Outline

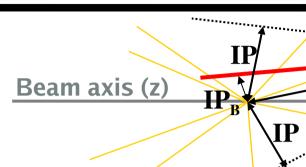
- Working group goals
- □ B2hh selection: current status
- CP asymmetry fit: status and future plans
- Working group organization

Goal: do the full $B \rightarrow hh$ exercise!

- □ B→hh channels have been identified by the PPG amongst the key measurements for the initial phase of LHCb
- □ The idea is that the physics book should be a path toward realistic analyses, that means
 - "study how these measurements will be performed by giving not only the expected statistical sensitivity, but also the list of systematics to consider and the actual procedures to tackle them; it also means going in as much details as possible/useful in the various calibrations and checks which will be needed, including control samples, etc ..."
- □ B→hh can be in fact an effective proof-of-principle of a realistic analysis, in particular crucial to understand and demonstrate the LHCb PID performance with hadrons
- □ B→hh can be used to practice the CP fit tools

B selection strategy

LHCb Note 2003-123


- Designed to maximize signal efficiency and minimize backgrounds
- Two major sources of backgrounds taken into account
- Combinatorial background from bb inclusive events
 - •Due to the huge minimum bias MC statistics required for a detailed study of combinatorics, we make the plausible assumption that most of the combinatorial background will come from beauty events (presence of high p_T and large IP tracks from B)
 - •For the moment we prefer not to adopt dangerous tricks (e.g. cuts at generator level or fast MC simulations)
- Specific background from B decays with same two-track topology
 - •e.g. $B_d \rightarrow K^+\pi^-$, $B_s \rightarrow K^+K^-$, $B_s \rightarrow \pi^+K^-$ as backgrounds for $B_d \rightarrow \pi^+\pi^-$
- Selection cuts are simultaneously optimized in order to maximize S/sqrt(S+B)
- After event selection, tagging and trigger algorithms are tuned on selected events

See V.Vagnoni talk at CP meeting 14th July 2005

 π^+, K^+

π-, K-

Particle ID

 Each charged track identified as a Pion or Kaon using the Particle ID detectors (RICHs in particular)

- Reconstruction of long tracks
 - a B flights 1 cm on average

- Tracks selection cuts
 - DLL cut (PID)
 - Max[p_T(h⁺), p_T(h⁻)]
 - Min[p_T(h⁺), p_T(h⁻)]
 - Max[IP/ $\sigma_{IP}(h^+)$, IP/ $\sigma_{IP}(h^-)$]
 - Min[IP/σ_{IP}(h⁺), IP/σ_{IP}(h⁻)]
 - χ^2 of common vertex

- B Selection cuts
 - p_T
 - IP/σ_{IP}
 - L/σ_L
 - Invariant mass

B selection (2005)

Momentum cuts have been replaced by DLL cuts:

- Bd2PiPi: Combined pID (excl.)
 but vetoing pion hypotesis
 with DLL(K-pi)>-2 for the
 Kaon hypotesis (default is
 DLL(K-pi) > 2)
- Bd2KPi: Combined pID (excl.)
- Bs2KK: Combined pID (excl.)
- Bs2PiK: Combined pID (excl.)
 selection but pions must have
 DLL(pi-K) > 2

	$B^0 \rightarrow h^+h^-$		$B_s^0 \rightarrow h^+h^-$	
Channel	$\pi\pi$	$K\pi$	m KK	πK
Selection cuts				
$p_{\min} [\text{GeV/}c]$	2.50	2.75	2.75	2.75
$p_{ m max} [{ m GeV}/c]$	100	200	125	100
$(p_T)_{\rm each} [{\rm GeV}/c]$	1.2	1.2	0.8	1.4
$(p_T)_{ m one} \ [{ m GeV}/c]$	3.2	3.0	2.6	3.4
$({ m IP}/\sigma_{ m IP})_{ m each}$	6	6	5	7
$({ m IP}/\sigma_{ m IP})_{ m one}$	12	11	9	14
$\chi^2_{ m max}$	4	5	5	4
$(p_T^{\mathrm{B}})_{\mathrm{min}} [\mathrm{GeV}/c]$	1.6	1.4	1.0	1.6
$(\mathrm{IP_B}/\sigma_{\mathrm{IP_B}})_{\mathrm{max}}$	2.25	2.50	2.75	2.25
$(L/\sigma_L)_{ m min}$	19	17	14	20
$\delta m \; [{ m MeV}/c^2]$	50	50	50	40
B/S ratios				
two-body	0.13	0.04	0.04	0.41
combinatorial $(b\overline{b})$	< 0.72	< 0.22	< 0.51	< 1.28

