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Abstract
We present results of the all-sky search for gravitational-wave signals from
spinning neutron stars in the data of the EXPLORER resonant bar detector.
Our data analysis technique was based on the maximum likelihood detection
method. We briefly describe the theoretical methods that we used in our
search. The main result of our analysis is an upper limit of 2 × 10−23 for the
dimensionless amplitude of the continuous gravitational-wave signals coming
from any direction in the sky and in the narrow frequency band from 921.00 Hz
to 921.76 Hz.

PACS numbers: 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A unique property of the gravitational-wave detectors is that with a single observation resulting
in one time series one can search for signals coming from all sky directions. In the case of
other instruments such as optical and radio telescopes, to cover the whole or even part of
10 On leave of absence from: Institute of Mathematics Polish Academy of Sciences, Warsaw, Poland.
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the sky requires a large amount of expensive telescope time as each sky position needs to
be observed independently. The difficulty in the search for gravitational-wave signals is that
they are very weak and they are deeply buried in the noise of the detector. Consequently, the
detection of these signals and interpretation of data analysis result in a delicate task. In this
paper, we present results of an all-sky search for continuous sources of gravitational radiation.
A prime example of such a source is a spinning neutron star. A signal from such a source has
definite characteristics that make it suitable for application of the optimal detection techniques
based on matched filtering. Moreover such signals are stable as a result of the stability of the
rotation of the neutron star and they will be present in the data for time periods much longer
than the observational interval. This enables a reliable verification of the potential candidates
by repeating the observations both by the same detector and by different detectors. To perform
our all-sky search we have used the data of the EXPLORER [1] resonant bar detector. The
directed search of the galactic centre with the EXPLORER detector has already been carried
out and an upper limit for the amplitude of the gravitational waves has been established [2].

Our paper is divided into two parts. In the first part we summarize the theoretical tools
that we use in our analysis and in the second part we present results of our all-sky search. The
main result of our analysis is an upper limit of 2 × 10−23 for the dimensionless amplitude of
gravitational waves originating from continuous sources located in any position in the sky and
in the frequency band from 921.00 Hz to 921.76 Hz.

The data analysis was performed by a team consisting of Pia Astone, Kaz Borkowski,
Piotr Jaranowski, Andrzej Królak and Maciej Pietka and was carried out on the basis of a
Memorandum of Understanding between the ROG collaboration and Institute of Mathematics
of Polish Academy of Sciences. More details about the search can be found on the website:
http://www.astro.uni.torun.pl/∼kb/AllSky/AllSky.html.

2. Data analysis methods

In this section, we give a summary of data analysis techniques that we used in the search. The
full exposition of our method is given in [6].

2.1. Response of a bar detector to a continuous gravitational-wave signal

Dimensionless noise-free response function h of a resonant bar gravitational-wave detector to
a weak plane gravitational wave in the long wavelength approximation (i.e., when the size of
the detector is much smaller than the reduced wavelength λ/(2π) of the wave) can be written
as a linear combination of the wave polarization functions h+ and h×:

h(t) = F+(t)h+(t) + F×(t)h×(t), (1)

where F+ and F× are called the beam-pattern functions and can be written as

F+(t) = a(t) cos 2ψ + b(t) sin 2ψ,

F×(t) = b(t) cos 2ψ − a(t) sin 2ψ,
(2)

where ψ is the polarization angle of the wave and

a(t) = 1
2 (cos2 γ − sin2 γ sin2 φ)(1 + sin2 δ) cos[2(α − φr − �rt)]

+ 1
2 sin 2γ sin φ(1 + sin2 δ) sin[2(α − φr − �rt)]

− 1
2 sin2 γ sin 2φ sin 2δ cos(α − φr − �rt)

+ 1
2 sin 2γ cos φ sin 2δ sin(α − φr − �rt)

+ 1
2 (1 − 3 sin2 γ cos2 φ) cos2 δ,
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b(t) = −sin 2γ sin φ sin δ cos[2(α − φr − �rt)]

+ (cos2 γ − sin2 γ sin2 φ) sin δ sin[2(α − φr − �rt)]

− sin 2γ cos φ cos δ cos(α − φr − �rt)

− sin2 γ sin 2φ cos δ sin(α − φr − �rt).

