ATLAS

Athena
The ATLAS Common Framework

User Guide and Tutorial

\ersion: 2

Issue: 0

Edition: 2

Status: Draft

ID: 1

Date: 16 August 2001

DRAFT

European Laboratory for Particle Physics
Vs Laboratoire Européen pour la Physique des Particules

CH-1211 Genéve 23 - Suisse



Athena 16 August 2001 Version/Issue: 2.0.0

page 2

("



Athena
Table of Contents Version/Issue: 2.0.0

| Table of Contents

Chapter 1
I Introduction . ...... ... . 7
1.1 Purpose ofthedocument.......... ... ... . i 7
1.2 Athenaand GAUDI . . ... ... 7
1.2.1  Document organization .. ..........cuuirer e 8
1.3 CONVENTIONS. . .\ ottt 8
1.3 L UNIS. ot 8
1.3.2  Coding ConVeNntioNnsS. . .. .. v e 9
1.3.3  Naming Conventions . .. ..ottt e 9
1.3.4 Conventions of thisdocument . .......... .. ... ... 9
1.4 Release NOES. . . ..o 9
1.5 Reporting Problems. . ... ... 10
1.6 UserFeedback . .. ... ... . 10
Chapter 2
I Release NOtES. . . . ..o 11
2.1 OVBIVIBW . .ottt e e e 11
2.2 New Functionality . ......... . 11
2.3 Changes that are not backwards compatible .. ........... ... ... ... .... 11
2.4 Changed dependencies on external software. . .......................... 11
25 BUgSFIXEd. .. ... 11
2.6 KNOWN BUGS .. ..o 12
Chapter 3
I AN CONCEPES . . . oo 13
Bl OVBIVIBW . oottt e e 13
3.2 Athena CompoNeNntS . . ..ottt 13
3.21  Algorithms . .. 13
322 SBIVICES . . ittt 14
3.2.3  PIOPeItIES . . ot ot 14
3.2.4  Job Options filesand Pythonscripts . .......... ..., 14
3.25 Data objects and transient Stores . . ........... 14
3.2.6  CONVEIEIS . .ot 15
327 AULITOIS . .t 15
3.28 Helpersand ToOIS . ... e 15
3.3 PaACKAGES . .t 16
Chapter 4
I Accessto ATLASsoftware ... 17

% page 3



Athena

Table of Contents Version/Issue: 2.0.0

A1 OVEIVIBW. . o ittt et e e e e e e e 17
4.2 Establishing a loginenvironment. .............. i, 17
4.2.1 Commands to establish a bourne-shell or varient login environment. . . . .. 17
4.2.2 Commands to establish a c-shell or varient login environment . ......... 18
4.3 Using SRT to checkout ATLAS software packages. . .................... 18
Chapter 5
SCIIPtING. . . o e 19
DL OVBIVIBW. ottt et e e e 19
5.2 Python sCripting SEIVICE . . .. oottt 19
5.3 PYythOn OVeIVIEW . . . ..o 19
5.4 Howtoenable Pythonscripting .. ........... i 20
5.4.1 Using a Python script for configuration and control. . ................. 20

5.4.2 Using a job options text file for configuration with a Python interactive shell
20

5.5 Prototype functionality . .. .......... .. 21
5.6 Property manipulation ........... .. .. 22
5.7 Synchronization between Pythonand Athena .. ........................ 23
5.8 Controlling jobexecution. .. ...... ... i 24
Chapter 6
Accessing ATLAS data. .. ... 27
B.1  OVBIVIBW. . o ittt e 27
6.2 Accessing Physics TDR data from ZEBRAfiles. ....................... 27
6.2.1 The ZebraTDRCNVSVC SEIVICE . . .. ottt e 27
6.3 Accessing Physics TDR data from Objectivity databases ................. 29
6.4 Accessing Atlfast data from Objectivity databases ...................... 29
6.5 Accessing Atlfast data from ROOT files .............. ... .. ... ....... 30
6.5.1 Storing Atlfast datain ROOT files.............. ... .. .. ... .. ..... 30
6.5.2 Reading Atlfast data from ROOT files............. ... ... .. ... .... 31
Chapter 7
Monte-Carlo event generators. . . ... 33
7.1 OVBIVIBW. .ottt 33
7.2 HerWig ..o 33
70 T - -] 34
T4  PYtNIa .. 35
7.5 Singleparticle gun . ... . . 36
Chapter 8
Fastsimulation . .......... . 41
8.l OVBIVIBW. . .ottt 41
Chapter 9

page 4



Athena

Table of Contents

Version/Issue: 2.0.0

Tutorial examples. . . ... 43
0.1 OVBIVIBW . ittt e e 43
9.2 Building the tutorial examples. .. ... ... 43

9.2.1 Runningthe tutorial examples. . .......... .. ... ... . . . i 44
9.2.2  Setting up the files for running the tutorial examples .. ................ 45
9.2.3 Establishing the run-time environment .. ........................... 45
9.2.4  Selecting and running the desired tutorial example.................... 46
9.25 The Fortran Algorithmexample .......... .. .. . ... .. . . . 46
9.26 TheGraphicsexample . ... e e 47
9.2.7 TheHelloWorldexample. ... ... ... ... ... . i 48
9.2.8 The Histogram and Ntupleexample .......... ... .. .. ... .. .. ... ... 49
9.2.9 The Liquid Argon Reconstructionexample. ......................... 51
9.2.10 The Pixel reconstructionexample . .......... .. i, 51
9.2.11 The Sequencer example . . ... ...t 51
9.2.12 The StoreGateexample .. ... e 55

page 5



Athena Table of Contents Version/Issue: 2.0.0

page 6

("



Athena

Chapter 1 Introduction Version/Issue: 2.0.0

Chapter 1
Introduction

1.1 Purpose of the document

This document is intended as a combination guide and tutorial for users of the Athena control
framework. Athena is based upon the GAUDI architecture that was originally developed by LHCb, but
which is now a joint development project. This document, together with other information about
Athena, is available online at:

http://webl.cern.ch/Atlass=GROUPS/SOFTWARE/OO/architecture

This version of the Athena User Guide corresponds to Athena release 2.0.0. This is based upon ATLAS
GAUDI version 0.7.2, which itself is based upon GAUDI version 7 with some patches.

1.2 Athena and GAUDI

As mentioned above Athena is a control framework that represents a concrete implementation of an
underlying architecture. The architecture describes the abstractions or components and how they
interact with each other. The architecture underlying Athena is the GAUDI architecture originally
developed by LHCb. This architecture has been extended through collaboration with ATLAS, and an
experiment neutral or kernel implementation, also called GAUDI, has been created. Athena is then the
sum of this kernel framework, together with ATLAS-specific enhancements. The latter include the
event data model and event generator framework.

The collaboration between LHCb and ATLAS is in the process of being extended to allow other
experiments to also contribute new architectural concepts and concrete implementations to the kernel
GAUDI framework. It is expected that implementation developed originally for a particular experiment
will be adopted as being generic and will be migrated into the kernel. This has already happened with,

’m\

page 9



Athena

Chapter 1 Introduction Version/Issue: 2.0.0

for example, the concepts of auditors, the sequencer and the ROOT histogram and ntuple persistency
service.

For the remainder of this document the name Athena is used to refer to the framework and the name
GAUDI is used to refer to the architecture upon which this framework is based.

1.2.1 Document organization

The document is organized as follows:
Chapter 2 is the release notes for this version of Athena, detailing changes from previous versions.
Chapter 3 is a short resume of concepts from the architecture.

Chapter 17 discusses physical design issues such as how to access the Gaudi external package from the
ATLAS SRT environment, how to deal with component libraries etc.

Chapter 6 describes how to access ATLAS data, including Physics TDR data, and Atlfast generated
data.

Chapter 7 describes the framework for Monte-Carlo event generators that is available within Athena.

Chapter 7 describes briefly the fast simulation (Atlfast) that uses the output from one of the event
generators described in Chapter 6.

Chapter 5 discusses the prototype scripting support which is based upon the Python scripting language.
Chapter 8 discusses the Event Data Model, which is implemented by the StoreGate service.

Chapter 10 describes the proposed data dictionary and related constructs that will be used to
auto-generate code for a variety of different purposes, including converters, data browsing tools etc.

Chapter 9 summarizes the tutorial examples that are part of the ATLAS software release.

Appendix A contains references and Appendix B is a brief installation guide.

1.3 Conventions

1.3.1 Units

This section is blank for now.

page 10



Athena
Chapter 1 Introduction Version/Issue: 2.0.0

1.3.2 Coding Conventions

This section is blank for now.

1.3.3 Naming Conventions

This section is blank for now.

1.3.4 Conventions of this document

Angle brackets are used in two contexts. To avoid confusion we outline the difference with an
example.

The definition of a templated class uses angle brackets. These are required by the C++ syntax, so in the
instantiation of a templated class the angle brackets are retained:

Al gFact ory<User Def i nedAl gorithm> s _factory;

This is to be contrasted with the use of angle brackets to denote “replacement” such as in the
specification of the string:

“<concr et eAl gorit hmlype>/ <al gori t hnNanme>"

which implies that the string should look like:

“Enpt yAl gorithm Enpty”

Hopefully what is intended will be clear from the context.

1.4 Release Notes

Although this document is kept as up to date as possible, Athena users should refer to the release notes
that accompany each ATLAS software release for any information that is specific to that release. The
release notes are kept in the of f | i ne/ Cont r ol / Rel easeNot es. t xt file.

page 11

%



Athena Chapter 1 Introduction Version/Issue: 2.0.0

1.5 Reporting Problems

Eventually ATLAS will use the Remedy bug reporting system for reporting and tracking of problems.
Until this is available, users should report problems to the ATLAS Architecture mailing list at
atlas-sw-architecture@atlas-1b.cern.ch.

1.6 User Feedback

Feedback on this User Guide, or any other aspects of the documentation for Athena, should also be sent
to the ATLAS Architecture mailing list.

page 12



Athena
Chapter 3 Release notes Version/Issue: 2.0.0

Chapter 3
Release notes

3.1 Overview

These release notes identify changes since the previous release, focussing on new functionality,
changes that are not backwards compatible, changes in external dependencies, and a brief summary of
bugs that have been fixed, or are known to be outstanding.

3.2 New Functionality

3.3 Changes that are not backwards compatible

3.4 Changed dependencies on external software

1. ATLAS release 2.0.0 depends upon ATLAS GAUDI release 0.7.2.

3.5 Bugs Fixed

In general these should be referenced by the appropriate Remedy number, but this is not currently
available.

page 19

,
’m\



Athena Chapter 3 Release notes Version/Issue: 2.0.0

3.6 Known Bugs

None.

page 20

("



Athena
Chapter 3 Athena concepts Version/Issue: 2.0.0

Chapter 3
Athena concepts

3.1 Overview

This Chapter summarizes the concepts that are used by the Athena framework, to provide context and a
terminology that is used in the rest of the User Guide. Most of the concepts are introduced and
described in detail in the GAUDI Architecture Design Document[2], but several other concepts are
specific to the ATLAS software environment.

3.2 Athena components

3.2.1 Algorithms

Algorithms form the basic building blocks of user applications, and generally accept input data,
manipulate it in some way, and generate new output data. They represent the primary algorithmic part
of an application, performing, for example, track finding and fitting, the asssociation of calorimeter hits
into clusters and towers, and the association of particle types with tracks and clusters.