S/B (used for Feb 04 studies)

Event type	Assumed BR (x10 ⁻⁶)	N _B /N _S	Untagged annual yield	εD ²
$B_d\! o \pi^{\scriptscriptstyle{+}} \pi^{\scriptscriptstyle{-}}$	4.8	0.42	26000	4%
$B_d\! o K^{\scriptscriptstyle{+}}\pi^{\scriptscriptstyle{-}}$	18.5	0.16	135000	4%
$B_s \rightarrow K^+K^-$	18.5	0.31	37000	6%
$B_s \rightarrow \pi^+ K^-$	4.8	0.67	5300	6%

- Annual yields after L0+L1 triggers and offline selection (assumed $\sigma_{bb} = 0.5 \text{ mb}$)
- N_B/N_S here quoted only from combinatorial bb background

 Presented at Joint meeting

Presented at Joint meeting in Feb 04

Analysis strategy

- □ What do we want to do with selected Bs?
 - Build the asymmetries
 - Extract time and mass distributions for signal and background candidates using PID information (to be changed)
 - Fit simultaneously mass and time distributions with an extended unbinned maximum likelihood fit
 - Extract gamma from Asymmetry with a Bayesian approach

CP asymmetries

$$A_{CP}(t) = \frac{\Gamma(\overline{B}_{(s)}^{0}(t) \to f) - \Gamma(B_{(s)}^{0}(t) \to f)}{\Gamma(\overline{B}_{(s)}^{0}(t) \to f) + \Gamma(B_{(s)}^{0}(t) \to f)} = \frac{A_{CP}^{dir} \cos \Delta m \cdot t + A_{CP}^{mix} \sin \Delta m \cdot t}{\cosh \frac{\Delta \Gamma}{2} \cdot t - A_{CP}^{\Delta \Gamma} \sinh \frac{\Delta \Gamma}{2} \cdot t}$$

$$A_{CP}^{dir}(B_d^0 \to \pi^+\pi^-) = f_1(d, \vartheta, \gamma)$$

$$A_{CP}^{mix}(B_d^0 \to \pi^+\pi^-) = f_2(d, \vartheta, \gamma)$$

$$A_{CP}^{dir}(B_s^0 \to K^+K^-) = f_3(d', \vartheta', \gamma)$$

$$A_{CP}^{mix}(B_s^0 \to K^+K^-) = f_4(d', \vartheta', \gamma)$$

 $\phi_d = 2\beta B_d - \overline{B}_d$ mixing phase (measured with $B_d \rightarrow J/\psi K_s$)

 $\phi_s = -2\lambda^2 \eta \ B_s - \overline{B}_s \ \text{mixing phase}$ (can be probed with $B_s \rightarrow J/\psi \phi$)