(3)

In equations (2) and (3) the angles α and δ are, respectively, right ascension and declination
of the gravitational-wave source. The geodetic latitude of the detector’s site is denoted by φ,
the angle γ determines the orientation of the bar detector with respect to local geographical
directions: γ is measured anticlockwise from east to the bar’s axis of symmetry. The rotational
angular velocity of the earth is denoted by �r , and φr is a deterministic phase which defines
the position of the earth in its diurnal motion at t = 0 (the sum φr + �rt essentially coincides
with the local sidereal time of the detector’s site, i.e., with the angle between the local meridian
and the vernal point).

We are interested in a continuous gravitational wave, which is described by the wave
polarization functions of the form

h+(t) = h0+ cos 	(t), h×(t) = h0× sin 	(t), (4)

where h0+ and h0× are independent constant amplitudes of the two wave polarizations. These
amplitudes depend on the physical mechanisms generating the gravitational wave. In the case
of a wave originating from a spinning neutron star these amplitudes can be estimated by [3]

h0 � 4.23 × 10−23
( ε

10−5

) (
I

1045 g cm2

)(
1 kpc

r

) (
f

1 kHz

)2

, (5)

where I is the neutron star moment of inertia with respect to the rotation axis, ε is the poloidal
ellipticity of the star and r is the distance to the star. The value of 10−5 of the parameter ε in
the above estimate should be treated as an upper bound. In reality it may be several orders of
magnitude less.

The phase 	 of the wave is given by

	(t) = �0 + �(t),

�(t) =
s1∑

k=0

ωk

tk+1

(k + 1)!
+

n0 · rSSB(t)

c

s2∑
k=0

ωk

tk

k!
.

(6)

In equation (6) the parameter �0 is the initial phase of the wave form, rSSB is the vector
joining the solar system barycentre (SSB) with the detector, n0 is the constant unit vector in
the direction from the SSB to the source of the gravitational-wave signal. We assume that the
gravitational-wave signal is almost monochromatic around some angular frequency ω0 which
we define as instantaneous angular frequency evaluated at the SSB at t = 0, ωk (k = 1, 2, . . .)

is the kth time derivative of the instantaneous angular frequency at the SSB evaluated at t = 0.
To obtain formulae (6) we model the frequency of the signal in the rest frame of the neutron
star by a Taylor series. For the detailed derivation of the phase model (6) see section 2.2 and
appendix A of [3]. The integers s1 and s2 are the number of spin downs to be included in
the two components of the phase. We need to include enough spin downs so that we have a
sufficiently accurate model of the signal to extract it from the noise.

The vector rSSB is the sum of two vectors: the vector rES joining the solar system barycentre
and the earth barycentre and vector rE joining the earth barycentre and the detector. The
vector rES can be obtained from the JPL Planetary and Lunar Ephemerides: ‘DE405/LE405’.
They are available via the internet at anonymous ftp: navigator.jpl.nasa.gov, the directory:
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ephem/export; whereas the vector rE can be accurately computed using the International Earth
Rotation Service (IERS) tables available at http://hpiers.obspm.fr/iers/eop/eopc04. The codes
to read the above files and to calculate the vector rSSB are described in [6].

It is convenient to write the response of the gravitational-wave detector given above in the
following form:

h(t) =
4∑

i=1

Aihi(t), (7)

where Ai are four constant amplitudes and the time-dependent functions hi have the form

h1(t) = a(t) cos �(t), h2(t) = b(t) cos �(t),

h3(t) = a(t) sin �(t), h4(t) = b(t) sin �(t).
(8)

In equations (8) the functions a and b are given by equations (3), and � is the phase given
by equation (6). The modulation amplitudes a and b depend on the right ascension α and the
declination δ of the source (they also depend on the angles φ and γ ). The phase � depends on
the frequency ω0, s spin-down parameters ωk(k = 1, . . . , s), and (through n0) on the angles
α, δ. We call the parameters ω0, ωk , α, δ the intrinsic parameters and the remaining ones the
extrinsic parameters. Moreover the phase � depends on the latitude φ of the detector. The
whole signal h depends on s + 5 unknown parameters: h0+, h0×, α, δ, ω0, ωk .

