V_{us} from kaon decays: Experimental status

Matthew Moulson

INFN/Frascati (KLOE)

FlaviaNet Mini-Workshop on Kaon Decays Frascati - 19 May 2007

Determination of V_{us} using K_{l3} rates

 $\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}(0)|^{2}} \times I_{Kl}(\{\lambda\}_{Kl}) (1 + 2\Delta_{\kappa}^{SU(2)} + 2\Delta_{\kappa}^{EM})$

with $K \in \{K^+, K^0\}$; $l \in \{e, \mu\}$, and: C_K^2 1/2 for K^+ , 1 for K^0 S_{FW} Universal SD EW correction (1.0232)

Inputs from theory:

 $f_{+}^{K^{0}\pi^{-}(0)}$ Hadronic matrix element (form factor) at zero momentum transfer (t = 0)

 $\Delta^{K}_{SU(2)}$

Form-factor correction for SU(2) breaking

 Δ^{Kl}_{EM}

Form-factor correction for long-distance EM effects

Inputs from experiment:

- $\Gamma(K_{l3(\gamma)})$
- Rates with well-determined treatment of radiative decays:
 - Branching ratios
 - Kaon lifetimes
- $I^{Kl}(\{\lambda\}_{Kl})$ Integral of form-factor over phase space: λ s parameterize evolution in *t*
 - K_{e3} : Only λ_+ (or λ_+', λ_+'')
 - $K_{\mu3}$: Need λ_+ and λ_0

What's new since CKM '06 (Nagoya)

NA48Preliminary results published
 $BR(K_L \rightarrow \pi^+\pi^-)$: no changes
 $BR(K^+l3)/BR(\pi\pi^0)$: no changes
 $K_L\mu3$ form-factor slopes: final values slightly changed

BR(K^+e^3)/BR($\pi\pi^0$) submitted for publication

KLOE New preliminary $K_L e^3 - K_L \mu^3$ form-factor slopes

Most recent documentation: CKM '06 proceedings (hep-ex/0703013)

- Small changes in treatment of errors, corrections, etc.
- Final form-factor slopes from NA48 included
- New KLOE preliminary for λ_0 not yet included \rightarrow today

Expect many new results at KAON '07!

- Calculations will be updated again to support speakers
- Wait until dust settles to finish memo

KTeV PRD 70 (2004)

K_L branching ratios

5 ratios of main BRs from independent samples of 10⁵-10⁶ events collected with a single trigger

2-track ratios $BR(K_{\mu3}/K_{e3}) = 0.6640(26)$ $BR(\pi^{+}\pi^{-}\pi^{0}/K_{e3}) = 0.3078(18)$ $BR(\pi^{+}\pi^{-}/K_{e3}) = 0.004856(28)$

6 decays = 99.93% of K_L width KTeV combines ratios to extract BRs

Neutral ratio BR $(2\pi^0/3\pi^0)$ = 0.004446(25) Mixed ratio BR $(3\pi^0/K_{e3})$ = 0.4782(55)

Our fit uses these BR ratios Correlations available

NA48
PLB 602 (2004) K_L beam only, 2-track sample, 80M events (6M signal) $\frac{BR(K_{e3})}{BR(2 \text{ track})} = 0.4978(35) \approx \frac{BR(K_{e3})}{1 - BR(3\pi^0)}$ NA48
preliminaryPR48
PR(3 π^0)/ τ_L = 3.795(58) MHz

V_{us} from kaon decays: Experimental status - M. Moulson - FlaviaNet Mini-Workshop - Frascati - 19 May 2007

K_L branching ratios and lifetime

KLOE PLB 632 (2006) **Absolute BRs:** K_L decays tagged by $K_S \rightarrow \pi^+ \pi^-$ Errors on absolute BRs dominated by error on τ_L Dependence on τ_{I} of geometrical efficiency known

For KLOE results: Set $\Sigma_x BR(K_L \rightarrow x) = 1$ and solve for τ_L Use unconstrained BRs with dependence on τ_L For our fit:

BR ⁽⁰⁾ (<i>Ke</i> 3)	= 0.4049(21)
BR ⁽⁰⁾ (<i>K</i> µ3)	= 0.2726(16)
BR ⁽⁰⁾ (3π ⁰)	= 0.2018(24)
BR ⁽⁰⁾ ($\pi^{+}\pi^{-}\pi^{0}$)	= 0.1276(15)

at $\tau_L^{(0)}$ = 51.54 ns, with $d \text{ BR/BR} = 0.67 d\tau_L / \tau_L$ Correlations available

Lifetime: Direct measurement with $K_I \rightarrow 3\pi^0$ events High, uniform reconstruction efficiency over $0.4\lambda_{I}$ Independent of BR measurement

 $\tau_{L} = 50.92(30) \text{ ns}$ cf. Vosburgh '72: τ_L = 51.54(44) ns

$$K_L \rightarrow \pi^+ \pi^-$$

New measurements of $K_L \rightarrow \pi^+ \pi^-(\gamma)$ also useful in global fit

KTeV PRD 70 (2004) BR($\pi^+\pi^-/Ke^3$) = 4.856(29) × 10⁻³

1 of 5 ratios in K_L BR analysis Contribution from direct emission (DE) negligible

KLOE PLB 638 (2006) **BR(\pi^{+}\pi^{-}/K\mu^{3}) = 7.275(68) × 10⁻³** Fully inclusive of DE component

 NA48
 BR(π⁺)

 PLB 645 (2007)
 Residu

BR($\pi^+\pi^-/Ke^3$) = 4.826(27) × 10⁻³

Residual DE contribution of 0.19% subtracted

For consistency and to better satisfy Σ BR = 1 in global fit, DE contribution of **1.52(7)%*** added to **KTeV** and **NA48** results

* From E731 '93, KTeV '01 and KTeV '06 $K_L \rightarrow \pi^+\pi^-\gamma$ results

Fit to *K*_{*L*} BR and lifetime measurements

Availability of comprehensive new K_L data set with proper radiative corrections has radically changed the PDG fit

- 2004 fit used 50 measurements all but a handful pre-1990
- 2006 fit uses 17 measurements all but 2 post-2003

Compared to PDG 2006, our fit:

 Uses the KTeV BR ratios and KLOE BRs quoted before application of constraints

In each case, PDG uses the constrained results and removes the $3\pi^0$ measurement from the fit

- Uses the NA48 preliminary $\Gamma(3\pi^0)$ and new BR($\pi^+\pi^-$) measurements
- Implements consistent treatment of DE for $K_L \rightarrow \pi^+\pi^-$

Results of fit to K_L BRs, τ

18 input measurements:	Parameter	Value	2.
5 KTeV ratios			
NA48 BR(Ke3/2 track)	BR(Ke3)	0.40563(74)	1.1
NA48 $\Gamma(3\pi^0)$ [prelim.]	BR(<i>K</i> µ3)	0.27047(71)	1.1
4 KLOE BRs	$BR(3\pi^0)$	0.19507(86)	1.2
with dependence on τ_L	$BR(\pi^+\pi^-\pi^0)$	0.12542(57)	1.1
KLOE, NA48 BR($\pi^+\pi^-/Kl^3$)	$BR(\pi^+\pi^-)$	1.9966(67)×10 ⁻³	1.1
KLOE, NA48 BR($\gamma\gamma/3\pi^0$)	$BR(2\pi^0)$	8.644(42)×10 ⁻⁴	1.3
PDG ETAFIT BR($2\pi^0/\pi^+\pi^-$)	$BR(\gamma\gamma)$	5.470(40)×10 ⁻⁴	1.1
KLOE τ_L from $3\pi^0$	$ au_L$	51.173(200) ns	1.1
Vosburgh '72 τ_L	$\chi^2/ndf = 2$	2 0.2/11 (Prob = 4.3%	, o)

1 constraint: Σ BR = 1

compare PDG '06: 14.8/10 (14%)

- Fit quality poorer than PDG '06 but scale factors more uniform
- PDG omits $3\pi^0$ results \rightarrow large pulls for *Ke*3 and $3\pi^0$ measurements
- Even with scale factors, our fit reduces errors on Ke3 and $3\pi^0$