4 equations and 5 unknowns: d, ϑ , d', ϑ' e γ

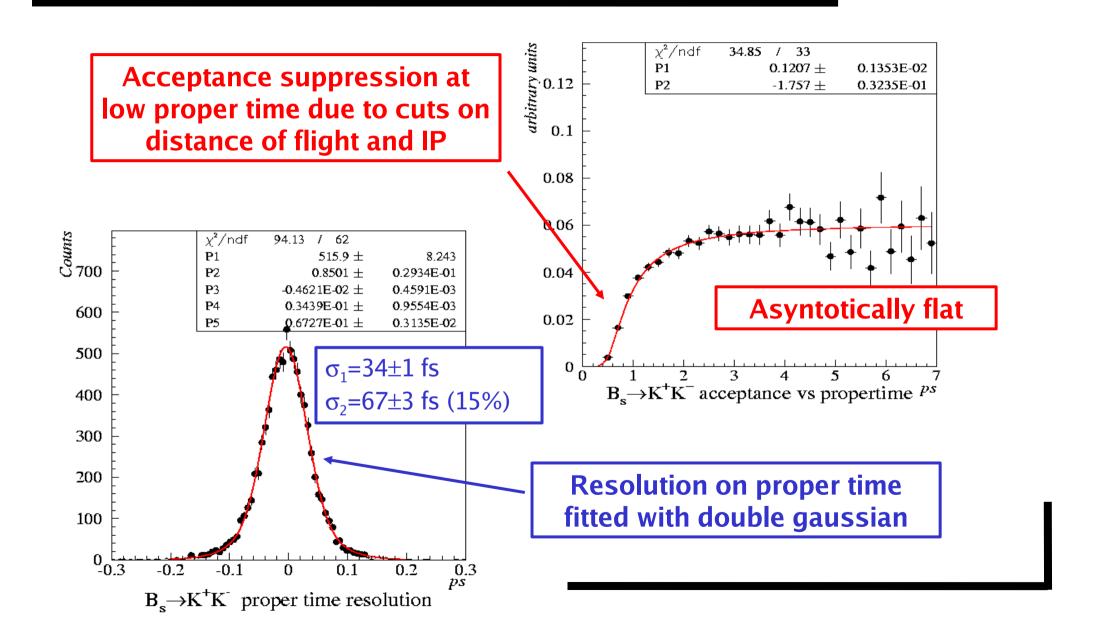
One needs other inputs to solve for γ

Using U spin symmetry d = d' and $\theta = \theta'$. We end up with 3 unknowns and 4 equations

R. Fleischer, Phys. Lett. B459 (1999)

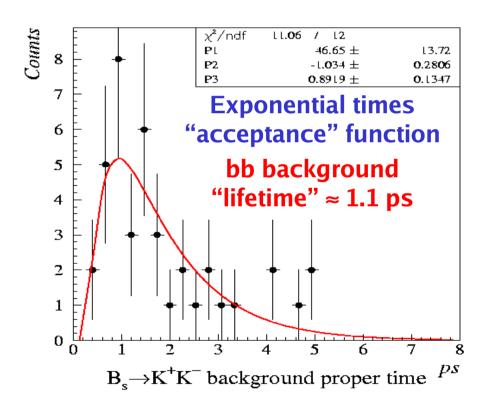
(old-current) Fit strategy

- B_d \rightarrow K⁺ π⁻ is a flavour specific decay, hence it can be used to extract the wrong tag probability from data
- $B_d \rightarrow \pi^+ \pi^- (B_s \rightarrow K^+ K^-)$ and $B_d \rightarrow K^+ \pi^- (B_s \rightarrow \pi^+ K^-)$ have the same two-track topology (the full simulation shows the same tagging power)