2.2. Optimal data analysis method

We assume that the noise n in the detector is an additive, stationary, Gaussian and zero-mean
random process. Then the data x (when the signal h is present) can be written as

x(t) = n(t) + h(t). (9)

The log-likelihood function has the form

log  = (x|h) − 1
2 (h|h), (10)

where the scalar product (·|·) is defined by

(x|y) := 4 Re
∫ ∞

0

x̃(f )ỹ∗(f )

Sh(f )
df. (11)

In equation (11) Re denotes the real part, a tilde denotes the Fourier transform, an asterisk
is the complex conjugation and Sh is the one-sided spectral density of the detector’s noise.
Assuming that over the bandwidth of the signal h the spectral density Sh(f ) is nearly constant
and equal to Sh(f0), where f0 is the frequency of the signal measured at the SSB at t = 0, the
log-likelihood ratio from equation (10) can be approximated by

ln  ≈ 2T0

Sh(f0)

(
〈xh〉 − 1

2
〈h2〉

)
. (12)

where 〈·〉 denotes time averaging over the observational interval [0, T0]:

〈x〉 := 1

T0

∫ T0

0
x(t) dt. (13)

The signal h depends linearly on four amplitudes Ai . The equations for the maximum
likelihood (ML) estimators Âi of the amplitudes Ai are given by

∂ ln 

∂Ai

= 0, i = 1, . . . , 4. (14)
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One can easily find the explicit analytic solution to equations (14). To simplify formulae
we assume that the observation time T0 is an integer multiple of one sidereal day, i.e.,
T0 = n(2π/�r) for some positive integer n. Then the time average of the product of the
functions a and b vanishes, 〈ab〉 = 0, and the analytic formulae for the ML estimators of the
amplitudes are given by

Â1 ≈ 2
〈xh1〉
〈a2〉 , Â2 ≈ 2

〈xh2〉
〈b2〉 , Â3 ≈ 2

〈xh3〉
〈a2〉 , Â4 ≈ 2

〈xh4〉
〈b2〉 . (15)

The reduced log-likelihood function F is the log-likelihood function where amplitude
parameters Ai were replaced by their estimators Âi . By virtue of equations (15) from
equation (12) one gets

F ≈ 2

Sh(f0)T0

( |Fa|2
〈a2〉 +

|Fb|2
〈b2〉

)
, (16)

where

Fa :=
∫ T0

0
x(t)a(t) exp[−i�(t)] dt,

Fb :=
∫ T0

0
x(t)b(t) exp[−i�(t)] dt.

(17)

The ML estimators of the signal parameters are obtained in two steps. Firstly, the
estimators of the frequency, the spin-down parameters and the angles α and δ are obtained by
maximizing the functional F with respect to these parameters. Secondly, the estimators of
the amplitudes Ai are calculated from the analytic formulae (15) with the correlations 〈xhi〉
evaluated for the values of the parameters obtained in the first step.

2.3. An approximate model

In order to calculate the optimum statistics F efficiently we introduce an approximation to
the phase of the signal that is valid for observation times short compared to the period of 1
year. The phase of the gravitational-wave signal contains terms arising from the motion of the
detector with respect to the SSB. These terms consist of two contributions, one which comes
from the motion of the earth barycentre with respect to the SSB, and the other which is due to
the diurnal motion of the detector with respect to the earth barycentre. The first contribution
has a period of one year and thus for shorter observation times can be well approximated by
a few terms of the Taylor expansion. The second term has a period of 1 sidereal day and
to a very good accuracy can be approximated by a circular motion. We find that for two
days of observation time that we used in the analysis of the EXPLORER data presented in
section 3 we can truncate the expansion at terms that are quadratic in time. Moreover in the
Taylor expansion of the frequency parameter it is sufficient to include terms up to the first
spin down. We thus propose the following approximate simple model of the phase of the
gravitational-wave signal:

	s(t) = p + p0t + p1t
2 + A cos(�r t) + B sin(�r t), (18)

where �r is the rotational angular velocity of the earth. The characteristic feature of the
above approximation is that the phase is a linear function of the parameters of the signal.
The parameters A and B can be related to the right ascension α and the declination δ of the
gravitational-wave source through the equations

A = ω0r

c
cos δ cos(α − φr), (19)
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B = ω0r

c
cos δ sin(α − φr), (20)

where ω0 is the angular frequency of the gravitational-wave signal and r is the equatorial
component of the detector’s radius vector. The parameters p, p0 and p1 contain contributions
both from the intrinsic evolution of the gravitational-wave source and the modulation of the
signal due to the motion of the earth around the sun.