Comparison: K_L BR fit vs. data

Evolution of K_L BRs

PDG '04 → PDG '06:

- Consistent use of proper radiative corrections important for Ke3
- Exclusion of NA31 measurements significantly reduces BR($3\pi^0$)

Differences between our fit and PDG '06 are minor

From <i>K_L</i> BRs:	PDG '04	This fit	
$R_{\mu e} = \Gamma(K\mu 3/Ke3)$	0.701(9)	0.6668(24)	Better agreement with lepton universality
Re $\varepsilon'/\varepsilon \times 10^4$ using current K_S BRs	-9 ± 12	15 ± 9	Average of direct measurements: 16.7 ± 2.3

V_{us} from kaon decays: Experimental status - M. Moulson - FlaviaNet Mini-Workshop - Frascati - 19 May 2007

$BR(K_S \rightarrow \pi e\nu)$ and K_S lifetime

Using tagged K_S beam BR($K_S \rightarrow \pi ev$)/BR($K_S \rightarrow \pi^+\pi^-$) = 10.19(13) × 10⁻⁴

PLB 636 (2006)

KLOE

410 pb⁻¹, averaged with KLOE '02 result (17 pb⁻¹) BR($K_S \rightarrow \pi^+\pi^-$)/BR($K_S \rightarrow \pi^0\pi^0$) = 2.2549(54)

These two measurements completely determine main K_S BRs BR($K_S \rightarrow \pi ev$) = 7.046(91) × 10⁻⁴

PDG

$\tau_{S} = 0.08958(5) \text{ ns}$

From fit to *CP* parameters, does not assume *CPT* Dominated by NA48 '02 and KTeV '03 τ_s values

Recent results on K^{\pm}_{l3} BRs

NA48/2 EPJC 50 (2007) Final results on BR($K^{\pm}e3/\pi\pi^{0}$) and BR($K^{\pm}\mu3/\pi\pi^{0}$) BR($K^{\pm}e3$)/BR($\pi\pi^{0}$) = 0.2496(9)(4) BR($K^{\pm}\mu3$)/BR($\pi\pi^{0}$) = 0.1637(6)(3)

Largest systematic from acceptance/PID corrections Correlation provided

ISTRA+ arXiv:0704.2052 Final value for BR($K^-e3/\pi\pi^0$) submitted for publication BR(K^-e3)/BR($\pi\pi^0$) = 0.2449(4)(14)

Systematics studied by subdivision of large sample

KLOE preliminary

Absolute BR($K^{\pm}e^{3}$) and BR($K^{\pm}\mu^{3}$) measurements Separate measurements for each charge Tagged by $K \rightarrow \mu\nu$ and $K \rightarrow \pi\pi^{0}$: 8 measurements total BR⁽⁰⁾($K^{\pm}e^{3}$) = 5.047(92)% BR⁽⁰⁾($K^{\pm}\mu^{3}$) = 3.310(81)% at $\tau_{\pm}^{(0)}$ = 12.36 ns, with d BR/BR = -0.50 $d\tau_{\pm}/\tau_{\pm}$

K[±] lifetime

Fit to t^* distribution from decay length Use all $K \rightarrow \mu v$ -tagged vertices in drift chamber

τ_{\pm} = 12.367(78) ns

Fit to *K*[±] BR and lifetime measurements

Not possible to fit to only new K^{\pm} data (unlike for K_L)

Only *Kl*3 and *Kl*3/ $\pi\pi^0$ have been measured recently

- *Kl*3 and $\pi\pi^0$ highly correlated in fit
- New measurement of $\pi\pi^0$ is crucial

For channels like $\pi\pi^0$ and $\pi^+\pi^+\pi^-$, fit rests heavily on Chiang '72

- No radiative corrections
- 6 BRs constrained by Σ BR = 1, correlations unavailable

Compared to PDG 2006, our fit:

- Uses new results from NA48/2, ISTRA+, and KLOE (preliminary)
- Does not use BR($\pi^0\pi^0 e\nu$) as a free parameter