Algorithms can be simple or composite, the latter having children that it delegates processing to. These
themselves may be composite, allowing quite complicated processing structures to be setup.
Algorithms can also act as filters, indicating that a particular event does not meet its selection or filter
criteria, and causing downstream Algorithms not to be activated for that event.

page 13

%



Athena

Chapter 3 Athena concepts Version/Issue: 2.0.0

3.2.2 Services

Services provide specific capabilities of the framework and as their name implies provide a service to
their clients. Histogram and Random Number Generator services are examples. Services hide behind
abstract interfaces such that potentially multiple implementations can be provided, the specific
implementation being selectable at run time. For example, histograms that have been created by user
Algorithms and booked with the Histogram service can be made persistent by one of two Histogram
Persistency services. One writes HBOOK files, the other writes ROOT files. The particular
implementation can be selected at run time.

3.2.3 Properties

Algorithms and services can have adjustable parameters, called Properties, that allow run time
configuration. The designer of the algorithm or service will in general decide which of the parameters
should be adjustable in this manner. Note that this decision is orthogonal to the design of the C++ class
interface, and the designer has flexibility over which adjustable parameters have programmatic
adjustability via the public class interface, or run time adjustability by the application user. Properties
can be specified via a text file that is read during the startup phase of the application, and, if scripting is
enabled, interactively at run time from the scripting language shell.

I 3.2.4Job Options files and Python scripts

A job options file is a conventional text file (by default called j obOpt i ons. t xt in the current
directory) that is used to control the configuration of an Athena application at run time. Thus the
specification of which Algorithms should be run in which sequence, the particular implementation of
services with different possible implementation, and the adjustable properties of framework
components can be configured by way of the job options file.

The functionality of job options files is also available using Python scripts. These have the advantage
that they can be used both for configuration, and also for interactive sessions.

3.2.5 Data objects and transient stores

Data objects are what are passed between Algorithms, acting as their input and output. In order to
reduce the coupling between Algorithms, several so-called transient stores are available that act as the
temporary respository for information. Thus an Algorithm will locate input information from a transient
store, and write out newly generated information derived from its processing into the transient store,
where it can later be retrieved by downstream Algorithms. The different transient stores have different
lifetime policies associated with them, particular stores being:

* The event data store or transient event store

¢ The detector data store

page 14



Athena
Chapter 3 Athena concepts Version/Issue: 2.0.0

* The histogram store

Retrieving and registering of data with the transient stores is light-weight and does not involve physical
copying of data.

3.2.6 Converters

Converters convert objects from one representation to another. One particular use within Athena is to
decouple algorithmic code from the underlying persistency mechanism or mechanisms. Thus a set of
converters is provided to convert DataObjects within the transient stores to and from an equivalent set
of persistent objects for each persistency implementation. An alternative use might also be to convert
objects to a graphical representation.

3.2.7 Auditors

Auditors are objects that monitor aspects of other components of the framework. Currently Athena
supports auditors for monitoring the following aspects of Algorithms:

» The NameAuditor just provides a visible trail of the sequence in which Algorithms are
processed for each event, outputting the name of each Algorithm immediately before and after
its execution for each event. It is primarily expected to be used as a diagnostic tool.

» The ChronoAuditor monitors the cpu usage for every Algorithm, and provides a summary of
this at the end of job.

e The MemoryAuditor monitors memory usage and provides a warning of possible memory
leaks.

3.2.8 Helpers and Tools

Not every algorithmic manipulation need be performed by Algorithm classes which have a particular
significance to the framework. Although Algorithms form the basic building blocks that are
manipulated and sequenced by the framework in order to process information, it is expected that other
helper classes will play an important role in performing the algorithmic processing of data. Thus an
Algorithm may locate its desired input data and then delegate further processing to helper classes. Such
helper classes will in general not be known to the framework itself, although support for a particular
type of helper class, called a Tool, is provided by the framework. Services can also provide helper
functions. The Random Number Generator service is an example of this.

The design decision as to whether an Algorithm or a helper should be used for a particular algorithmic
operation basically depends upon the granularity of the processing. It would be unreasonable to turn the
square root function into a fully fledged Algorithm, just as it would be unreasonable to turn the full

reconstruction of an event into a helper. A typical Algorithm will perform a well defined function for a

page 15

%



Athena

Chapter 3 Athena concepts Version/Issue: 2.0.0

detector subsystem, such as combining calorimeter hits into clusters or towers. Tools or helper classes
are typically used by several Algorithms.

3.3 Packages

The ATLAS software environment is based upon the concept of Packages, being sets of (typically) C++
classes and their interface and implementation files that are grouped together. Each package will, in
general, depend on other packages, and will result in the generation of a typically one or more libraries
or executables.

Packages are both a management tool and a software configuration tool.

page 16



Athena
Chapter 4 Establishing a run-time environment Version/Issue: 2.0.0

Chapter 4
Establishing a run-time environment

4.1 Overview

This Chapter describes how to establish an environment to allow a user to access Athena-based
applications. The details of this will depend upon the particular site, on whether the user is using a
CERN computer, and whether AFS is available. Consult your local system administrator for details of
how to login and to create a minimal environment. What is described here is the appropriate setup
procedures for a CERN user on a CERN machine.

4.2 Establishing alogin environment

4.2.1 Commands to establish a bourne-shell or varient login environment

The commands in Listing 4.1 establish a minimal login environment using the bourne shell or varients
(sh, bash, zsh, etc.) and should be entered into the .profile or .bash_profile (?) file.

Listing 4.1 Bourne shell and varients commands to establish an ATLAS login environment

export ATLAS ROOT=/afs/cern.ch/atl as
export CVSROOT=: kserver: atlas-sw. cern.ch:/atl ascvs
if [ "$PATH' I="" 1, then

export PATH=${ PATH} : $ATLAS_ROOT/ sof t war e/ bi n
el se

export PATH=$ATLAS ROOT/ sof t war e/ bi n
fi
source ‘srt setup -s sh’

page 21

;(F:’i



Athena

Chapter 4 Establishing a run-time environment Version/Issue: 2.0.0

4.2.2 Commands to establish a c-shell or varient login environment

The commands in Listing 4.2 establish a minimal login environment using the c-shell or varients (csh,
tesh, etc.) and should be entered into the .login file.

Listing 4.2 C shell and varients commands to establish an ATLAS login environment

setenv ATLAS _ROOT /afs/cern.ch/atlas
setenv CVSROOT : kserver:atlas-sw. cern.ch:/atl ascvs
if ( $?PATH ) then

set env PATH ${ PATH}: $ATLAS_ROOT/ sof t war e/ bi n
el se

set env PATH $ATLAS_ROOT/ sof t war e/ bi n
endi f
source ‘srt setup -s csh’

4.3 Using SRT to checkout ATLAS software packages

ATLAS software is organized as a set of hierarchical packages, each package corresponding to a logical
grouping of (typically) C++ classes. These packages are kept in a centralized code repository, managed
by CVS [Ref]. Self-contained snaphots of the package hierarchy are created at frequent intervals, and
executables and libraries are created from them. These snapshots are termed releases, and in many
cases users can execute applications directly from a release of their choice. Each release is identified by
a three-component identifier of the form ii.jj.kk (e.g. 1.3.2).

page 22



Athena
Chapter 6 Scripting Version/Issue: 2.0.0

Chapter 6
Scripting

6.1 Overview

Athena scripting support is available in prototype form.The functionality is likely to change rapidly, so
users should check with the latest release notes for changes or new functionality that might not be

documented here.

6.2 Python scripting service

In keeping with the design philosophy of Athena and the underlying GAUDI architecture, scripting is
defined by an abstract scripting service interface, with the possibility of there being several different
implementations. A prototype implementation is available based upon the Python[4] scripting
language. The Python scripting language will not be described in detail here, but only a brief overview

will be presented.

6.3 Python overview

This section is in preparation.

page 35

”m\



Athena

Chapter 6 Scripting Version/Issue: 2.0.0

6.4 How to enable Python scripting

Two different mechanisms are available for enabling Python scripting.

1. Replace the job options text file by a Python script that is specified on the command line.

2. Use a job options text file which hands control over to the Python shell once the initial
configuration has been established.

6.4.1 Using a Python script for configuration and control

The necessity for using a job options text file for configuration can be avoided by specifying a Python
script as a command line argument as shown in Listing 6.1.

Listing 6.1 Using a Python script for job configuration

at hena MyPyt honScri pt. py [1]

Notes:

1. The file extension . py is used to identify the job options file as a Python script.All other
extensions are assumed to be job options text files.

This approach may be used in two modes. The first uses such a script to establish the configuration, but
results in the job being left at the Python shell prompt. This supports interactive sessions. The second
specifies a complete configuration and control sequence and thus supports a batch style of processing.
The particular mode is controlled by the presence or absence of Athena-specific Python commands
described in Section 6.8.

6.4.2 Using a job options text file for configuration with a Python interactive shell

Python scripting is enabled when using a job options text file for job configuration by adding the lines
shown in Listing 6.2 to the job options file.

Listing 6.2 Job Options text file entries to enable Python scripting

Appl i cationMyr. DLLs += { "SI Python" };
ApplicationMyr. Ext Svc += { "PythonScriptingSvc/ ScriptingSvc" }; [2]

Notes:

page 36



Athena
Chapter 6 Scripting

Version/Issue: 2.0.0

This entry specifies the component library that implements Python scripting. Care should be
taken to use the “+=" syntax in order not to overwrite other component libraries that might be
specified elsewhere.

This entry specifies the Python scripting implementation of the abstract Scripting service. As
with the previous line, care should be taken to use the “+=" syntax in order not to override
other services that might be specified elsewhere.

Once the initial configuration has been established by the job options text file, control will be handed
over to the Python shell.

Itis possible to specify a specific job options configuration file at the command line as shown in Listing

6.3.
Listing 6.3 Specifying a job options file for application execution
athena [job options file] [1]
Notes:
1. The job options text file command line argument is optional. The file j obOpti ons. t xt is

assumed by default.

The file extension . py is used to identify the job options file as a Python script. All other
extensions are assumed to be job options text files. The use of a Python script for
configuration and control is described in Section 6.4.1.

| 6.5 Prototype functionality

The functionality of the prototype is limited to the following capabilities. This list will be added to as
new capabilities are added:

1.

—
o 0 & w N

The ability to read and store basic Properties for framework components (Algorithms,
Services, Auditors) and the main ApplicationMgr that controls the application. Basic
properties are basic type data members (int, float, etc.) or SimpleProperties of the components
that are declared as Properties via the declareProperty() function.

The ability to retrieve and store individual elements of array properties.

The ability to specify a new set of top level Algorithms.

The ability to add new services and component libraries and access their capabilities

The ability to specify a new set of members or branch members for Sequencer algorithms.
The ability to specify a new set of output streams.

The ability to specify a new set of "AcceptAlgs"”, "RequireAlgs", or "\VetoAlgs" properties for
output streams.