2.4. Search strategy

With this approximation the integrals given by equations (17) and needed to compute F
become Fourier transforms and they can be efficiently calculated using the FFT algorithm.
Thus the evaluation of F consists of correlation of the data with two linear filters depending
on parameters p1, A,B followed by FFTs. In [6] we have verified that for the case of our
search the linear approximation to the phase does not lead to the loss of signal-to-noise ratio
of more than 5%.

In order to identify potential gravitational-wave signals we apply a two-step procedure
consisting of a coarse search followed by a fine search. The coarse search consists of
evaluation of F on a discrete grid constructed in such a way that the loss of the signal-to-noise
is minimized and comparison of the obtained values of F with a predefined threshold F0.
The parameters of the nodes of the grid for which the threshold is crossed are registered as
potential gravitational-wave signals. The threshold is calculated from a chosen false alarm
probability which is defined as the probability that F crosses the threshold when no signal is
present and the data are only noise. The fine search consists of finding a local maximum of
F using a numerical implementation of the Nelder–Mead algorithm [7], where coordinates of
the starting point of the maximization procedure are the parameter values of the coarse search.

To calculate the false alarm probability as a function of a threshold and to construct a
grid in the parameter space we introduce yet another approximation of our signal. Namely we
use a signal with a constant amplitude and the phase given by equation (18). In paper [4] we
have shown that the Fisher matrix for the exact model with amplitude modulations given by
equation (7) can be accurately reproduced by the Fisher matrix of a constant amplitude model.
As the calculations of the false alarm probability and construction of a grid in the parameter
space are based on the Fisher matrix we expect that the constant amplitude model is a good
approximation for the purpose of the above calculations. We stress that in the search of real
data we used the full model with amplitude modulations.

2.5. Statistical properties of the functional F

We shall now summarize the statistical properties of the functional F . We first assume that
the phase parameters are known and consequently that F is only a function of the random
data x. When the signal is absent 2F has a χ2-distribution with four degrees of freedom and
when the signal is present it has a noncentral χ2-distribution with four degrees of freedom and
noncentrality parameter equal to the optimal signal-to-noise ratio d defined as

d :=
√

(h|h). (21)

Consequently the probability density functions p0 and p1 when respectively the signal is
absent and present are given by

p0(F) = F exp(−F), (22)

p1(d,F) =
√

2F
d

I1(d
√

2F) exp

(
−F − 1

2
d2

)
, (23)
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where I1 is the modified Bessel function of the first kind and order 1. The false alarm
probability PF is the probability that F exceeds a certain threshold F0 when there is no signal.
In our case we have

PF (F0) :=
∫ ∞

F0

p0(F) dF = (1 + F0) exp(−F0). (24)

The probability of detection PD is the probability that F exceeds the threshold F0 when the
signal-to-noise ratio is equal to d:

PD(d,F0) :=
∫ ∞

F0

p1(d,F) dF . (25)

The integral in the above formula cannot be evaluated in terms of known special functions.
We see that when the noise in the detector is Gaussian and the phase parameters are

known the probability of detection of the signal depends on a single quantity: the optimal
signal-to-noise ratio d. When the phase parameters are unknown the optimal statistics F
depends not only on the random data x but also on the phase parameters that we shall denote
by ξ . Such an object is called in the theory of stochastic processes a random field. Let us
consider the correlation function of the random field

C(ξ, ξ ′) := E{[F(ξ) − m(ξ)][F(ξ ′) − m(ξ ′)]}, (26)

where

m(ξ) := E{F(ξ)}. (27)

For the case of the constant amplitude, linear phase model we have

m(ξ) = 1, (28)

and

C(ξ, ξ ′) = C(ξ − ξ ′)

= 〈cos[�p0t + �p1t
2 + �A cos(�r t) + �B sin(�r t)]〉2

+ 〈sin[�p0t + �p1t
2 + �A cos(�r t) + �B sin(�r t)]〉2

, (29)

where � denotes the difference between the parameter values. Thus the correlation function
C depends only on the difference ξ − ξ ′ and not on the values of the parameters themselves.
In this case the random field F is called homogeneous. For such fields we have developed [5]
a method of calculating the false alarm probability that we only summarize here. The main
idea is to divide the space of the intrinsic parameters ξ into elementary cells. The size of the
cell is determined by the characteristic correlation hypersurface of the random field F . The
correlation hypersurface is defined by the condition that at this hypersurface the correlation C
equals to half its maximum value. Assuming that C attains its maximum value when ξ −ξ ′ = 0
the equation of the characteristic correlation hypersurface reads