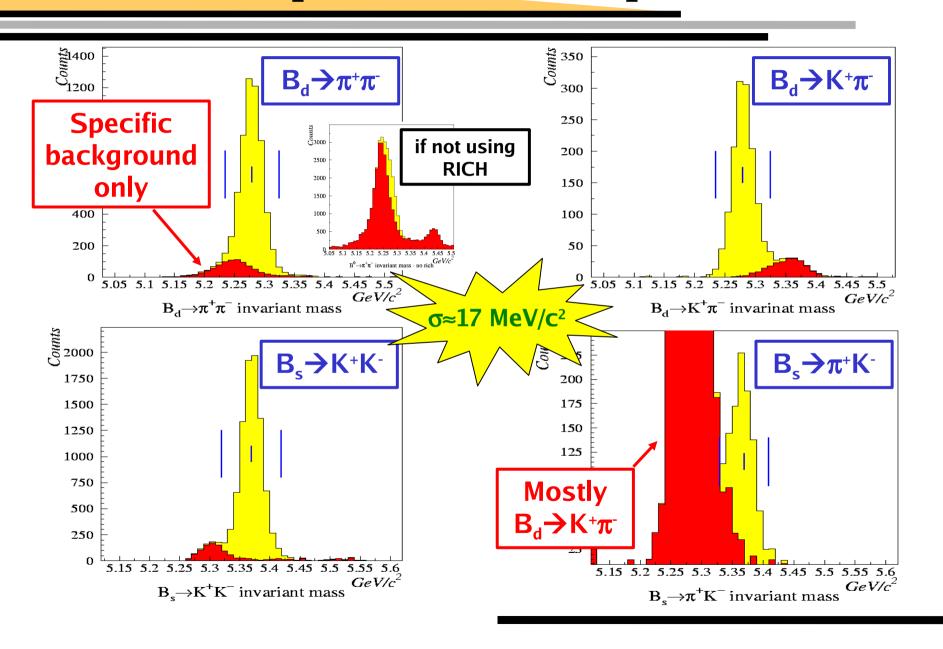

In order to extract CP asymmetries and mistag fraction simultaneously from data a combined extended maximum likelihood fit of $B_d \rightarrow \pi^+ \pi^-$ and $B_d \rightarrow K^+ \pi^- (B_s \rightarrow K^+ K^-)$ and $B_s \rightarrow \pi^+ K^-$) event samples

(old-current) Likelihood fit

The likelihood fit is performed with 17 free parameters:

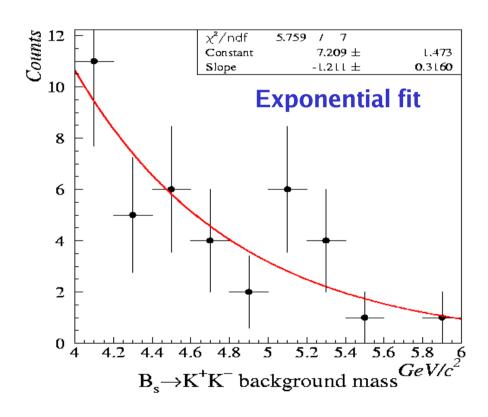

- A_{dir} and A_{mix} for $B_d \rightarrow \pi^+\pi^-$ ($B_s \rightarrow K^+K^-$)
- Charge asymmetry for $B_d \rightarrow K^+\pi^- (B_s \rightarrow \pi^+K^-)$
- Mean B_d (B_s) mass and mass resolution (2 parameters)
- 1 parameter for background mass distribution of $B_d \rightarrow \pi^+\pi^-$ ($B_s \rightarrow K^+K^-$)
- 1 parameter for background mass distribution of $B_d \rightarrow K^+\pi^- (B_s \rightarrow \pi^+K^-)$
- 2 parameters for background proper time of $B_d \rightarrow \pi^+\pi^- (B_s \rightarrow K^+K^-)$
- 2 parameters for background proper time of $B_d \rightarrow K^+\pi^- (B_s \rightarrow \pi^+K^-)$
- ΔM , Γ , $\Delta \Gamma$ for the B_d (B_s)
- Mistag fraction for $B_d \rightarrow \pi^+\pi^-$ and $B_d \rightarrow K^+\pi^-$ ($B_s \rightarrow K^+K^-$ and $B_s \rightarrow \pi^+K^-$)
- Tagged event yield for $B_d \rightarrow \pi^+\pi^- (B_s \rightarrow K^+K^-)$
- Tagged event yield for $B_d \rightarrow K^+\pi^- (B_s \rightarrow \pi^+K^-)$

Fit input (I): Proper time and resolution



Fit input (II): Bkg proper time distribution

Only a handful of bb events surviving after event selection due to "limited" (107) fully simulated bb event sample...



Fit input (III): mass spectra

Fit input (IV): background mass distr.