%

page 37



Athena Chapter 6 Scripting Version/Issue: 2.0.0

6.6 Property manipulation

An illustration of the use of the scripting language to display and set component properties is shown in
Listing 6.4:

Listing 6.4 Property manipulation from the Python interactive shell

>>>Al gori t hm nanes [11[2]
(' TopSequence', 'Sequencel', 'Sequence2')
>>> Servi ce. hanes [3]

(' MessageSvc', 'JobOptionsSvc', 'EventDataSvc', 'EventPersistencySvc',
' Det ect or Dat aSvc', 'DetectorPersistencySvc', 'HistogranDataSvc',

" NTupl eSvc', 'lIncidentSvc', 'Tool Svc', 'Hi stogranPersistencySvc',
"ParticlePropertySvc', 'ChronoStat Svc', 'RndnenSvc', 'AuditorSvc',
"ScriptingSve', ' RndmGenSvc. Engi ne')

>>> TopSequence. properties [ 4]
{"ErrorCount': 0, 'QutputlLevel': 0, 'BranchMenbers': [],

"Audi t Execute': 1, 'Auditlnitialize': 0, 'Menbers':

[' Sequencer/ Sequencel', 'Sequencer/ Sequence2'], 'StopQverride': 1,
"Enable': 1, 'AuditFinalize': 0, 'ErrorMux': 1}

>>> TopSequence. Qut put Level [ 5]
"Qut putLevel': 0

>>> TopSequence. Qut put Level =1 [ 6]
>>> TopSequence. Menmber s=[' Sequencer/ NewSeql', ' Sequencer/ NewSeql'] [7]

>>> TopSequence. properties

{"ErrorCount': 0, 'QutputlLevel': 1, 'BranchMenbers': [],
"Audi t Execute': 1, 'Auditlnitialize': 0, 'Menbers':

[' Sequencer/ NewSeql', 'Sequencer/NewSeql'], 'StopOverride': 1,
"Enable': 1, 'AuditFinalize': 0, 'ErrorMux': 1}

>>> t heApp. properties [ 8]
{"JobOptionsType': 'FILE, 'EvtMax': 100, 'DetDbLocation': 'enpty',
"Dils': ['HbookCnv', 'SI_Python'], 'DetDbRootNane': 'enpty',
"JobOptionsPath': 'jobOptions.txt', 'QutStream: [],

"Hi stogranmPersistency': 'HBOOK' , 'EvtSel': 'NONE', 'ExtSvc':

[' PythonScri ptingSvc/ ScriptingSvc'], 'DetStorageType': 0, 'TopAlg':

[' Sequencer/ TopSequence' ]}

>>>

Notes:

1. The">>>"is the Python shell prompt.
2. The set of existing Algorithms is given by the Al gor i t hm nanmes command.

3. The set of existing Services is given by the Ser vi ce. nanes command.

page 38 %



Athena

Chapter 6 Scripting

Version/Issue: 2.0.0

The values of the properties for an Algorithm or Service may be displayed using the
<name>. pr oper ti es command, where <name> is the name of the desired Algorithm or
Service.

The value of a single Property may be displayed (or used in a Python expression) using the
<name>.<property> syntax, where <name> is the name of the desired Algorithm or Service,
and <property> is the name of the desired Property.

Single valued properties (e.g. | nt eger Pr opert y) may be set using an assignment
statement. Boolean properties use integer values of 0 (or FALSE) and 1 (or TRUE). Strings
are enclosed in """ characters (single-quotes) or """ characters (double-quotes).

Multi-valued properties (e.g. St ri ngArr ayPr operty) are set using "[...]" as the array
delimiters.

The t heApp object corresponds to the ApplicationMgr and may be used to access its
properties.

| 6.7 Synchronization between Python and Athena

It is possible to create new Algorithms or Services as a result of a scripting command. Examples of this
are shown in Listing 6.5:

Listing 6.5 Examples of Python commands that create new Algorithms or Services

>>> t heApp. Ext Svc
>>> t heApp. TopAl g

[ "ANewService" ]
[ "TopSequencer/ Sequencer" ]

If the specified Algorihm or Service already exists then its properties can immediately be accessed.
However, in the prototype the properties of newly created objects cannot be accessed until an
equivalent Python object is also created. This restriction will be removed in a future release.

This synchronization mechanism for creation of Python Algorithms and Services is illustrated in
Listing 6.6:

Listing 6.6 Examples of Python commands that create new Algorithms or Services

>>> theApp. Ext Sve = [ "ANewService" ]

>>> ANewService = Service( "ANewService" ) [1]
>>> t heApp. TopAlg = [ "TopSequencer/ Sequencer" ]
>>> TopSequencer = Al gorithm "TopSequencer"” ) [2]

>>> TopSequencer. properties

Notes:

;(F:’i

page 39



Athena Chapter 6 Scripting Version/Issue: 2.0.0

1. This creates a new Python object of type Sequencer, having the same name as the newly
created Athena Sequencer.

2. This creates a new Python object of type Algorithm, having the same name as the newly
created Athena Algorithm.

The Python commands that might require a subsequent synchronization are shown in Listing 6.7:

| Listing 6.7 Examples of Python commands that might create new Algorithms or Services

theApp. Ext Sve = [...]

theApp. TopAlg = [...]
Sequencer. Menbers = [...]
Sequencer. BranchMenbers = [...]
CQut Stream Accept Algs = [...]
Qut Stream RequireAlgs = [...]
Qut Stream VetoAlgs = [...]

6.8 Controlling job execution

This is very limited in the prototype, and will be replaced in a future release by the ability to call
functions on the Python objects corresponding to the ApplicationMgr (theApp), Algorithms, and
Services.

In the prototype, control is returned from the Python shell to the Athena environment by the command
in Listing 6.8:

Listing 6.8 Python command to resume Athena execution

>>> t heApp. Go [1]

Notes:

1. This is a temporary command that will be replaced in a future release by a more flexible
ability to access more functions of the ApplicationMgr.

This will cause the currently configured event loop to be executed, after which control will be returned
to the Python shell.

Typing Ctrl-D (holding down the Ctrl key while striking the D key) at the Python shell prompt will
cause an orderly termination of the job. Althernatively, the command shown in Listing 6.9 will also
cause an orderly application termination.

| Listing 6.9 Python command to terminate Athena execution

[ >>> t heApp. Exi t [1]

page 40 %




Athena

Chapter 6 Scripting Version/Issue: 2.0.0

This command, used in conjunction with the theApp.Go command, can be used to execute a Python
script in batch rather than interactive mode. This provides equivalent functionality to a job options text
file, but using the Python syntax. An example of such a batch Python script is shown in Listing 6.10:

Listing 6.10 Python batch script

>>> theApp. TopAlg = [ "Helloworld" ]
[ot her configuration comrands]

>>> t heApp. Go

>>> theApp. Exit

page 41



Athena Chapter 6 Scripting Version/Issue: 2.0.0

page 42

("



Athena
Chapter 6 Accessing ATLAS data Version/Issue: 2.0.0

Chapter 6
Accessing ATLAS data

6.1 Overview

This chapter discusses how Athena applications can gain access to ATLAS event data. Available data
include those generated for the Physics TDR, both in Objectivity and ZEBRA formats, and data
generated by the Atlfast fast Monte-Carlo, available in Objectivity and ROOT formats.

6.2 Accessing Physics TDR data from ZEBRA files

Physics TDR event data stored in ZEBRA files is accessed via the ZebraTDRCnvSvc service and
associated ZebraTDRCnv converters.

6.2.1 The ZebraTDRCnvSvc service

The ZebraTDRCnvSvec service is specified as the source of input event data using the following lines in
the job options file or Python scripts as shown in Listing 6.1a and Listing 6.1b.

Listing 6.1a JobOptions file fragment to access Physics TDR data in Zebra format

#i ncl ude "Atl as_TDR Uni xSt andar dJob. t xt "

Listing 6.1b Python script fragment to access Physics TDR data in Zebra format

execfile( "Atlas_TDR. Uni xSt andardJob. py" )

page 27

’m\



Athena

Chapter 6 Accessing ATLAS data Version/Issue: 2.0.0

The relevant contents of this included file are shown in Listing 6.2a and Listing 6.2b:

Listing 6.2a Fragment from At | as_TDR. Uni xSt andar dJob. t xt job options file

ApplicationMgr.Di I's += { "ZebraTDRCnv" }; [1]
Appl i cationMyr. Ext Svc += { "ZebraTDRCnvSvc",

" Zebr aTDREvent Sel ect or/ Event Sel ector" };
Event Per si st encySvc. CnvServi ces = { "ZebraTDRCnvSvc" };

Listing 6.2b Fragment from At | as_TDR. Uni xSt andar dJob. py Python script

theApp. Dl I's = [
t heApp. Ext Svec = |

" Zebr aTDRCnv" ] [1]
" Zebr aTDRCnvSvc",

" Zebr aTDREvent Sel ect or/ Event Sel ector" ]
Event Per si st encySvc. CnvServices = [ "ZebraTDRCnvSvc" ]

Notes:

1. This specifies that the Zebr aTDRCnv component library should be loaded. It is important to
use the “+=" syntax in a job options file in order to append the new component library to any

that might already have been configured. This is not necessary for a Python script.

2. This adds the relevant services to the list of known services. It is important to use the “+="
syntax in a job options file in order to append the new component library to any that might
already have been configured. It is not necessary for a Python script.

3. This specifies the conversion service that is to be used.

Several properties allow these services to be configured. They are illustrated using the fragments in
Listing 6.3a and Listing 6.3b:

Listing 6.3a Fragment from At | as_TDR. Uni xSt andar dJob. t xt job options file

ZebraTDRCnvSvc. I nputFile = "slug.car";
Event Sel ector.readHi ts = fal se;
Event Sel ector.readDigits = true;
Event Sel ect or. cal os = true;
Event Sel ect or. enBarr el = true;
Event Sel ect or . enEndcap = true;
Event Sel ect or. hec = true;
Event Sel ect or. f acl = true;
Event Sel ector.tile = true;
Event Sel ect or . nuons = true;
Event Sel ect or . ndt = true;
Event Sel ector. rpc = true;
Event Sel ector. tgc = true;
Event Sel ector.trt = true;
Event Sel ector. clusters = true;
Event Sel ect or. sct = true;
Event Sel ect or . pi xel = true;

page 28



Athena

Chapter 6 Accessing ATLAS data Version/Issue: 2.0.0

Listing 6.3b Fragment from At | as_TDR. Uni xSt andar dJob. py Python script

ZebraTDRCnvSvc. I nput Fil e

"slug. car"

Event Sel ect or.
Event Sel ect or.
Event Sel ect or.
Event Sel ect or.
Event Sel ect or.
Event Sel ect or.
Event Sel ect or.
Event Sel ect or.
Event Sel ect or.
Event Sel ect or.
.rpc
.tgc
Event Sel ect or.
Event Sel ect or.
Event Sel ect or.
. pi xel

Event Sel ect or
Event Sel ect or

Event Sel ect or

readHi ts
readDigits
cal os
enBarr el
enEndcap
hec

f acl

tile

nmuons

ndt

trt
clusters
sct

PR RPRRPRRPRPRPRPRPRPRPRPRRLRRLRO

Notes:
1. The file that is specified by the InputFile property is not the Zebra file containing the Physics
TDR events, but the SLUG datacard file.
2. These boolean properties control which detector subsystems are read, and whether the hits or

digits (or both) are created.

6.3 Accessing Physics TDR data from Objectivity databases

This Section is incomplete.

6.4 Accessing Atlfast data from Objectivity databases

This Section is incomplete.