C(τ) = 1
2C(0), (30)

where we have introduced τ := ξ − ξ ′. Let us expand the left-hand side of equation (29)
around τ = 0 up to terms of the second order in τ . We arrive at the equation

M∑
i,j=1

Gij τiτj = 1, (31)

where M is the dimension of the intrinsic parameter space and the matrix G is defined as
follows:

Gij := − 1

C(0)

∂2C(τ)

∂τi∂τj

∣∣∣∣∣
τ=0

. (32)
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Equation (31) defines the boundary of an M-dimensional hyperellipsoid which we call the
correlation hyperellipsoid. The M-dimensional hypervolume Vcell of the hyperellipsoid defined
by equation (31) equals

Vcell = πM/2

�(M/2 + 1)
√

det G
, (33)

where � denotes the Gamma function. We estimate the number Nc of elementary cells by
dividing the total Euclidean volume Vtotal of the parameter space by the volume Vcell of the
correlation hyperellipsoid, i.e. we have

Nc = Vtotal

Vcell
. (34)

We approximate the probability distribution of F(ξ) in each cell by the probability distribution
p0(F) when the parameters are known (in our case it is the one given by equation (24)). The
values of the statistics F in each cell can be considered as independent random variables.
The probability that F does not exceed the threshold F0 in a given cell is 1 − PF (F0), where
PF (F0) is given by equation (22). Consequently the probability that F does not exceed the
threshold F0 in all the Nc cells is [1 − PF (F0)]Nc . The probability P T

F that F exceeds F0 in
one or more cells is thus given by

P T
F (F0) = 1 − [1 − PF (F0)]

Nc . (35)

This is the false alarm probability when the phase parameters are unknown.
The basic quantity to consider in the construction of the grid of templates in the parameter

space is the expectation value E1 {F} of the statistics when the signal is present. For the
constant amplitude linear phase model we have that

E1 {F(ξ)} = 1 + 1
2d2C(ξ), (36)

where C is the correlation function of the random field introduced above and d is the signal-
to-noise ratio of the signal present in the data. We choose the grid of templates in such a
way that the correlation between any potential signal present in the data and the nearest point
of the grid never falls below a certain value. In the case of the approximate model of the signal
that we use the grid is uniform and consists of regular polygons in the space parametrized by
p0, p1, A,B. The construction of the grid is described in detail in section VIIA of [2]. For
the grid that we used in the search of the EXPLORER data the correlation function C for any
signal present in the data was greater than 0.77.

3. An all-sky search of the EXPLORER data

We have implemented the theoretical tools presented in section 2 and we have performed an
all-sky search for continuous sources of gravitational waves in the data of the resonant bar
detector EXPLORER11 [1]. The EXPLORER detector has collected many years of data with
a high duty cycle (e.g. in 1991 the duty cycle was 75%). The EXPLORER detector was most
sensitive for two narrow bandwidths (called minus and plus modes) of about 1 Hz wide at two
frequencies around 1 kHz. To make the search computationally manageable we analysed two
days of data in the narrow band where the detector had the best sensitivity. By narrowing the
bandwidth of the search we can shorten the length of the data to be analysed as we need to
sample the data at only twice the bandwidth. For the sake of the FFT algorithm it is best to

11 The EXPLORER detector is operated by the ROG collaboration located at Italian Istituto Nazionale di Fisica
Nucleare (INFN); see http://www.roma1.infn.it/rog/explorer/explorer.html.
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Figure 1. Quality of the EXPLORER data. The x-axis gives the number of the 11 h block of
data from the 13 day data run and the y-axis gives the corresponding probability values of the KS
statistic.

keep the length of the data to a power of 2. Consequently we have chosen the number of data
points to analyse to be N = 218. Thus for T0 = 2 days of observation time the bandwidth �ν

was �ν = N/(2T0) ∼ 0.76 Hz. We have also chosen to analyse the data for the plus mode.
As a result we searched the bandwidth from 921.00 Hz to 921.76 Hz.