Only a handful of bb events surviving after event selection due to "limited" (107) fully simulated bb event sample...

Calibration issues

Particle ID

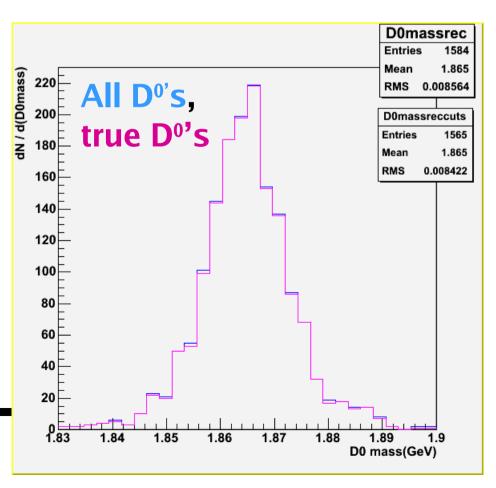
- for pions and kaons we have large D* samples
- Calibration for protons would be needed as well. Can we do this with Lambda decays?
- Invariant mass & Vertex resolution
 - mass resolution is crucial for the 2-body studies. Large J/Psi and friends samples available
- All of this is fairly clear, but we need still to formalize how the information obtained from various light-house processes is propagated to the CP fits

Large D* samples used for PID studies R. Muresan

- Plan to use $D^* \rightarrow D^0 \pi$, $D^0 \rightarrow K\pi$:
 - "Golden" kinematics easy to supress the bkg:

$$(M_{D^*}-M_{D^0})=144.5 \text{ MeV } (M_{\pi}=139.5 \text{ MeV})$$

- Good branching ratios:
 - BR($D^* \rightarrow D^0 \pi$) = 67.7 %,
 - BR($D^0 \rightarrow K\pi$) = 3.83 %

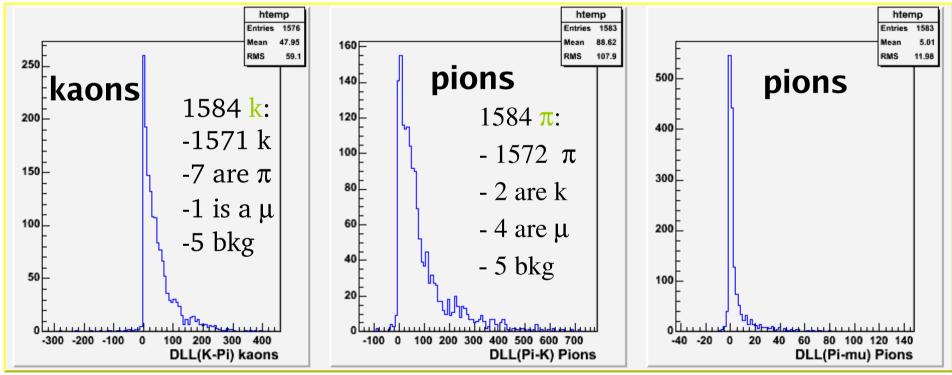

Selected events (HLTFilterDstars)

After L0, L1 6768

+ HLT 2099 (31%)

+ off-line HLT 2718 (40%)

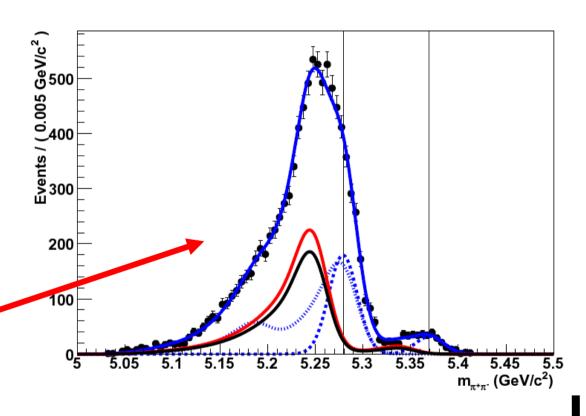
+ HLT & off-line HLT 1565 (23%)