;(F:’i

page 29



Athena Chapter 6 Accessing ATLAS data Version/Issue: 2.0.0

6.5 Accessing Atlfast data from ROOT files

6.5.1 Storing Atlfast data in ROOT files

The job options file and Python script fragments that control the output of Atlfast event data to ROOT
files shown in Listing 6.4a and Listing 6.4b:

Listing 6.4a Fragment from job options file to store Atlfast data in ROOT files

ApplicationMgr.Di | s += { "DbConverters", "RootDb" }; [1]
Appl i cati onMyr . Ext Svc += { "DbEvent CnvSvc/ Root Evt CnvSvc" }; [2]
ApplicationMgr.QutStream = { "AtlfastRoot" }; [ 3]
Event Per si st encySvc. CnvServi ces += { "Root Evt CnvSvc" }; [ 4]

Atl fast Root. |tenlist
At | f ast Root . Qut put

{ "/Event#999" };
" DATAFI LE=' At | f ast Data. root' TYP=' ROOT' " [ 6]

Root Evt CnvSvc. DbType

" ROOT" [7]

Listing 6.4b Fragment from Python script to store Atlfast data in ROOT files

theApp.D I's = [ "DbConverters", "RootDb" ] [1]
t heApp. Ext Svc = [ "DbEvent CnvSvc/ Root Evt CnvSvc" ] [2]
theApp. Qut Stream = [ "AtlfastRoot" ] [ 3]
Event Per si st encySvc. CnvServi ces = [ "Root Evt CnvSvc" ] [ 4]

At| fast Root. |tenlist
At | f ast Root . Qut put

[ "/Event #999" ]
" DATAFI LE=' At | fast Data. root' TYP=' ROOT' " [ 6]

Root Evt CnvSvc. DbType

" ROOT" [7]

Notes:

1. This specifies that the DbConvert er s and Root Db component libraries should be loaded.
It is important to use the “+=" syntax in a job options file in order to append the new
component library to any that might already have been configured. This is not necessary for a
Python script.

2. This adds the relevant services to the list of known services. It is important to use the “+="
syntax in a job options file in order to append the new component library to any that might
already have been configured. It is not necessary for a Python script.

3. This specifies the ouput stream that is to be used for this conversion service. Multiple output
streams (corresponding to different persistency implementations) can be specified.

4. This specifies the conversion service that is to be used.

page 30 %




Athena
Chapter 6 Accessing ATLAS data Version/Issue: 2.0.0

5. This indicates that all event data below / Event in the transient event store should be written
out.

6. This specifies the output file that the events will be written to. It is important that the specified
file should not already exist. Appending events to an existing output file is not curently
supported.

7. This identifies the particular persistency mechanism.

6.5.2 Reading Atlfast data from ROOT files

The job options file and Python script fragments that control the input of Atlfast event data from ROOT
files are shown in Listing 6.5a and Listing 6.5b:

Listing 6.5a Fragment from job options file to input Atlfast data from a ROOT file

Appl i cati onMyr. DLLS += { "DbConverters", "RootDb" }; [1]
Appl i cati onMyr . Ext Svc += { "DbEvent CnvSvc/ Root Evt CnvSvc",

"Event Sel ector" };
Event Dat aSvc. Root Event CLI D = 2101;

Event Per si st encySvc. CnvServi ces += { "Root Evt CnvSvc" }; [4]

Event Sel ector. I nput =
{ "DATAFI LE=' AtlfastData.root' TYP='ROOI' OPT=' READ " }; [ 5]

Root Evt CnvSvc. DbType = "ROOT"; [ 6]

Listing 6.5b Fragment from Python script to input Atlfast data from a ROOT file

t heApp. DLLs
t heApp. Ext Svc

[ "DbConverters", "RootDb" ] [1]
[ "DbEvent CnvSvc/ Root Evt CnvSvc",

"Event Sel ector" ]
Event Dat aSvc. Root Event CLI D = 2101

Event Per si st encySvc. CnvServi ces = [ "Root Evt CnvSvc" ] [ 4]
Event Sel ector. I nput =

[ "DATAFI LE=" Atl fastData.root' TYP='ROOT' OPT=' READ " ] [ 5]
Root Evt CnvSvc. DbType = " ROOT" [ 6]

Notes:

% page 31



Athena

Chapter 6 Accessing ATLAS data Version/Issue: 2.0.0

o o r oW

This specifies that the DbConvert er s and Root Db component libraries should be loaded.
It is important to use the “+=" syntax in a job options file in order to append the new
component library to any that might already have been configured. This is not necessary for a
Python script.

This adds the relevant services to the list of known services. It is important to use the “+="
syntax in a job options file in order to append the new component library to any that might
already have been configured. It is not necessary for a Python script.

This specifies the type of object that will be created at the root of the transient event store.
This specifies the conversion service that is to be used.
This specifies the input file that the events will be read from.

This identifies the particular persistency mechanism.

page 32



Athena
Chapter 7 Monte-Carlo event generators Version/Issue: 2.0.0

Chapter 7
Monte-Carlo event generators

7.1 Overview

Capabilities of the Athena framework have been used to provide a set of Monte-Carlo event generators
that can act as the input to a processing chain of generator, simulation, reconstruction and analysis.

The following generators are available:

* Herwig
e lsajet
e Pythia

* Single particle gun

All of these generators share a common output into the transient event store based on the HepMC
package and so can be used interchangeably.

These generators are available in the of f | i ne/ Gener at or s/ Gener at or Modul es package
hierarchy.

7.2 Herwig

This Section is missing.

page 33

’m\



Athena

Chapter 7 Monte-Carlo event generators Version/Issue: 2.0.0

7.3 Isajet

The Isajet event generator is available as an Al gori t hmcalled | saj et Modul e in the

of fl1i ne/ Gener at or s/ Gener at or Modul es package. As with the other generators, it inserts
the generated events into the transient store in HepMC [3] format. See the GenModules documentation
for general information. The note refers only to ISAJET specific material. The External/lsajet package
is used to set up the paths to the ISAJET library. External/Stdhep is also needed to get the includes and
conversions to HEPEVT.

The relevant fragments of the job options text file and Python script to enable this generator are shown
in Listing 7.1a and Listing 7.1b:

Listing 7.1a Job Options text file fragment to enable the Isajet event generator

ApplicationMgr.Dils  += { "GeneratorMdul es", "MEventSelector" }; [1]
ApplicationMyr. Ext Svc += { "MEvent Sel ect or/ Event Sel ector" }; [2]
ApplicationMgr. TopAlg = { "lsajetMdule" } [ 3]
| saj et Modul e. | saj et Command = { "isadat decay.dat", [ 4]

"i sapar pars.dat",
"isalis out.lis" };

ApplicationMyr. TopAlg += { ... }; [ 5]

Listing 7.1b Python script fragment to enable the Isajet event generator

theApp. Dl |'s = [ "GCeneratorMdul es", "MEventSel ector" ] [1]
t heApp. Ext Svc = [ "MEvent Sel ect or/ Event Sel ector™ ] [2]
theApp. TopAlg = [ "Isaj et Mdul e" ] [ 3]
| saj et Modul e = Al gorithm( "IsajetMdule" )

| saj et Modul e. | saj et Command = [ "isadat decay.dat", [ 4]

"isapar pars.dat",
"isalis out.lis" ]
theApp. TopAlg = [ ... ] [ 5]

Notes:

1. Two component libraries are needed for this example. The Gener at or Modul es library
contains all the generators described in this Chapter. The McEvent Sel ect or library
contains the particular Event Selector service that provides an empty event skeleton.

2. The McEvent Sel ect or service used by the example is not one of the standard services so
must be declared by this line. Explicit synchronization is necessary when creating a new
Service using Python scripting. This restriction will be removed in a future release.

3. Specifies the | saj et Modul e generator as the first Algorithm to be run. Explicit
synchronization is necessary when using Python scripting. This requirement will be removed

page 34

in a future release.



Athena
Chapter 7 Monte-Carlo event generators Version/Issue: 2.0.0

4. The configuration of the Isajet module is established by three files, which are specified using
this command. The defaults are as shown.

The file identified by i sadat is the decay table. A valid example is located within this
package hierarchy in of f | i ne/ Gener at or s/t est/ shar e/ decay. dat .

The file identified by i sapar isthe ISAJET parameters file. Examples can be found in this
package hierarchy in of f | i ne/ Gener at or s/ Gener at or Modul es/ doc. Refer to the
ISAJET manual for details of the content of this file.

The file identified by isalis is the ISAJET output listing file. It should not exist prior to
running the job.

5. Other Algorithms to be run downstream of the generator should be specified here.

| 7.4 Pythia
This package runs Pythia from within Athena and puts the events into the transient store in HepMC
format. See the documentation on GenModule for general information. The note refers only to Pythia
specific material. The Ext er nal / Pyt hi a package is used to set up the paths to the Pythia library.
Ext er nal / St dhep is also needed to get the conversions to HEPEVT. This works with pythia6.xxx
only.
A WARNING. look carefully at the GNUmakefile.in in Gener at or s/ t est . Note that it is essential
to have - | pyt hi a6 as the library; - | pyt hi a corresponds to pythia5 and is not supported.
The relevant fragments of the job options text file and Python script to enable this generator are shown
in Listing 7.2a and Listing 7.2b:
| Listing 7.2a Job Options text file fragment to enable the Pythia event generator
ApplicationMgr.D | s += { "GeneratorMdul es", "MEvent Sel ector" }; [1]
Appl i cationMyr. Ext Sve += { "MEvent Sel ect or/ Event Sel ector" }; [2]
ApplicationMyr. TopAlg = { "Pythi aVodul e" } [3]
Pyt hi aMbdul e. Pyt hi aConrmand = { "isadat decay. dat", [ 4]
"i sapar pars.dat",
"isalis out.lis" };
ApplicationMgr. TopAlg += { ... }; [ 5]
| Listing 7.2b Python script fragment to enable the Pythia event generator
theApp. Dl I's = [ "GeneratorMdul es", "MEventSel ector" ] [1]
t heApp. Ext Svc = [ "MEvent Sel ector/ Event Sel ector" ] [2]
t heApp. TopAl g = [ "Pythi aModul e" ] [3]

Pyt hi aMbdul e = Al gorithm( "Pythi aMbdul e" )
Pyt hi aMbdul e. Pyt hi aConmand = [ ]

theApp. TopAlg = [ ... ] [5]

page 35

;(F:’i



Athena Chapter 7 Monte-Carlo event generators Version/Issue: 2.0.0

Notes:

1. Two component libraries are needed for this example. The Gener at or Modul es library
contains all the generators described in this Chapter. The McEvent Sel ect or library
contains the particular Event Selector service that provides an empty event skeleton.

2. The McEvent Sel ect or service used by the example is not one of the standard services so
must be declared by this line. Explicit synchronization is necessary when creating a new
Service using Python scripting. This restriction will be removed in a future release.

3. Specifies the Pyt hi aModul e generator as the first Algorithm to be run. Explicit
synchronization is necessary when using Python scripting. This requirement will be removed
in a future release.