Results of fit to K^{\pm} BRs, τ

30 input measurements: 5 older τ values in PDG **KLOE** τ **KLOE** BR($\mu\nu$) KLOE Ke3, Kµ3 BRs with dependence on τ ISTRA+ BR(Ke3/ $\pi\pi^0$) NA48/2 Ke3/ $\pi\pi^{0}$, Kµ3/ $\pi\pi^{0}$ **E865** BR(*Ke3/K*Dal) 6 Chiang '72 BRs **3 old BR**($\pi\pi^0/\mu\nu$) 2 old BR(*Ke*3/2 body) 3 Kµ3/Ke3 (2 old) 2 old + 1 KLOE results on 3π 1 constraint: Σ BR = 1

Parameter	Value	S
BR(μν)	63.442(145)%	1.3
$BR(\pi\pi^0)$	20.701(108)%	1.3
BR(<i>ππ</i> π)	5.5921(305)%	
BR(Ke3)	5.121(38)%	1.6
BR(<i>K</i> μ3)	3.3855(203)%	1.2
$BR(\pi\pi^0\pi^0)$	1.7592(234)%	1.1
$ au_{\pm}$	12.3840(213) ns	1.8

*χ*²/**ndf = 49/24** (Prob = 0.21%)

compare PDG '06: 30.0/19 (5.2%)

Improves to χ^2 **/ndf = 31.3/20** (5.1%) with no changes to central values or errors, if 5 older τ_+ measurements

replaced by PDG avg (with S = 2.1)

Comparison: K^{\pm} BR fit vs. input data

Evolution of K^{\pm} BRs

V_{us} from kaon decays: Experimental status - M. Moulson - FlaviaNet Mini-Workshop - Frascati - 19 May 2007

Current data on K_{e3} form-factor slopes

	Туре	$\lambda'_{+} imes 10^{3}$	$\lambda''_{+} imes 10^{3}$	Analysis
KTeV PRD 70 (2004)	K _L	21.7 ± 2.0	2.9 ± 0.8	t_{\perp}^{π}
KLOE PLB 636 (2006)	K _L	25.5 ± 1.8	1.4 ± 0.8	t from K_S
NA48 PLB 604 (2004)	K	28.0 ± 2.4	0.4 ± 0.9	$(E_{\nu}^{*}, t_{\text{low}}, t_{\text{high}})$
ISTRA+ PLB 581 (2004)	K -	24.9 ± 1.7	1.9 ± 0.9	(<i>y</i> , <i>z</i>) 2C fit

K_{e3} slopes: Quadratic fits

Current data on $K_{\mu3}$ form-factor slopes

	$\lambda'_{+} imes 10^{3}$	$\lambda''_{+} imes 10^{3}$	$\lambda_0 imes 10^3$	Analysis
KTeV PRD 70 (2004)	17.0 ± 3.7	4.4 ± 1.5	12.8 ± 1.8	$(t_{\perp}{}^{\mu},M_{\pi\mu})$
KLOE preliminary	25.6 ± 1.8	1.4 ± 0.8	15.6 ± 2.6	E_{ν}^{*} + <i>Ke</i> 3 result
NA48 PLB 647 (2007)	20.5 ± 3.3	2.6 ± 1.3	9.5 ± 1.4	(y, z) low
ISTRA+ PLB 589 (2004)	23.0 ± 6.4	2.3 ± 2.3	17.1 ± 2.2	(<i>y</i> , <i>z</i>) 2C fit

Fit to K_{l3} form-factor slopes

*e*3-*µ*3 averages from **KLOE KTeV ISTRA**+ **NA48**

Fit to K_{l3} form-factor slopes

*e*3-*µ*3 averages from **KLOE KTeV ISTRA**+ **NA48**

*Kl*3 fit, no NA48 *K* μ 3: χ ²=12.2/10 (27.1%)

Fit to K_{I3} form-factor slopes

*e*3-*µ*3 averages from **KLOE KTeV ISTRA**+ **NA48**

*Kl*3 fit, no NA48 *K* μ 3: χ^2 =12.2/10 (27.1%) *Kl*3 fit, all data, χ^2 =53/13 (10⁻⁶)

