WHAT CAN BE LEARNED COMPARING K_{l3}^+ AND K_{l3}^0

Jan Stern

Institut de Physique Nucléaire, Orsay

Collaborateurs : V. Bernard (LPT-Strasbourg) M. Oertel (LUTH-Meudon)

E. Passemar (IPN-Orsay)

Different sources of isospin breaking

- $m_d m_u \neq 0$ integral part of QCD / ChPT
- local electromagnetic contributions (Effective theory description, LECs C, K, X)
- long distance (non local) electromagnetic contributions

After factorization of the last type of elmg contributions: 4 form form factors:

$$f_{+}^{K}(t), f_{S}^{K}(t) = f_{+}^{K}(t) + \frac{t}{M_{K}^{2} - M_{\pi}^{2}} f_{-}(t).$$

Here
$$K = K^+$$
 for $K^+ \to \pi^0$ decay and
 $K = K^0$ for $K^0 \to \pi^-$ decay

 $f_{+,S}^{K}(t) = f_{+}^{K}(0)F_{+,S}^{K}(t)$ where $F_{+,S}^{K}(0) = 1$

 $f_+^K(0)\mathcal{V}_{eff}^{us}\ldots \to \text{Decay rates}$

 $F_{+,S}^{K}(t) \dots \rightarrow$ form factor shapes, Dalitz distributions, needed to calculate phase space integrals

Two types of $m_d - m_u$ effects

- "normal size" $\frac{m_d m_u}{4\pi F_{\pi}}$... few ×10⁻³ affect both K^0 and K^+ .
- enhanced by small denominator $\frac{m_d m_u}{m_s}$ $\eta - \pi^0$ mixing, $\mathcal{O}(1)$ in ChPT, $\sim 10^{=2}$, affects $K^+ \to \pi^0$ decay rate.

ChPT suggests: isospin asymmetry in form factor **SHAPES** is negligible.

 $F_{+}^{K^{0}}(t) = F_{+}^{K^{+}}(t)$ and $F_{S}^{K^{0}}(t) = F_{S}^{K^{+}}(t)$ implying the equality of corresponding slopes curvatures etc Defining further $r^{+0} = \frac{f_{+}^{K^{+}}(0)}{f_{+}^{K^{0}}(0)} = 1 + \Delta_{SU(2)}$ the whole experimental information is stored in

- $f_+^{K^0}(0)\mathcal{V}_{eff}^{us}$
- $\Delta_{SU(2)}$

• form factor shapes $F_{+,S}(t)$ defining in turn phase space integrals This is the standardly used framework. In addition it is customary to use **the input value** $\Delta_{SU(2)} = 0.023 \pm 0.003$ This allows to put apples and pears together and make an average.

Theoretical questions behind $\Delta_{SU(2)}$

The dominant contribution comes from $\eta - \pi^0$ mixing given by $\frac{\langle \eta | \bar{q} \mathcal{M} q | \pi^0 \rangle}{M_{\eta}^2 - M_{\pi}^2}$,

If the three flavor condensate $\langle \bar{q}q \rangle | m_s = m_u = m_d = 0$ is the leading order parameter (c.f. Cirigliano et al)

$$\Delta_{SU(2)} = \sqrt{3} \left[\epsilon^{(2)} + \epsilon_S^{(4)} + \epsilon_{EM}^{(4)} \right] - \frac{\alpha}{4\pi} \ln \frac{M_K^2}{M_\pi^2} - 16\pi\alpha X_1$$

dominated by the quark mass ratio

$$\epsilon^{(2)} = \frac{\sqrt{3}}{4} \frac{m_d - m_u}{m_s - m}$$

The remaining terms are small and known : $-16\pi\alpha X_1 = 0.001$, (Descotes-Genon, Moussallam - 2004) The quark mass ratio $R = \frac{m_s - m_l}{m_d - m_u}$

Fundamental parameter of QCD. Assuming (once more) the dominance of the three flavor $\bar{q}q$ condensate, ChPT relates R to :

- Kaon mass difference in the absence of electromagnetism: $\frac{1}{2}R(r+1) = \frac{M_K^2(M_K^2 - M_\pi^2)}{M_\pi^2(M_{K^0}^2 - M_{K^+}^2)} [1 + \mathcal{O}(m_s^2)] \equiv Q^2$ where $r = m_s/m$. The electromagnetic contribution to the Kaon mass difference is hard to estimate precisely.
- $\eta \to 3\pi$ partial width ~ $1/R^2$. Sensitive to higher orders in the expansion in m_s . Dispersive analysis possible but **crucial** experimental inputs are not available.

Summary of this situation by Leutwyler in 1996 : $R = 40.8 \pm 3.2$

- Increase of $\Gamma(\eta \to 2\gamma)$ normalization channel in the last eddition of PDG \to decrease of R.
- Errors quoted by Leutwyler are likely underestimated.

If the three flavor condensate is suppressed due to important fluctuations of $\bar{s}s$ vacuum pairs - the above predictions could be substantially modified, increasing the expected value of $\Delta_{SU(2)}$.

The question is closely related to ongoing tests of ChPT prediction for low-energy $\pi\pi$ scattering phases (NA48/2 K_{e4} decay analysis) and is currently under investigation (Descotes-Genon, JS) $\Delta_{SU(2)}$ has to be measured

I_K	Inputs (τ_K , BRs)	$ f_{+}(0)V_{us} _{e}^{K^{0}}$	$ f_{+}(0)V_{us} _{e}^{K^{+}}$	$\Delta SU(2)_e$
$\lambda'_{+} = 0.02484(110), \lambda''_{+} = 0.00161(45)$	Moulson [Nag]	0.21639(55)	0.22348(90)	0.0328(49)
$\rho(\lambda'_+,\lambda''_+) = -0.944, \rho(\lambda'_+,\lambda_0) = 0.314$	NA48		0.22567(87)	0.0429(48)
$\rho(\lambda''_+,\lambda_0) = -0.420$	ISTRA		0.22354(101)	0.0330(53)
Moulson [Nagoya]				

New connection : $\Gamma(\pi^0 \to 2\gamma)$

Leading contribution to the amplitude : ABJ anomaly $\mathcal{O}(p^4)$ Corrections $\mathcal{O}(p^6, e^2 p^4, (m_d - m_u)p^4)$ determined by Ananthanarayan and Moussallam (2002): They are of percent level and they are dominated by $\eta - \pi^0$ mixing ... new access to $\Delta_{SU(2)}$ $A(\pi^0 \to 2\gamma) = \frac{\alpha}{\pi F_{\pi}} [1 + 1.24\Delta_{SU(2)} + \ldots]$ calculated corrections of 0.001 level. This is likely the most accurate way how to measure F_{π} independently of EW couplings of quarks to W: $F_{\pi} = [92.16 \pm 0.11](1 + 2\epsilon_{NS}) \text{ MeV}$ where ϵ_{NS} is a yet undetermined small parameter arising from the chiral CKM mixing (talk by Micaela Oertel). The result of the PRIMEX measurement of $\Gamma(\pi^0 \to 2\gamma)$ to better than 1 percent is expected by the summer.

SUMMARY

Three crucial tests of ChPT are still pending

- $\pi\pi$ scattering lengths and phases
- Callan-Treiman Theorem
- $\Delta_{SU(2)}$

The prediction $\Delta_{SU(2)} = 0.023 \pm 0.002$ has never been tested. Sanctifying it as the TRUTH using it as an input in other analysis, is the best way how **to never test it**.