4. The configuration of the Pythia module can be specified using the Pyt hi aCommand
Property. This has the following syntax:

[ "common_block _name, variable_name, index, value",
"common_block_name, variable_name, index, value", ... ]

[Need to expand on this]

5. Other Algorithms to be run downstream of the generator should be specified here.

7.5 Single particle gun

The SingleParticleGun event generator generates a single particle for each event in three modes:

» Fixed (1). Particles are generated at a fixed py, eta and phi.
» Gaussian (2). Particles are generated in a gaussian distribution in each of p, eta and phi.
» Flat (3). Particles are generated in a flat distribution in each of pr, eta and phi.

These three modes can be mixed such that the generation can be configured, for example, to generate
single particles with a fixed p+, a flat distribution in phi and a gaussian distribution in eta.

page 36 %



Athena
Chapter 7 Monte-Carlo event generators Version/Issue: 2.0.0

I The properties that configure the generation of fixed particles are shown in Listing 7.3a and Listing
7.3b:

Listing 7.3a JobOptions file fragment to generate events using the single particle gun

Appl i cati onMgr. DLLs += { "GeneratorMdul es", "MEventSel ector" }; [1]
Applicati onMyr. Ext Svc += { "MEvent Sel ect or/ Event Sel ector" }; [2]
ApplicationMgr. TopAlg = { "SingleParticleGn" ); [3]

Si
Si
Si

S
S
Si
Si
Si
Si
S
S
S
S
S
S

ngl eParti cl eGun. ModePt
ngl eParti cl eGun. ModeEt a
ngl eParti cl eGun. ModePhi

1; [4]

I
N

I
@

ngl eParti cl eGun. Pt =
ngl eParticl eGun. M nPt
ngl eParti cl eGun. MaxPt
ngl eParti cl eGun. Si gmaPt

[ 5]

e

[Tt

O Rk U
S~
Rooe

ngl eParticl eGun. Eta =
ngl eParticl eGun. M nEt a
ngl eParti cl eGun. MaxEt a
ngl eParti cl eGun. Si gnakt a

; [6]

n
Ll
BArO

non
©
=

ngl eParti cl eGun. Phi =
ngl eParti cl eGun. M nPhi
ngl eParti cl eGun. MaxPhi
ngl eParti cl eGun. Si gmaPhi

0; [7]
0

I
cooo

Si ngl eParticl eGun. PdgCode = 211;
ApplicationMgr. TopAlg += { ... };

page 37

d
;([:’i



Athena

Chapter 7 Monte-Carlo event generators Version/Issue: 2.0.0

Listing 7.3b Python script fragment to generate events using the single particle gun

S
S
Si

S
S
S
S

Si
Si
Si

Si

s
S
S
S

t heApp. DLLs =
t heApp. Ext Svc
t heApp. TopAl g =
Si ngl eParticl eGu

ngl eParti cl eGun. ModePt
ngl eParti cl eGun. ModeEt a
ngl eParti cl eGun. ModePhi

ngl eParti cl eGun. Pt

ngl eParticl eGun. M nPt
ngl eParti cl eGun. MaxPt
ngl eParti cl eGun. Si gmaPt

ngl eParticl eGun. Eta =
ngl eParticl eGun. M nEt a
ngl eParti cl eGun. MaxEt a

ngl eParti cl eGun. Si gnakEt a

ngl eParti cl eGun. Phi

ngl eParti cl eGun. M nPhi
ngl eParti cl eGun. MaxPhi
ngl eParti cl eGun. Si gnmaPhi

Si ngl eParticl eGun. PdgCode = 211
theApp. TopAlg = [ ... ]

[ "GeneratorMdul es", "MEvent Sel ector"” ] [1]
{ "MEvent Sel ect or/ Event Sel ector" ] [2]
[
n

"SingleParticle@n" ] [3]
= Algorithnm( "SingleParticleGn" )

1 [4]
2
3

[5]

esgro
LSO oo

[ 6]

0
'
drOo
o oo

1
o

.1

[7]

8318

1
cooo
RN OO

Notes:

1.

This specifies that the Gener at or Mbdul es component library should be loaded. It is
important to use the “+=" syntax in a job options file in order to append the new component
library to any that might already have been configured. This is not necessary for a Python
script.

This adds the McEventSelector service to the list of services. It is important to use the “+="
syntax in a job options file in order to append the new component library to any that might
already have been configured. This is not necessary for a Python script.

This establishes the Si ngl ePar t i cl eGun generator as the first Algorithm for each event.
It is important not to use the “+="syntax in a job options file in order ensure that this
Algorithm is the first in any sequence of Algorithms..

The generation mode for each of p+, eta and phi can be specified to be 1, 2, or 3,
corresponding to Fixed, Gaussian and Flat respectively. The default settings are shown.

page 38

%
?
‘m



Athena

Chapter 7 Monte-Carlo event generators Version/Issue: 2.0.0

The fixed value or range of values in pt are specified by the Pt , M nPt and MaxPt
properties. The first (Pt ) is ignored if the generation mode is flat or gaussian, and the last two
(M nPt and Max Pt ) are ignored if the generation mode is fixed. The gaussian width is
specified by the Si gnmaPt property, which is ignored unless the generation type is gaussian
(2). Units are GeV/c. The default settings are shown.

The fixed value or range of values in eta are specified by the Et a, M nEt a and MaxEt a
properties. The first (Et a) is ignored if the generation mode is flat or gaussian, and the last
two (M nEt a and MaxEt a) are ignored if the generation mode is fixed. The gaussian width
is specified by the Si grmaEt a property, which is ignored unless the generation type is
gaussian (2). The default settings are shown.

The fixed value or range of values in phi are specified by the Phi , M nPhi and MaxPhi
properties. The first (Phi ) is ignored if the generation mode is flat or gaussian, and the last
two (M nPhi and MaxPhi ) are ignored if the generation mode is fixed. The gaussian width
is specified by the Si gmaPhi property, which is ignored unless the generation type is
gaussian (2). Units are radians. The default settings are shown.

The generated particle type is specified by its PDG code.

Any further Algorithms should be added at this point. It is important to use the “+=" syntax in
a job options file in order to append the new Algorithms to any that might already have been
configured. This is not necessary for a Python script.

’m\

page 39



Athena Chapter 7 Monte-Carlo event generators Version/Issue: 2.0.0

page 40

("



Athena
Chapter 8 Fast simulation

Version/Issue: 2.0.0

Chapter 8
Fast simulation

8.1 Overview

This Chapter is in preparation.

page 41



Athena Chapter 8 Fast simulation Version/Issue: 2.0.0

page 42

("



Athena

Chapter 9 Tutorial examples Version/Issue: 2.0.0

Chapter 9
Tutorial examples

9.1 Overview

Several example applications are available to illustrate aspects of the Athena framework. These
applications all share a single common executable, job options files being used to establish different
configurations for each example. Thus they not only illustrate different capabilities of the Athena
framework itself, they also illustrate how to create component libraries. A component library manages
Algorithms, Services or Converters. Such components are managed at run-time, and provide an open
extensibility of the framework.

These examples are contained in the At henaExanpl e and At henaCormmon subpackages of the
Cont r ol package within the ATLAS Software Release environment.

Please check with the Release Notes (Cont r ol / Rel easeNot es. t xt ) for the appropriate release
for any specific instructions that might differ from those given here.

9.2 Building the tutorial examples

In general it should not be necessary to build the tutorial examples since they should be prebuilt by the
ATLAS Software Release build system for each ATLAS Release. However, in case the developer
wishes to base their own classes on these examples, the instructions are given here.

It is assumed that the normal ATLAS login environment has been established. In addition, the
instructions depend on the ATLAS release that is being used. The following code fragments and
instructions use <release> as the release number, and this should be replaced by the actual release (e.qg.
2.0.2). The ATLAS convention is that all packages in a release are tagged with the same tag, being of

’m\

page 43



Athena Chapter 9 Tutorial examples Version/Issue: 2.0.0

the formof fl i ne-ii-jj-kk, whereii, jj and kk are components of the release number. Thus
of fli ne-01-03-02 is the CVS tag corresponding to release 2.0.2.

Listing 9.1 Building the Tutorial Examples

cd <dir> [1]

srt new src <rel ease> [2]

nkdir build [3]

cd src

cvs checkout -d Control -r offline-ii-jj-kk offline/Control [4]
[etc. for other packages]

cd ../build

..Isrc/configure [ 5]

make cl ean

make i nstal

Notes:
1. Select or create a directory within which the examples will be created. Replace <di r > in the
example listings with the appropriate location.

2. This creates the sr ¢ directory and establishes a local release based upon an ATLAS release.
Replace <r el ease> with the desired ATLAS release number. Note that some of the setup
scripts rely on checked out packages being located in the sr ¢ or wor k directories and will
not work without some changes (see later) if this convention is not adhered to.

3. This creates the bui | d directory which will be used for the actual build process.

4. This checks out the offline/Control package corresponding to ATLAS release <r el ease>
into the Control directory. Other desired packages can be checked out in a similar manner.
The - d <di r > option determines which directory the package will be checked out into. By
convention, the package name should be used. The -r <tag> option determines which package
version will be checked out. Replace that shown in the example by the desired one. For
example, tag of f I i ne- 01- 03- 02 corresponds to ATLAS release 1.3.2, but of course a
package tag could also be specified.

5. This and subsequent lines build the tutorial examples, resulting in the necessary libraries and
common executable being built.

9.2.1 Running the tutorial examples

There are three different phases that are necessary in order to run the tutorial examples. These are:

« Setting up the files, including necessary scripts and job options files.
« Establishing the necessary run-time environment (search paths etc.)

« Selecting the desired job options file and running the common executable.

These phases are described in the following subsections.

page 44 %




Athena

Chapter 9 Tutorial examples Version/Issue: 2.0.0

9.2.2 Setting up the files for running the tutorial examples

This only needs to be done once. It consists of copying files from the base release area to a local
directory, from which the common application will be executed.

Listing 9.2 Setting up the files for running the tutorial examples

cd <dir>
srt new src <rel ease>
nkdir run
cd run
cp $SRT_DI ST/ <rel ease>/ i nstal | ed/ shar e/ At henaConmon/ *. * . [3]
cp $SRT_DI ST/ <rel ease>/ i nstal | ed/ shar e/ At henaExanpl es/*. * . [ 4]
cp $SRT_DI ST/ <rel ease>/instal |l ed/ share/ StoreGate/ *. * . [ 5]
sh TDRsetup_l i nks. sh [ 6]
Notes:
1. Replace <r el ease> in the above by the actual release (e.g. 1.3.2).
2. By convention the tutorial examples are executed from the r un directory situated alongside
the sr c directory.
3. This copies common scripts and job options files to the current directory.
4. This copies the tutorial-specific job options files to the the current directory.
5. This copies the StoreGate example job options file to the current directory.
6. This establishes several local files and symbolic links.

9.2.3 Establishing the run-time environment

This needs to be done each time you login.

Listing 9.3 Establishing the run-time environment

cd <dir>/run

source setup.csh [or source setup.sh] [1]
Notes:
1. Choose the appropriate setup script for your login shell.

2.

If the packages are not located in the sr ¢ or wor k directory alongside the current directory;, it
is necessary to setup the ATLAS_RELEASE environment variable to specify the appropriate
local release. This environment variable is not otherwise necessary.

;(F:’i

page 45



Athena

Chapter 9 Tutorial examples Version/Issue: 2.0.0

9.2.4 Selecting and running the desired tutorial example

Once the required environment has been established, each example may be run by selecting the
appropriate job options file and executing the common application.