*K*_{*l*3} form-factor slopes: Fit results

Although compatibility poor, no *a priori* reason to exclude NA48 $K\mu$ 3 data Inconsistency parameterized by scale factors for fit results

Slope parameters \times 10 ³ :		Int	egrals
$\lambda'_{+} = 24.82 \pm 1.10$	S = 1.4	$I(K^0e3)$	0.15454(29)
$\lambda_{+} = 1.64 \pm 0.44$ $\lambda_{0} = 13.38 \pm 1.19$ $\lambda_{0} = 13.38 \pm 1.19$	S = 1.3 S = 1.9	$I(K^+e3)$	0.15889(30)
χ^2 /ndf = 53/13 (10 ⁻⁶)		$I(K^0\mu 3)$	0.10209(31)
		$I(K^+\mu 3)$	0.10504(32)
Correlation coefficients:			

These results used to evaluate $|V_{us}| f_{+}(0)$ for all modes

SU(2) and EM corrections

$$\Delta^{SU(2)} = \begin{cases} 0 & \text{for } K^0 l 3 \\ +2.31(22)\% & \text{for } K^+ l 3 \end{cases}$$
 Cirigliano et al. '02
ChPT

 $\Delta^{\rm EM}$ for full phase space - all measurements assumed fully inclusive

Δ^{EM}	Cirigliano	Neufeld	Andre
	ChPT	ChPT	Had. model
K^0e3	+0.52(10)%	+0.57(15)%	+0.65(15)%
<i>K</i> ⁺ <i>e</i> 3	+0.03(10)%	+0.08(15)%	
$K^0\mu 3$		+0.80(15)%	+0.95(15)%
$K^+\mu 3$		-0.12(15)%	

For this evaluation, use new ChPT estimates (Neufeld) for Km3 channels Need common set of definitive values for Δ^{EM} with correlation matrix

 $|V_{\mu s}| f_{+}(0)$ from K_{l3} data

Average: $|V_{us}| f_{+}(0) = 0.21687(46)$ $\chi^2/ndf = 6.0/4 (20.2\%)$

$$|V_{us}| f_{+}(0): K^{\pm}$$
 vs. $K_{L,S}$

Fit 5 modes with separate values of $|V_{us}| f_+(0)$ for K^{\pm} and K_{LS} modes

- Using results of overall fit to form-factor slopes
- With SU(2) corrections for K^{\pm} modes [$\Delta^{SU(2)}_{\text{th}} = 2.31(22)\%$]

$$K^{\pm} \text{ modes} \qquad \longleftrightarrow \qquad K_{L,S} \text{ modes} \\ |V_{us}|f_{+}(0) = 0.21856(88) \qquad \longleftrightarrow \qquad |V_{us}|f_{+}(0) = 0.21641(50)$$

2.25 σ difference

 χ^2 /ndf = 0.90/3 (83%) ρ = 0.12

When fit performed without SU(2) corrections for K^{\pm} modes, obtain an experimental value for $\Delta^{SU(2)}$

 K^{\pm} modes, no SU(2) $|V_{us}|f_{+}(0) = 0.22362(76)$

$$\Delta^{SU(2)}_{exp} = 3.33(39)\%$$

K_{l3} data and lepton universality

For each state of kaon charge, we evaluate:

$$r_{\mu e} = \frac{(R_{\mu e})_{\text{obs}}}{(R_{\mu e})_{\text{SM}}} = \frac{\Gamma_{\mu 3}}{\Gamma_{e3}} \cdot \frac{I_{e3} (1 + \delta_{e3})}{I_{\mu 3} (1 + \delta_{\mu 3})} = \frac{[|V_{us}| f_{+}(0)]_{\mu 3, \text{ obs}}^{2}}{[|V_{us}| f_{+}(0)]_{e3, \text{ obs}}^{2}} = \frac{(G_{F}^{\mu})^{2}}{(G_{F}^{e})^{2}}$$

$$K^{\pm} \text{ modes}$$

$$r_{\mu e} = 1.0029(80)$$

$$J_{\text{Sing 2004 BRs}^{*}}$$

$$r_{\mu e} = 1.019(13)$$

$$Average$$

$$(\text{incl. } \rho = 0.13)$$

$$r_{\mu e} = 1.0036(49)$$

$$I_{\mu e} = 1.0036(49)$$

Compare sensitivity from $\pi \rightarrow l\nu$ decays:

 $(r_{e\mu})_{\pi l2} = 0.9966(30)$ see Erler, Ramsey-Musolf '06

*Assuming current values for form-factor slopes and $\Delta^{\rm EM}$

V_{us} from kaon decays: Experimental status - M. Moulson - FlaviaNet Mini-Workshop - Frascati - 19 May 2007

Leutwyler & Roos estimate (LR 84) still widely used: $f_+(0) = 0.961(8)$ Lattice evaluations generally agree well with this value $|V_{us}|$ from K_{l3} data and CKM unitarity

$$K_{l3}$$
 average: $|V_{us}| f_{+}(0) = 0.21687(46)$

Leutwyler & Roos '84 $f_{+}(0) = 0.961(8)$

Conventional choice for value of $f_+(0)$ until a definitive evaluation becomes available

K_{l3} average: $|V_{us}| = 0.2257(19)$

Marciano & Sirlin '06Average from $0^+ \rightarrow 0^+ \beta$ decays with recent $|V_{ud}| = 0.97377(27)$ evaluation of EW radiative corrections

$$V_{ud}^{2} + V_{us}^{2} - 1 = -0.0008(10)$$

Compatibility with unitarity -0.8σ

 $V_{ud}, V_{us} \& \mathsf{BR}(K^{\pm} \rightarrow \mu^{\pm}\nu)$

Marciano '04

$$\frac{\Gamma(K^{\pm} \to \mu^{\pm} \nu(\gamma))}{\Gamma(\pi^{\pm} \to \mu^{\pm} \nu(\gamma))} = \frac{|V_{us}|^2 f_K^2 m_K (1 - m_{\mu}^2 / m_K^2)^2}{|V_{ud}|^2 f_{\pi}^2 m_\pi (1 - m_{\mu}^2 / m_{\pi}^2)^2} \times 0.9930(35)$$

Uncertainty from SD virtual corrections

MILC '06 preliminary

$$f_{K}/f_{\pi} = 1.208(2)(^{+7}_{-14})$$

 $N_f = (2+1)_{stag}$ Cancellation of lattice-scale uncertainties

KLOE PLB 636 (2006) BR($K^+ \to \mu^+ \nu(\gamma)$) = 0.6366(17)

Uses $K^- \rightarrow \mu^- \nu$ to tag 2-body *K* decays Counts $K^+ \rightarrow \mu^+ \nu$ from decay-momentum spectrum

Use KLOE BR($K^+ \rightarrow \mu^+ \nu(\gamma)$) instead of value from BR/lifetime fit: Error slightly larger, but radiative contribution under better control

$$V_{us}/V_{ud} = 0.2286(^{+27}_{-15})$$

 $V_{ud}, V_{us} \& \mathsf{BR}(K^{\pm} \rightarrow \mu^{\pm}\nu)$

 $f_+(0)$ from LR 84 $|V_{us}| = 0.2257(19)$ from *Kl*3

Fit results, no constraint:

 V_{ud} = 0.97377(27) V_{us} = 0.2246(16) χ^2/ndf = 0.85/1 (36%)

Fit results, unitarity constraint:

 $V_{ud} = 0.97401(22)$ $V_{us} = 0.2265(9)$ $\chi^2/ndf = 3.04/2 (22\%)$

Agreement with unitarity at 1.2 σ

Summary and outlook

*Kl*3 average: $|V_{us}| f_+(0) = 0.21687(46)$

Prob(χ^2) for fits:

	$K_L BR/\tau$ fit:	4.3% (acceptable)
$ V_{us} f_{+}(0)$ 5-mode avg: 20% (good!)	K^{\pm} BR/ τ fit:	0.21% → 5.3% (marginal)
20% (good!)	Form-factor slopes:	10 ⁻⁶ (terrible!)

