Motivations of a search for $\mathcal{D}^{0} \rightarrow \mu^{\dagger}\mu^{\dagger}at LHCb$ LHCb

A. Frenkel, G. Martellotti, G. Penso, D.Pinci, A.S.

Tuesday Meeting CERN, 6-04-2004

A. Sarti Rome 1 University and INFN Frascati

Motivation and challenges

From SM calculations: $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) \sim 10^{-18}$ [short-distance processes], increasing to $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) \sim 10^{-13}$ when long-distance processes are included. "This prediction is many orders of magnitude beyond the reach of the present generation of experiments. Considering the effects on $D^0 \rightarrow \mu^+ \mu^-$ from a number of extensions to the Standard Model: *R-parity violating SUSY, multiple Higgs doublets,* extra fermions, extra dimensions, and extended technicolor, theorists find that the $D^0 \rightarrow \mu^+ \mu^-$ branching ratio can be enhanced by orders of magnitude to the range of 10^{-8} to 10^{-10} , and in the case of R-parity violating SUSY, roughly to the level of the existing experimental limit. Similar enhancements can occur in K and B-decays, but charm decays provide a unique laboratory to search for new physics couplings in the up-quark sector."⁽¹⁾

(1) CDF, 2003 [hep-ex:0308059]

Present Experimental Knowledge

Current available limits @ 90% c.l. are from:

- → CDF (hep-ex:0308059 (2003)): $\mathcal{B}(D^0 \to \mu^+\mu^-) < 2.5^*10^{-6}$. pp experiment @ sqrt(s) = 1.96TeV; 65pb⁻¹ data.
- → BEATRICE (PL B408 469 (1997)): $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) < 4.1*10^{-6}$. 350GeV/c pions on tungsten/copper target
- → E771 (PRL 77 2380 (1996)): $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 4.2^* 10^{-6}$. 800GeV/c proton silicon interactions

How many D⁰ mesons?

Starting from "Rare charm decays in SM and beyond"⁽¹⁾ for calculations

⁽¹⁾[hep-ph/0112235] (2001) (Burdman, Golowich, Hewett, Pakvasa)

 $\mathscr{B}(D^0 \to \mu^+ \mu^-)$: $O(10^{-13})$ [SM; LD effects]; $O(10^{-10})$ [NP]; $\mathcal{P}_{parity} O(10^{-6})$

> $\mathcal{L}(LHCb) = 2*10^{32} \text{ cm}^{-2}\text{s}^{-1}$ $\sigma(c\overline{c}) \sim 6^*\sigma(b\overline{b}) \sim 3mb$

Assuming $\mathcal{B} O(10^{-10})$ in one year $O(10^3)$ evts $[O(10^{-5} \text{evts s}^{-1})]$ can be produced

Large background is expected (*see next slide*): how to reject it and select signal events with high efficiency?

- Apply μ -ID criteria
- Cut on $\mu~$ impact parameter
- Cut on secondary vertex quality
- \sim Cut on di- μ invariant mass
- Cut on D⁰ flight length,
- Cut on D⁰ impact parameter

$$\sim$$
 Cut on D⁰, μ p_T

Assuming that the L0 trigger efficency for $B^0 \rightarrow \mu^+\mu^-$ is not much larger than that for $D^0 \rightarrow \mu^+\mu^-$ we can estimate the selection efficiency $\epsilon_{sel}(D^0 \rightarrow \mu^+\mu^-)$ to be O(1%) ($B^0 \rightarrow \mu^+\mu^- \sim 2.5\%$)

Expected ^(per year): O(10) reconstructed events (NP); NO events (SM)

A crucial study that we'd like to perform as soon as possible is to check the impact of various backgrounds on this measurement. Possible sources are:

- 1. $D^0 \rightarrow hh$ with $h \rightarrow \mu \nu$
- 2. Background from combinatorial (with contributions from double semileptonic decays $D^0 \to \mu X$)

We'd like also to understand better the contribution from $D^0 \rightarrow \mu^+ \mu^- \gamma$ decays that can be high⁽¹⁾:

 $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^- \gamma)$: (1-3)*10⁻⁹ [SM; LD effects]; 5*10⁻⁸ [MSSM]

(1)"B($D^0 \rightarrow \mu^+\mu^-\gamma$) decay in SM and beyond", Fajfer,Singer,Zupan [hep-ph/0209250]

- ★ We've started looking for $D^0 \rightarrow \mu^+ \mu^-$ directly from primary vertex: we need to decide if taking into account B → $D^0 \rightarrow \mu^+ \mu^-$ (cross section ~ 1/6; but higher p_T) will help.
- Generic MC events are being produced: we'll start soon to checkstudy them in order to have a better understanding of selection efficiencies and generator reliability.
- Background studies are crucial: selection algorithm performances will be highly dependent on the backgrounds.