Listing 9.4 Selecting and running the desired tutorial example

cp <job options file> jobOptions.txt [1]
at hena
or
at hena <job options file> [ 3]
Notes:

1. The appropriate job options file for each example is given in the following sections.
2. As described earlier, a single common executable is used for all examples.

3. If no command line parameters are given, the default job options file location
(jobOptions.txt) is assumed by default. Otherwise, the first parameter following the at hena
executable name is assumed to be the location of the job options file.

9.2.5 The Fortran Algorithm example

This example illustrates wrapping of a FORTRAN algorithm within a C++ class such that it can be used
as an Algorithm. This example also illustrates how information from properties of the Algorithm may
be passed through to the FORTRAN code. The Fort ranAl gJobOpti ons. t xt orthe
FortranAl gJobOpt i ons. py file establishe the configuration for this example.

Listing 9.5 The Fort ranAl gorit hm h file

#i nclude "Gaudi /Al gorithn Al gorithm h"
#i ncl ude <string>

class FortranAlgorithm: public Algorithm/{ [1]
public:
FortranAl gorithm (const std::string& nane, |SvclLocator* pSvclLocator);
StatusCode initialize();
St at usCode execute();
St at usCode finalize();

private:
i nt m_| un; [2]
std::string mfil eNaneg;
b
Notes:

page 46

7
P
("



Athena

Chapter 9 Tutorial examples Version/Issue: 2.0.0

1.

2.

The For t r anAl gori t hmclass inherits from the Al gor i t hmclass, and must provide
implementations for thei niti ali ze(), execute() andfi nalize() functions.

Two properties, ani nt andast d: : stri ng are declared.

Listing 9.6 Fragments from the Fort r anAl gori t hm cxx file

#i ncl ude "FortranAl gorithm h"

extern "C' { [1]
void initialize_(const int& lun, const char*, int);
voi d execute_(const int& lun);
void finalize_(const int& lun);

}

FortranAl gorithm : FortranAl gorithn(const std::string& nane,

Al gorithm(name, pSvcLocator), mlun(16), mfileName("i nput.data")

{

decl areProperty("LUN', m.l un); [2]
decl areProperty("fileName", mfil eNane);

}

StatusCode FortranAlgorithm:initialize(){
initialize_(mlun, mfileName.c_str(), mfileNane.size()); [3]
return StatusCode: : SUCCESS;

}

St at usCode FortranAl gorithm:execute() { [4]
execute_(m.lun);
return StatusCode: : SUCCESS;

| SvcLocat or* pSvclLocator)

}
Notes:
1. The FORTRAN functions are declared as external "C" functions.
2. The FortranAl gori t hmconstructor declares the private data members as properties.
3. Both properties are passed through to the FORTRAN i ni ti al i ze() function.
4. The m_| un property is passed through to the FORTRAN execut e() function.

9.2.6 The Graphics example

This example has been replaced by the Gr aphi cs/ Gr aphi csFr onEvent package, which is
described in a separate document. This Section needs to be updated.

This example illustrates the use of the ATLAS graphics framework to access information from the
transient event store. It is based upon an Algorithm that acts as the interface to the ATLAS graphics
framework. In a future release of Athena, this framework will be available as a Service, increasing the

;(F:’i

page 47



Athena

Chapter 9 Tutorial examples Version/Issue: 2.0.0

flexibility of interaction.The G aphi csJobOpti ons. t xt file establishes the configuration for this
example.

9.2.7 The HelloWorld example

This example just illustrates the output levels of the Message service, and the use of simple properties.
It is the simplest example of an Algorithm. The Hel | oWbr | dJobQOpti ons. t xt or the
Hel | oWwor |1 dJobOpt i ons. py files establish the configuration for this example.

Listing 9.7a The Hel | oWor | dJobOpt i ons. t xt file

#i ncl ude "Atl as_Gen. Uni xSt andar dJob. t xt " [1]

/1l Load relevant libraries

ApplicationMygr.DLLs += { "AthExHel |l oWorld" }; [2]
/1 Top algorithns to be run

ApplicationMgr. TopAlg = { "HelloWrld" }; [3]
N e e T T

/1 Set output level threshold (2=DEBUG 3=INFQ, 4=WARNI NG 5=ERROR, 6=FATAL )

MessageSvc. Qut put Level = 2 [4]
N e e T T
/1 Algorithns Private Options

I e e
/1 For the Hellowrld algorithm [ 5]

Hel | oWorl d. Myl nt = 42;
Hel | oWwor | d. MyBool = true;
Hel | oWor | d. MyDoubl e = 3. 14159;

Hel | oWorl d. MyStringVec = { "Welcone", "to", "the", "Athena", "Tutorial" };

page 48

7
P
("



Athena
Chapter 9 Tutorial examples Version/Issue: 2.0.0

Listing 9.7b The Hel | oWwor | dJobQOpt i ons. py file

execfile( "Atlas_Gen. Uni xStandardJob. py" ) [1]

# Load relevant libraries
t heApp. DLLs = [ "AthExHel | oWor | d" ] [2]

# Top algorithnms to be run
t heApp. TopAlg = [ "Helloworld" ] [3]
Hel loWorld = Algorithn{ "HelloWwrld" )

Ho o s m o e o e o e e e e e e e e e e e e e e e e e e eee o

# Set output level threshold (DEBUG |NFO WARN NG ERROR, FATAL )

Ho o s m o e o e e e e e e e e e e e e e e e e e e e e eee e o
MessageSvc. Qut put Level = DEBUG [ 4]
3

# Algorithms Private QOptions

He o e m e o e o e e e e e e e e e e e e e e e e e e e e e e e e e

# For the Hellowrld al gorithm [ 5]

Hel | oWorl d. WyInt = 42

Hel | oWor | d. MyBool = TRUE

Hel | oWorl d. MyDoubl e = 3. 14159

Hel | oWorl d. \yStringVec = [ "Wl cone", "to", "the", "Athena", "Tutorial" ]

Notes:

1. This line specifies the standard ATLAS job options include file for general applications. This
is for use by all applications not wishing to use the Physics TDR event data. Even though this
example application does not access event information, there must be a source of events, and
this sets up such a source, of essentially empty events.

2. This line specifies the appropriate component library for this example.

3. This example just has a single Algorithm that will be executed. Explicit synchronization is
necessary when creating a new Algorithm using Python scripting. This restriction will be
removed in a future release.

4. Job options text files cannot parse symbolic names and therefore the output level threshold
must be specified as an integer. Symbolic names for the message service output levels are
available within Python scripts

5. These lines override the default values for the properties declared by the Hel | oWor | d
Algorithm.

9.2.8 The Histogram and Ntuple example

This example illustrates the use of the Histogram and Ntuple services, and also how to select the
persistency mechanism whereby the histograms or ntuples may be stored either as HBOOK files, or

% page 49




Athena Chapter 9 Tutorial examples Version/Issue: 2.0.0

ROQT files. The Hi st Nt upJobOpti ons. t xt or Hi st Nt upJobQpt i ons. py file establishes
the configuration for this example.

Listing 9.8a Fragments from the Hi st Nt upJobOpt i ons. t xt file

#i ncl ude "Atl as_TDR. Uni xSt andar dJob. t xt " [1]

//1oad relevant libraries
ApplicationMyr.DLLs += { "At hExHi st N\t up" }; [2]

/1 This next shared library is necessary if ROOT persistency is selected
/111 ApplicationMyr.DLLs += { "RootHistCnv" }; [3]

/1 Sel ect HBOOK or ROOT persistency (NONE is default)
Appl i cati onMgr. Hi st ogranPersi stency = "HBOX"; [ 4]

Appl i cati onMyr. TopAl g

={ "Hist" }; [ 5]
/1 ApplicationMgr. TopAlg =

{ "Neup” };
/1 Specify the appropriate output file type

Hi st ogr anPer si st encySvc. QutputFile = "histo.hbook"; [ 6]
/| Hi st ogranPersi stencySvc. QutputFile = "histo.rt";

NTupl eSvc. Qut put = { "FILE1 DATAFI LE=' tupl el. hbook' OPT="NEW" }; [7]

Listing 9.8b Fragments from the Hi st Nt upJobOpt i ons. py file

execfile( "Atlas_TDR Uni xSt andar dJob. py" ) [1]

# load relevant libraries

theApp. DLLs = [ "At hExHi st Nt up" ] [2]

# This next shared library is necessary if ROOT persistency is selected
##t heApp. DLLs = [ "Root Hi st Cnv" ] [ 3]

# Sel ect HBOOK or ROOT persistency (NONE is default)

t heApp. Hi st ogr anPer si stency = " HBOXK" [ 4]
theApp. TopAlg = [ "Hist" ] [ 5]

H st = Algorithn{ "Hist" )
##t heApp. TopAlg = [ "Ntup" ]
## Ntup = Algorithn( "Ntup" )

# Specify the appropriate output file type
Hi st ogr anPer si stencySvc. QutputFile = "histo.hbook" [ 6]
##H st ogr anPer si stencySvc. QutputFile = "histo.rt"

NTupl eSvc. Qut put = [ "FILELl DATAFILE='tupl el. hbook' OPT='NEW" | [7]

Notes:

page 50 %




Athena
Chapter 9 Tutorial examples Version/Issue: 2.0.0

1. This line specifies the standard ATLAS job options include file for applications wishing to
use the Physics TDR event data. This sets up a standard input file.

2. This line specifies the appropriate component library for this example.

3. Itis not necessary to specify a component library for the HBOOK persistency since this is
setup implicitly through the standard job options file.

4, Allowed values are "HBOOK" or "ROOT".

5. Select the desired Algorithm; either that for demonstrating the booking and filling of
histograms, or that for demonstrating the booking and filling of ntuples. Explicit
synchronization is necessary when creating a new Algorithm using Python scripting. This
restriction will be removed in a future release.

6. Uncomment the appropriate line to specify the histogram output file.

7. Modify the filename as appropriate to specify the ntuple output file.

9.2.9 The Liquid Argon Reconstruction example

This example is a snapshot of the Liquid Argon reconstruction, and demonstrates chaining of multiple
Algorithms, upstream ones of which write data to the transient event store, downstream ones locating
and using this data. The LAr RecJobOpti ons. t xt file establishes the configuration for this
example.

9.2.10 The Pixel reconstruction example

Another example based on the pixel reconstruction.

9.2.11 The Sequencer example

This example demonstrates filtering, branching and prescaling based on the Sequencer class. It also
illustrates use of Auditors and the Auditor service to monitor Algorithms. The

page 51

;(F:’i



Athena Chapter 9 Tutorial examples Version/Issue: 2.0.0

Sequencer JobQOpti ons. t xt or the Sequencer JobOpt i ons. py files establish the
configuration for this example.

