has been done for all
the candidates above the threshold 2F = 50. Figure 3 shows the highest increase in SNR
for candidates when going from a two day data stretch to the four day one. The maximum
is calculated for each of the 93 data stretches analyzed. We see that typically the highest
gain in the signal-to-noise is 1.2. This should be compared with the theoretical gain of

√
2
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Figure 3. Highest increase (vertical axis) in signal-to-noise ratio for candidates in each of the 93
data stretches analyzed. The two day stretches of Nautilus 2001 data are numbered from 1 to 182.
The missing lines in the plot indicate that the corresponding data stretch was not analyzed.

of SNR when we increase the observation time by a factor of 2. The periodic interference
present in the data to which we attribute these maximum SNR increases does not gives a higher
increase of the SNR because its frequency changes erratically over the observation time of
days and it cannot reproduce the Doppler shift of a real GW signal modulated by detector
motion with respect to the SSB. Assuming that the two day sequence is independent of the
four day sequence we could perform the F-test that consists of calculation of the ratio F of
the F-statistic for 4 days observation time and the F-statistic for 2 days observation time.
Taking as the null hypothesis for the test that data is only Gaussian noise the 2F-statistic has
the central χ2 distribution with 4 degrees of freedom and the ratio F has Fisher–Snedeckor
distribution F(4, 4). The typical highest value of F for a given data segment is around 1.5. The
probability of F crossing the threshold 1.5 is around 37%. This would give a high confidence
that data is noise only. Unfortunately this is only a crude approximation because the two day
sequence is contained in the four day one and the assumption of independence of the two
F-statistic is not fulfilled.

4.2. Coincidences among the candidates from different data stretches

Candidates from different data stretches are considered coincident if they cluster closely
together in the four-dimensional parameter space (ω0, ω1, δ, α). We employ the clustering
method described in [14], which uses a grid of ‘coincidence cells’. This method will reliably
detect strong signals which would produce candidates with closely-matched parameters in
many of the different data stretches.

In a first step, the frequency value of each candidate above the threshold of 2F = 40
is shifted to the same fiducial time: the GPS start time of the earliest (j = 1) stretch,
tfiducial = t1 = 662 547 735.998 8098 s. Defining T0 to be the time span of two sidereal days,
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the frequencies of the candidates are shifted to tfiducial via

ω0(tfiducial) = ω0(tj ) + (j − 1)2ω1T0, (16)

where tj is the starting time of the j th data stretch, given by tj = tfiducial + (j − 1)T0.
To find coincidences, a grid of cells is constructed such that the cells are rectangular in

the coordinates (ω0, ω1, δ, α cos δ). The dimensions of the cells are adapted to the parameter
space search. Thus, the cells are constructed to be as small as possible to reduce the probability
of coincidences due to false alarms. However, since each of the 93 different data stretches
uses a slightly different parameter space grid, the coincidence cells must be chosen to be large
enough that the candidates from a source (which would appear at slightly different points in
parameter space in each of the 93 data stretches) would still lie in the same coincidence cell.
As a conservative choice we use cell sizes in ω0 of 5.8×10−4 Hz, in ω1 of 2.08×10−11 Hz s−1

and an isotropic cell grid in the sky with equatorial spacing of 0.028 rad. Each candidate
event is assigned to a particular cell. In cases where two or more candidate events from the
same data stretch j fall into the same cell, only the candidate having the largest value of 2F
is retained in the cell. Then the number of candidate events per cell coming from distinct data
stretches is counted.

From the 93 different data stretches, this coincidence method found that we get candidates
which appear consistently in not more than 4 data stretches uniformly over the search
bandwidth, where there are no instrumental interferences. This is the background of the
number of coincidences. We would like to test the null hypothesis that the coincidences
are result of the noise only. Let us assume that the parameter space is divided into Ncell

independent coincidence cells, the candidate events are independent and the probability for a
candidate event to fall into any given coincidence cell is 1 = 1/Ncell. Thus probability ε that
a given coincidence cell is populated with one or more candidate events is given by