3.1. Parameter space

We have used the filters with the phase linear in the parameters given by equation (18). In
the filters we have included the amplitude modulation. The number of cells Nc calculated
from equation (34) was around 1.6 × 1012. Consequently from equation (35) the threshold
signal-to-noise ratio for 1% false alarm probability was equal to 8.3. In the search that we
have performed we have used a lower threshold signal-to-noise of 6.7. The aim of lowering
the threshold was to make up for the loss of signal-to-noise ratio due to the discreteness of the
grid of templates and due to the use of filters that only approximately matched the true signal.
The number of points in the grid over which we had to calculate the statistics F turned out to
be 183 064 440. This number involved 63 830 positions in the sky and 2868 spin-down values
for each sky position. We have carried out the search on a network of PCs and workstations.
We had around two dozen processors at our disposal. The data analysis started in September
2001 and was completed in November 2002.

3.2. Data selection

The two-day stretch of data that we analysed was taken from a larger set of 13 days of data
taken by the EXPLORER detector in November 1991. We have chosen the two-day stretch of
data on the basis of conformity of the data to the Gaussian random process. We have divided
the data into 216 point sections corresponding to around 11 h of data. For each stretch we have
performed the Kolmogorov–Smirnov (KS) test. The results of the KS test are presented in
figure 1. For the case of the KS test the higher the probability the more Gaussian the data are.
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Figure 2. Two-sided spectral density of the EXPLORER data.

From the above test we conclude that large parts of data are approximately Gaussian. On the
basis of the above analysis we have chosen the two-day data stretch to begin at the first sample
of the 7th data stretch corresponding to a modified Julian date of 48 580.7909. In figure 2
we have presented the spectral density of the two-day stretch of data that we analysed. We see
that the minimum spectral density was close to 10−21 Hz−1/2.

3.3. Results

We have obtained 22 295 threshold crossings for the Northern hemisphere and 44 701 for
the Southern hemisphere. We consider all candidates contained within a single cell of
the parameter space defined in section 2.2 as dependent and we choose as an independent
candidate the candidate that has the highest signal-to-noise ratio within one cell. Consequently
we have obtained 11 703 independent candidates for the Northern hemisphere and 18 702 for
the Southern hemisphere. In figures 3 and 4 we have plotted the histograms of the values of the
statistics F for the independent candidates and we have compared them with the theoretical
distribution for F when no signal is present in the data. A good agreement with the theoretical
distribution is another indication of Gaussianity of the data. It also reveals that there are no
obvious populations of the continuous gravitational-wave sources at the level of sensitivity
of our search. In the search no event has crossed our 99% confidence threshold of 8.3. The
strongest signal obtained by the coarse search had the signal-to-noise ratio of 7.9 and the fine
search increased that value to 8.2.

As we do not have a detection of a gravitational-wave signal we can make a statement
about the upper bound for the gravitational-wave amplitude. To do this we take our strongest
candidate of signal-to-noise ratio d0 and we suppose that it resulted from a gravitational-wave
signal. Then, using formula (25), we calculate the signal-to-noise dul of the gravitational-
wave signal so that there is 1% probability that it crosses the threshold F0 corresponding
to d0, where F0 = 2 + 1

2d2
0 . The dul is the desired 99% confidence upper bound. For

d0 = 8.2, which corresponds to the signal-to-noise ratio of our strongest candidate, we find
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Figure 3. Histogram of candidates: Northern hemisphere. On the x-axis the values of the statistic
F are given. The solid line corresponds to the theoretical χ2-distribution with four degrees of
freedom.
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Figure 4. Histogram of candidates: Southern hemisphere. On the x-axis the values of the statistic
F are given. The solid line corresponds to the theoretical χ2-distribution with four degrees of
freedom.

that dul = 5.9. For the EXPLORER detector this corresponds to the dimensionless amplitude
of the gravitational-wave signal equal to 2 × 10−23. Thus we have the following conclusion.

In the frequency band from 921.00 Hz to 921.76 Hz and for signals coming from any
sky direction the dimensionless amplitude of the gravitational-wave signal from a continuous
source is less than 2 × 10−23 with 99% confidence.
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Our analysis has been done using two days of data. We note that the upper bound will
decrease as the length of the data analysed increases; dul is proportional to the inverse of the
square root of the observation time T0.
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