Listing 9.9a A Fragment of the Sequencer JobOpt i ons. t xt file

/1l Load relevant libraries

ApplicationMyr.DLLs += { "StoreGat eExanpl e", [1]
"At hExHel | oworl d" };

ApplicationMyr.DLLs += { "Gaudi Al g", "Gaudi Aug", "StoreGate" };

Audi tor Svc. Auditors = { "NanmeAuditor", "ChronoAuditor" }; [2]

/1 Tutorial Sequencer Exanple

ApplicationMr. TopAl g = { "Sequencer/ TopSequencer" }; [3]
TopSequencer . St opOverride = true; [ 4]
TopSequencer. Menbers = { "Sequencer/Pat hl", "Sequencer/Path2" }; [ 5]
Pat h1l. Menbers ={ "WiteData", "Prescal er/Prescal erl", [ 6]

"ReadDat a/ ReadDat al", "Hell oWrl d",
"Event Count er/ Counter 1" };

Pat h2. Menber s ={ "WiteData", "Prescal er/Prescal er2",
"ReadDat a/ ReadDat a2", "Hel |l oWrl d",
"Event Count er/ Counter 2" };

/1 Setup the filter algorithns
Prescal er 1. per cent Pass = 20.0; [7]
Prescal er 2. per cent Pass = 50.0;

/1 Setup the ReadData Al gorithns
ReadDat al. Dat aPr oducer = "WiteData"; [ 8]
ReadDat a2. Dat aPr oducer = "Wi teData";

page 52 %



Athena

Chapter 9 Tutorial examples Version/Issue: 2.0.0
Listing 9.9b A Fragment of the Sequencer JobOpt i ons. py file
# Load relevant libraries
t heApp. DLLs = [ " St oreGat eExanpl e", [1]
" At hExHel | oWor 1 d" ]
t heApp. DLLs = [ "Gaudi Al g", "Gaudi Aug", "StoreGate" ]
Audi torSvc. Auditors = [ "NanmeAuditor", "ChronoAuditor" ] [2]
# Tutorial Sequencer Exanple
t heApp. TopAl g = [ "Sequencer/ TopSequencer" ] [3]
TopSequencer = Al gorithn{ "TopSequencer )
TopSequencer. StopOverride = 1 [4]
TopSequencer. Menbers = [ "Sequencer/Pat hl", "Sequencer/Path2" ] [ 5]
Pathl = Al gorithm( "Pathl" )
Path2 = Al gorithm( "Path2" )
Pat h1. Menber s =[ "WiteData", "Prescal er/Prescalerl”, [ 6]

Pat h2

WiteData = Algorithm "WiteData" )
Prescalerl = Algorithn{ "Prescalerl" )
Prescaler2 = Algorithn{ "Prescaler2" )
ReadDatal = Algorithn{ "ReadDatal" )
ReadData2 = Algorithn{ "ReadData2" )
Hel loWworld = Algorithn{ "HelloWwrld" )
Count er1 = Algorithn{ "Counterl1" )
Count er 2 = Algorithn{ "Counter2" )

# Setup the filter algorithns

Prescal er 1. per cent Pass = 20.0 [7]
Prescal er 2. per cent Pass = 50.0
# Setup the ReadData Al gorithns

ReadDat al. Dat aProducer = "WiteData" [ 8]
ReadDat a2. Dat aPr oducer = "WiteData"

"ReadDat a/ ReadDat al", "Hell oWwrld",
"Event Count er/ Count er 1" ]

. Menber s =[ "WiteData", "Prescal er/Prescal er2",
"ReadDat a/ ReadDat a2", "Hell oWorl d",
"Event Count er/ Count er 2" ]

Notes:

This example uses several Athena Component libraries, some from Athena/Gaudi itself,
others from other tutorial examples. These are declared here. The St or eGat eExanpl e
library contains the ReadDat a and W i t eDat a Algorithms, the At hExHel | oWor | d
library contains the Hel | oWor | d Algorithm, the Gaudi Al g library contains the
Sequencer, Event Count er and Pr escal er Algorithms (which are described in detail

;(F:’i

page 53



Athena

Chapter 9 Tutorial examples Version/Issue: 2.0.0

in the GAUDI User Guide Chapter 5), the Gaudi Aud library contains the various Auditors
(which are described in detail in the GAUDI User Guide Chapter 11), and the St or eGat e
library contains the St or eGat eSvc which is used by the ReadDat a and Wi t eDat a
Algorithms.

The Auditor service is configured to enable the NameAudi t or, which just prints the name of
each Algorithm as it is executed, and the Chr onoAudi t or, which monitors the cpu time
usage of each Algorithm.

A single instance of the Sequencer class, called TopSequencer, is setup as the application
top algorithm. Explicit synchronization is necessary when creating a new Algorithm using
Python scripting. This restriction will be removed in a future release.

The TopSequencer is setup so that it will execute all of it’s members, irregardless of
whether any of them fails any filters.

The TopSequencer is setup with two members, Pat h1l and Pat h2, both of type
Sequencer.

The membership of Pat h1 and Pat h2 are setup. Note that the same instance of

W i t eDat a is included as a member of both of them. Only the first occurence will be
executed for each event. Different instances of the Prescaler class are included in each of
Pat h1 and Pat h2. These cause filtering of events, such that only a specified fraction of
them are accepted and pass downstream. The same instance of the HelloWorld class is
included as a member of both paths, downstream of the prescalers. If the first prescaler passes
the event, the HelloWorld instance will be executed in the first path. It will not be executed
again in the second path, even if the second prescaler passes the event. It will be executed in
the second path only if the first prescaler rejects the event, and the second one accepts it. The
number of events that are accepted by each path will be recorded by the appropriate
EventCounter instance.

The fraction of events that are accepted by each prescaler are setup.

These lines establish keys which the ReadDat a instances use in conjunction with the object
type to locate the information created by the Wi t eDat a Algorithm in the transient store.

page 54



Athena

Chapter 9 Tutorial examples Version/Issue: 2.0.0

9.2.12 The StoreGate example

This example illustrates writing to and reading back from the transient event store using the StoreGate
API discussed in detail in Chapter 8. The St or eGat eJobOpt i ons. t xt or
St or eGat eJobQpt i ons. py files establish the configuration for this example.

Listing 9.10a Fragments from the StoreGateJobOptions.txt file

ApplicationMyr.Di|s += { "StoreGateExanple", "StoreGate" }; [1]

//top algorithms to be run
ApplicationMgr. TopAlg = { "WiteData", "ReadData" }; [2]

//add StoreGate to the list of external services
Appl i cationMgr. Ext Svc += { "StoreGateSvc" }; [3]

ReadDat a. Dat aPr oducer = "WiteData"; [ 4]

Listing 9.10b Fragments from the StoreGateJobOptions.py file

t heApp. DLLs = [ "StoreCGat eExanpl e", "StoreGate" ] [1]

# Top algorithms to be run

theApp. TopAlg = [ "WiteData", "ReadData" ] [2]
WiteData = Algorithn( "WiteData" )

ReadData = Algorithm "ReadData" )

# Add StoreGate to the list of external services
t heApp. Ext Svc = [ "StoreGateSvc" ] [ 3]
StoreGateSvc = Service( "StoreGateSvc" )

ReadDat a. Dat aPr oducer = "WiteData" [ 4]
Notes:
1. Two component libraries are needed for this example. The St or eGat eExanpl e library
contains the Wi t eDat a and ReadDat a Algorithms. The St or eGat e library contains the
| St or eGat eSvc service.
2. The Wi t eDat a Algorithm writes some information to the transient event store. The
ReadDat a Algorithm locates and reads it back from the store. Explicit synchronization is
necessary when creating a new Algorithm using Python scripting. This restriction will be
removed in a future release.
3. The StoreGate service used by the example is not one of the standard services so must be
declared by this line. Explicit synchronization is necessary when creating a new Service using
Python scripting. This restriction will be removed in a future release.
4. The Dat aPr oducer property of the ReadDat a Algorithm is used as the key for locating
| the information produced by the W i t eDat a Algorithm.

page 55



Athena Chapter 9 Tutorial examples Version/Issue: 2.0.0

page 56

("



Athena

Version/Issue: 2.0.0

Appendix A
References
[1] GAUDI User Guide
http://lhcb-comp.web.cern.ch/Ihch-comp/Components/Gaudi_v6/gug.pdf
[2] GAUDI - Architecture Design Report [LHCb 98-064 COMP]
[3] HepMC Reference
[4] Python Reference
[5] StoreGate Design Document

’m\

page 57



Athena Version/Issue: 2.0.0

page 58

("



Athena
Index

Version/Issue: 2.0.0

| Index

A

Athena 43
AthenaCommon 43
AthenaExample 43
ATLAS RELEASE 45
F

FORTRAN 46

G

Graphics 47

H

HelloWorld 48
Histogram 49

N

Ntuple 49

S

Sequencer 51
StoreGate 55

T

Tutorial examples 43

page 59



	Athena
	The ATLAS Common Framework

	User Guide and Tutorial
	DRAFT
	European Laboratory for Particle Physics Laboratoire Européen pour la Physique des Particules CH-...
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose of the document
	1.2 Athena and GAUDI
	1.2.1 Document organization

	1.3 Conventions
	1.3.1 Units
	1.3.2 Coding Conventions
	1.3.3 Naming Conventions
	1.3.4 Conventions of this document

	1.4 Release Notes
	1.5 Reporting Problems
	1.6 User Feedback

	Chapter 3 Release notes
	3.1 Overview
	3.2 New Functionality
	3.3 Changes that are not backwards compatible
	3.4 Changed dependencies on external software
	1. ATLAS release 2.0.0 depends upon ATLAS GAUDI release 0.7.2.

	3.5 Bugs Fixed
	3.6 Known Bugs

	Chapter 3 Athena concepts
	3.1 Overview
	3.2 Athena components
	3.2.1 Algorithms
	3.2.2 Services
	3.2.3 Properties
	3.2.4 Job Options files and Python scripts
	3.2.5 Data objects and transient stores
	3.2.6 Converters
	3.2.7 Auditors
	3.2.8 Helpers and Tools

	3.3 Packages

	Chapter 4 Establishing a run-time environment
	4.1 Overview
	4.2 Establishing a login environment
	4.2.1 Commands to establish a bourne-shell or varient login environment
	Listing 4.1 Bourne shell and varients commands to establish an ATLAS login environment

	4.2.2 Commands to establish a c-shell or varient login environment
	Listing 4.2 C shell and varients commands to establish an ATLAS login environment


	4.3 Using SRT to checkout ATLAS software packages

	Chapter 6 Scripting
	6.1 Overview
	6.2 Python scripting service
	6.3 Python overview
	6.4 How to enable Python scripting
	1. Replace the job options text file by a Python script that is specified on the command line.
	2. Use a job options text file which hands control over to the Python shell once the initial conf...

	6.4.1 Using a Python script for configuration and control
	Listing 6.1 Using a Python script for job configuration
	1. The file extension .py is used to identify the job options file as a Python script.All other e...

	6.4.2 Using a job options text file for configuration with a Python interactive shell
	Listing 6.2 Job Options text file entries to enable Python scripting
	1. This entry specifies the component library that implements Python scripting. Care should be ta...
	2. This entry specifies the Python scripting implementation of the abstract Scripting service. As...
	Listing 6.3 Specifying a job options file for application execution


	1. The job options text file command line argument is optional. The file jobOptions.txt is assume...
	2. The file extension .py is used to identify the job options file as a Python script. All other ...



	6.5 Prototype functionality
	1. The ability to read and store basic Properties for framework components (Algorithms, Services,...
	2. The ability to retrieve and store individual elements of array properties.
	3. The ability to specify a new set of top level Algorithms.
	4. The ability to add new services and component libraries and access their capabilities
	5. The ability to specify a new set of members or branch members for Sequencer algorithms.
	6. The ability to specify a new set of output streams.
	7. The ability to specify a new set of "AcceptAlgs", "RequireAlgs", or "VetoAlgs" properties for ...