K, Pi RICH – PID decision Bd->D* π L0, L1, HLT flag, off-line HLT cuts

Those events can be used to calibrate the PID

(see few slides later)


Entries below 0 4 ghosts,1 muon

Entries below 0
2 ghosts one kaon

Entries below 0 1 ghost, 2muons,1 el

Fit technology: RooFit

- Started with a Fortran code (using Minuit) and now ended with a RooFit based fit: results are consistent :) !!
- Should push for a common code for all the other analyses that are doing such likelihood fits.... (see proposal in CP meeting of 14 Jul 05)
- The PID information is not used, now, in the fit: plans are to go for a simultaneous fit of all the 8 different B to hh samples.

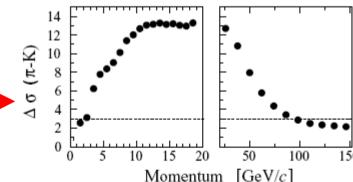
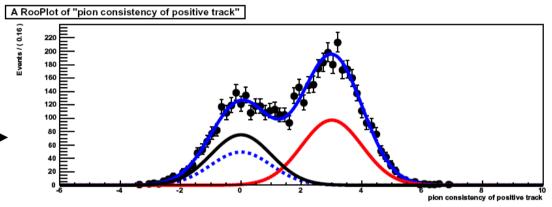
Can be done! (G. Raven CP meeting)

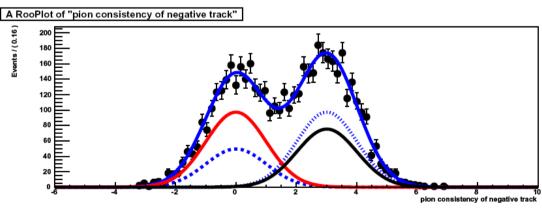
Fitting using the PID information

- 8 signal samples:
 - B⁰,B_s pi⁺pi⁻,K⁺pi⁻,pi⁺K⁻,K⁺K⁻ (Convention: positive charge first)
- □ The above 8 samples, for non-perfect PID, crossfeed amongst each other
 - Eg. Bs Kpi is a background for B0 pipi, and vice versa...
 - Need to relative Kpi yield for pipi background estimate, but need pipi yield to get Kpi background...
- Separation of samples depends on PID performance, which will depend on eg. track momenta, which eg. distorts the shape of Kpi cross-feed background in mpipi...
- Cutting on PID to select 8 samples will result in non-trivial analysis
- Invariant mass also has some power to separate the signals...
- Alternative: use both invariant mass and PID observables directly in fit, get all 8 signals simultaneously
 - Let MINUIT worry about correlations...
- But need to use consistent observables:
 - For Kpi, should compute invariant mass under pipi hypothesis to allow comparison with pipi...

Fitting using the PID information (II)

- Need to Model the m(pipi) mass.
 - Assume $M(\pi^+\pi^-)$ is a Gaussian, with a mean which depends on the observed value of β (Similar to resolution models which depend on the observed perevent propertime error derived from the vertex and momentum)
 - Use conditional PDF to describe this distribution: $L(m\pi\pi,\beta) = L(m\pi\pi|\beta) L(\beta)$
 - Model the PID
 - Need to parameterize the momentum (and charge) dependence of PID observables
 - RICH TDR shows this plot that is 'just what you want"
 - This would lead to an observable "PID" with the following properties L(PID,p) = L(PID| p)L(p)
 - Again, this is a 'Conditional PDF', given the momentum distribution of a track.


Figure 18: Number of sigma separation between pion and kaon hypothesis versus momentum for true pions in triggered and accepted signal events.

Future Plans

PID observables

- PID categorization and simultaneous fit to all B to hh samples
- HLT Trigger studies
- Tagging studies (ω)
- D to hh studies (helping the PID categorization)

Conclusions and outlook

□ Started a joint work on B->hh in order to perform the full exercise in time for Phys Book (or whatever else)