ε = 1 −
(

1 − 1

Ncell

)εseg

, (17)

where εseg is the number of candidate events per data segment. The probability pF that any
given coincidence cell contains candidate events from Cmax or more distinct data segments is
given by a binomial distribution

pF =
Nseg∑

n=Cmax

(
Nseg

n

)
εn(1 − ε)Nseg−n. (18)

Finally the probability PF that there is Cmax or more coincidences in one or more of the Ncell

cells is

PF = 1 − (1 − pF )Ncell . (19)

The expected number of cells with Cmax or more coincidences is given by

NF = NcellpF . (20)

In our case the number of cells is given by Ncell = 5.9 × 1010, the number of data segments
is Nseg = 93, and the number of candidates per data segment is εseg = 5.8 × 106. From
equation (19) we find that the probability of finding Cmax = 4 or more coincident candidates is
almost one. Thus for the background coincidences we can accept the null hypothesis that they
are from noise only with a high confidence. Over the bandwidth 〈922.4; 922.6〉 Hz we find an
excess of coincidences with the maximum of 8 coincidences. By equation (19), the false
alarm probability associated with 8 or more coincidences is of the order of 10−11 and thus
they cannot be attributed to noise. We consider these coincidences to be due to the periodic
interference present in the data.
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Figure 4. Probability distribution of 2F-statistic values of the candidates. The light lines are
obtained from histograms of the 2F values of each data segment. The thick line represents the
theoretical central χ2 distribution with 4 degrees of freedom.

5. Upper limits

Our verification procedure consisting of coincidences among the candidates from distinct data
segments and an analysis of the increase of signal-to-noise ratio presented in section 4 did
not produce convincing evidence of a gravitational-wave signal. We therefore proceeded to
estimate the upper limits for the amplitudes of the gravitational-wave signals in the parameter
space that we have searched. Detection of a signal is signified by a large value of the F-statistic
that is unlikely to arise from the noise-only distribution. If instead the value of F is consistent
with pure noise with high probability we can place an upper limit on the strength of the
signal. One way of doing this is to take the loudest event obtained in the search and solve the
equation

P = PD(ρul,Floudest) (21)

for signal-to-noise ratio ρul, where PD is the detection probability, Floudest is the value of the
F-statistic corresponding to the loudest event and P is a chosen confidence. Then ρul is the
desired upper limit with confidence P . We can also obtain an upper limit ρul with confidence
P for several independent searches from the equation

P = 1 −
L∏

s=1

[1 − PD(ρul,Floudest s)] , (22)

where Floudest s is the threshold corresponding to the loudest event in sth search and L is the
number of searches. Here P is the probability that a signal with signal-to-noise ratio ρul

crosses the threshold Floudest s in at least one of the L independent searches. To calculate
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Figure 5. Upper limits based on the loudest candidate for 0.1 Hz frequency bands over the 1 Hz
bandwidth searched.

ρul we assume that the data have a Gaussian distribution and consequently the probability of
detection PD has a non-central χ2 distribution with 4 degrees of freedom and the noncentrality
parameter equal to ρ2

ul . We have investigated this assumption by obtaining histograms of
the 2F-statistic values of the candidates and comparing them to the central χ2 distribution
with 4 degrees of freedom. The result is shown in figure 4. There is an overall qualitative
agreement of candidate’s distributions with the theoretical one. However, the candidate’s
distributions do not pass a goodness-of-fit test for a χ2 distribution at the significance level
of 5%.

In order to translate our upper limit on the SNR into the upper limit on the gravitational-
wave amplitude, we use equation (93) of [2] for signal-to-noise ratio of a GW signal from a
spinning neutron star averaged over the source position and orientation. Thus hul and ρul are
related by the following formula:

hul(f ) = 5

2

√
S(f )

T0
ρul, (23)

where S(f ) is one-sided spectral density at frequency f . We have used equations (22) and
(23) to obtain upper limits in 0.1 Hz bands over the bandwidth 〈922.2; 923.2〉 Hz that we have
searched. The upper limit results are presented in figure 5. Assumed Gaussian noise, we have
chosen the confidence P = 90% and we denote the upper limits by h90%

o . Our best upper limit
is equal to 3.4 × 10−23 at a frequency of 922.55 Hz. Using our 1σ rms error of the amplitude
power spectrum estimate we reckon that our upper limit has likewise an error of 18%.
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