	6.6 Property manipulation
	Listing 6.4 Property manipulation from the Python interactive shell
	1. The ">>>" is the Python shell prompt.
	2. The set of existing Algorithms is given by the Algorithm.names command.
	3. The set of existing Services is given by the Service.names command.
	4. The values of the properties for an Algorithm or Service may be displayed using the <name>.pro...
	5. The value of a single Property may be displayed (or used in a Python expression) using the <na...
	6. Single valued properties (e.g. IntegerProperty) may be set using an assignment statement. Bool...
	7. Multi-valued properties (e.g. StringArrayProperty) are set using "[...]" as the array delimiters.
	8. The theApp object corresponds to the ApplicationMgr and may be used to access its properties.


	6.7 Synchronization between Python and Athena
	Listing 6.5 Examples of Python commands that create new Algorithms or Services
	Listing 6.6 Examples of Python commands that create new Algorithms or Services
	1. This creates a new Python object of type Sequencer, having the same name as the newly created ...
	2. This creates a new Python object of type Algorithm, having the same name as the newly created ...
	Listing 6.7 Examples of Python commands that might create new Algorithms or Services



	6.8 Controlling job execution
	Listing 6.8 Python command to resume Athena execution
	1. This is a temporary command that will be replaced in a future release by a more flexible abili...
	Listing 6.9 Python command to terminate Athena execution
	Listing 6.10 Python batch script



	Chapter 6 Accessing ATLAS data
	6.1 Overview
	6.2 Accessing Physics TDR data from ZEBRA files
	6.2.1 The ZebraTDRCnvSvc service
	Listing 6.1a JobOptions file fragment to access Physics TDR data in Zebra format
	Listing 6.1b Python script fragment to access Physics TDR data in Zebra format
	Listing 6.2a Fragment from Atlas_TDR.UnixStandardJob.txt job options file
	Listing 6.2b Fragment from Atlas_TDR.UnixStandardJob.py Python script
	1. This specifies that the ZebraTDRCnv component library should be loaded. It is important to use...
	2. This adds the relevant services to the list of known services. It is important to use the “+=”...
	3. This specifies the conversion service that is to be used.
	Listing 6.3a Fragment from Atlas_TDR.UnixStandardJob.txt job options file
	Listing 6.3b Fragment from Atlas_TDR.UnixStandardJob.py Python script


	1. The file that is specified by the InputFile property is not the Zebra file containing the Phys...
	2. These boolean properties control which detector subsystems are read, and whether the hits or d...



	6.3 Accessing Physics TDR data from Objectivity databases
	6.4 Accessing Atlfast data from Objectivity databases
	6.5 Accessing Atlfast data from ROOT files
	6.5.1 Storing Atlfast data in ROOT files
	Listing 6.4a Fragment from job options file to store Atlfast data in ROOT files
	Listing 6.4b Fragment from Python script to store Atlfast data in ROOT files
	1. This specifies that the DbConverters and RootDb component libraries should be loaded. It is im...
	2. This adds the relevant services to the list of known services. It is important to use the “+=”...
	3. This specifies the ouput stream that is to be used for this conversion service. Multiple outpu...
	4. This specifies the conversion service that is to be used.
	5. This indicates that all event data below /Event in the transient event store should be written...
	6. This specifies the output file that the events will be written to. It is important that the sp...
	7. This identifies the particular persistency mechanism.


	6.5.2 Reading Atlfast data from ROOT files
	Listing 6.5a Fragment from job options file to input Atlfast data from a ROOT file
	Listing 6.5b Fragment from Python script to input Atlfast data from a ROOT file
	1. This specifies that the DbConverters and RootDb component libraries should be loaded. It is im...
	2. This adds the relevant services to the list of known services. It is important to use the “+=”...
	3. This specifies the type of object that will be created at the root of the transient event store.
	4. This specifies the conversion service that is to be used.
	5. This specifies the input file that the events will be read from.
	6. This identifies the particular persistency mechanism.




	Chapter 7 Monte-Carlo event generators
	7.1 Overview
	7.2 Herwig
	7.3 Isajet
	Listing 7.1a Job Options text file fragment to enable the Isajet event generator
	Listing 7.1b Python script fragment to enable the Isajet event generator
	1. Two component libraries are needed for this example. The GeneratorModules library contains all...
	2. The McEventSelector service used by the example is not one of the standard services so must be...
	3. Specifies the IsajetModule generator as the first Algorithm to be run. Explicit synchronizatio...
	4. The configuration of the Isajet module is established by three files, which are specified usin...
	5. Other Algorithms to be run downstream of the generator should be specified here.


	7.4 Pythia
	Listing 7.2a Job Options text file fragment to enable the Pythia event generator
	Listing 7.2b Python script fragment to enable the Pythia event generator
	1. Two component libraries are needed for this example. The GeneratorModules library contains all...
	2. The McEventSelector service used by the example is not one of the standard services so must be...
	3. Specifies the PythiaModule generator as the first Algorithm to be run. Explicit synchronizatio...
	4. The configuration of the Pythia module can be specified using the PythiaCommand Property. This...
	5. Other Algorithms to be run downstream of the generator should be specified here.


	7.5 Single particle gun
	Listing 7.3a JobOptions file fragment to generate events using the single particle gun
	Listing 7.3b Python script fragment to generate events using the single particle gun
	1. This specifies that the GeneratorModules component library should be loaded. It is important t...
	2. This adds the McEventSelector service to the list of services. It is important to use the “+=”...
	3. This establishes the SingleParticleGun generator as the first Algorithm for each event. It is ...
	4. The generation mode for each of pT, eta and phi can be specified to be 1, 2, or 3, correspondi...
	5. The fixed value or range of values in pT are specified by the Pt, MinPt and MaxPt properties. ...
	6. The fixed value or range of values in eta are specified by the Eta, MinEta and MaxEta properti...
	7. The fixed value or range of values in phi are specified by the Phi, MinPhi and MaxPhi properti...
	8. The generated particle type is specified by its PDG code.
	9. Any further Algorithms should be added at this point. It is important to use the “+=” syntax i...



	Chapter 8 Fast simulation
	8.1 Overview

	Chapter 9 Tutorial examples
	9.1 Overview
	9.2 Building the tutorial examples
	Listing 9.1 Building the Tutorial Examples
	1. Select or create a directory within which the examples will be created. Replace <dir> in the e...
	2. This creates the src directory and establishes a local release based upon an ATLAS release. Re...
	3. This creates the build directory which will be used for the actual build process.
	4. This checks out the offline/Control package corresponding to ATLAS release <release> into the ...
	5. This and subsequent lines build the tutorial examples, resulting in the necessary libraries an...

	9.2.1 Running the tutorial examples
	9.2.2 Setting up the files for running the tutorial examples
	Listing 9.2 Setting up the files for running the tutorial examples
	1. Replace <release> in the above by the actual release (e.g. 1.3.2).
	2. By convention the tutorial examples are executed from the run directory situated alongside the...
	3. This copies common scripts and job options files to the current directory.
	4. This copies the tutorial-specific job options files to the the current directory.
	5. This copies the StoreGate example job options file to the current directory.
	6. This establishes several local files and symbolic links.


	9.2.3 Establishing the run-time environment
	Listing 9.3 Establishing the run-time environment
	1. Choose the appropriate setup script for your login shell.
	2. If the packages are not located in the src or work directory alongside the current directory, ...


	9.2.4 Selecting and running the desired tutorial example
	Listing 9.4 Selecting and running the desired tutorial example
	1. The appropriate job options file for each example is given in the following sections.
	2. As described earlier, a single common executable is used for all examples.
	3. If no command line parameters are given, the default job options file location (jobOptions.txt...


	9.2.5 The Fortran Algorithm example
	Listing 9.5 The FortranAlgorithm.h file
	1. The FortranAlgorithm class inherits from the Algorithm class, and must provide implementations...
	2. Two properties, an int and a std::string are declared.
	Listing 9.6 Fragments from the FortranAlgorithm.cxx file


	1. The FORTRAN functions are declared as external "C" functions.
	2. The FortranAlgorithm constructor declares the private data members as properties.
	3. Both properties are passed through to the FORTRAN initialize() function.
	4. The m_lun property is passed through to the FORTRAN execute() function.


	9.2.6 The Graphics example
	9.2.7 The HelloWorld example
	Listing 9.7a The HelloWorldJobOptions.txt file
	Listing 9.7b The HelloWorldJobOptions.py file
	1. This line specifies the standard ATLAS job options include file for general applications. This...
	2. This line specifies the appropriate component library for this example.
	3. This example just has a single Algorithm that will be executed. Explicit synchronization is ne...
	4. Job options text files cannot parse symbolic names and therefore the output level threshold mu...
	5. These lines override the default values for the properties declared by the HelloWorld Algorithm.


	9.2.8 The Histogram and Ntuple example
	Listing 9.8a Fragments from the HistNtupJobOptions.txt file
	Listing 9.8b Fragments from the HistNtupJobOptions.py file
	1. This line specifies the standard ATLAS job options include file for applications wishing to us...
	2. This line specifies the appropriate component library for this example.
	3. It is not necessary to specify a component library for the HBOOK persistency since this is set...
	4. Allowed values are "HBOOK" or "ROOT".
	5. Select the desired Algorithm; either that for demonstrating the booking and filling of histogr...
	6. Uncomment the appropriate line to specify the histogram output file.
	7. Modify the filename as appropriate to specify the ntuple output file.


	9.2.9 The Liquid Argon Reconstruction example
	9.2.10 The Pixel reconstruction example
	9.2.11 The Sequencer example
	Listing 9.9a A Fragment of the SequencerJobOptions.txt file
	Listing 9.9b A Fragment of the SequencerJobOptions.py file
	1. This example uses several Athena Component libraries, some from Athena/Gaudi itself, others fr...
	2. The Auditor service is configured to enable the NameAuditor, which just prints the name of eac...
	3. A single instance of the Sequencer class, called TopSequencer, is setup as the application top...
	4. The TopSequencer is setup so that it will execute all of it’s members, irregardless of whether...
	5. The TopSequencer is setup with two members, Path1 and Path2, both of type Sequencer.
	6. The membership of Path1 and Path2 are setup. Note that the same instance of WriteData is inclu...
	7. The fraction of events that are accepted by each prescaler are setup.
	8. These lines establish keys which the ReadData instances use in conjunction with the object typ...


	9.2.12 The StoreGate example
	Listing 9.10a Fragments from the StoreGateJobOptions.txt file
	Listing 9.10b Fragments from the StoreGateJobOptions.py file
	1. Two component libraries are needed for this example. The StoreGateExample library contains the...
	2. The WriteData Algorithm writes some information to the transient event store. The ReadData Alg...
	3. The StoreGate service used by the example is not one of the standard services so must be decla...
	4. The DataProducer property of the ReadData Algorithm is used as the key for locating the inform...




	Appendix A References
	[1] GAUDI User Guide http://lhcb-comp.web.cern.ch/lhcb-comp/Components/Gaudi_v6/gug.pdf
	[2] GAUDI - Architecture Design Report [LHCb 98-064 COMP]
	[3] HepMC Reference
	[4] Python Reference
	[5] StoreGate Design Document
	Index