- New K^{\pm} rate measurements being finalized/published
- Accuracy of $\Delta^{SU(2)}$ a significant issue for charged modes Some evidence that $\Delta^{SU(2)}$ may be underestimated
- Experimental uncertainty on $|V_{us}| f_+(0)$ at 0.2% level
- Dominant contribution to uncertainty on $|V_{us}|$ still from $f_+(0)$
- With $f_+(0) = 0.961(8)$, first-row unitarity test satisfied at ~1 σ level

KAON '07: What to expect

	K	AON'07 May 21 - 25, 2007
	Home	Program Bulletin Speakers Registration Travel Lodging Participants LOC IAC Events Important date
	Sessio	n I Vus (14:30->19:10) Location: High Energy Building - Aula Bruno Touschek
	14:30	Precision tests of the SM via KI3 decays(30') Vincenzo Cirigliano (Los Alamos)
	15:00	Theoretical progress on Vus extraction from tau decays(30') Antonio Pich (Valencia University, IFIC)
	15:30	Tau hadronic decays and measurement of Vus(20) Swagato Banerjee (University of Victoria)
	15:50	K to pi semileptonic form factor with 2+1 flavor Domain Wall Fermions Andreas Juettner (Univ. of on the lattice(20) Southampton)
NA48/2	16:10	NA48/2 Final results on charged semileptonic kaon decays and Vus(30) Anne Dabrowski (Department of Physics and Astronomy, Northwestern University)
	16:40	Coffee break
	17:00	Dispersive representation and shape of K_{13} form factors.(20) Emilie Passemar (IPN Orsay)
	17:20	Did one observe couplings of right - handed quarks to W?(30) Jan Stern (IPN Orsay)
KLOE	17:50	KLOE measurement of the charged kaon absolute semileptonic BR's (20) Barbara Sciascia (<i>LNF - INFN, Frascati</i>)
ISTRA+	18:10	Measurement of Ke3 branching ratio and study of K to mu nu gamma decay at Viacheslav Duk (INR ISTRA+ setup(20) RAS)
KLOE	18:30	KLOE measurement of the scalar Form-Factor slope for \$K_L \rightarrow \pi Claudio Gatti (LNF - INFN, \mu \nu\$ decay.(20) Frascati)
KLOE	18:50	KLOE measurements of the charged Kaon lifetime and BR(K+ into Paolo Massarotti (Naples University & INFN)

Additional information

Fit to K_L BRs, τ : Comparison to PDG

Parameter	This fit		PDG 2006	
	Value	S	Value	S
Ke3	0.40563(74)	1.1	0.4053(15)	2.1
КµЗ	0.27047(71)	1.1	0.2702(7)	
$3\pi^0$	0.19507(86)	1.2	0.1956(14)	1.9
$\pi^+\pi^-\pi^0$	0.12542(57)	1.1	0.1256(5)	
$\pi^+\pi^-$	1.9966(67) × 10 ⁻³	1.1	1.976(8) × 10 ⁻³	
$2\pi^0$	8.644(42) × 10 ⁻⁴	1.3	8.69(4) × 10 ⁻⁴	1.1
YY	5.470(40) × 10 ⁻⁴	1.1	5.48(5) × 10 ⁻⁴	1.2
τ	51.173(200) ns	1.1	51.14(21) ns	
	18 measurements		17 measurements	
	χ^2 /ndf = 20.2/11 (4.3	3%)	χ^2 /ndf = 14.8/10 (14.0%)	

Fit to K^{\pm} BRs, τ : Comparison to PDG

Doromotor	This fit		PDG 2006	
Parameter	Value	S	Value	S
μν	63.442(145)%	1.3	63.44(14)%	1.2
$\pi\pi^0$	20.701(108)%	1.3	20.92(12)%	1.1
$\pi\pi\pi$	5.5921(305)%		5.590(31)%	1.1
Ke3	5.121(38)%	1.6	4.98(7)%	1.3
КµЗ	3.3855(203)%	1.2	3.32(6)%	1.2
$\pi\pi^0\pi^0$	1.7592(234)%	1.1	1.757(24)%	1.1
$\pi^0\pi^0 e \nu$	Not in fit		$2.2(4) \times 10^{-5}$	
τ	12.3840(213) ns	1.8	12.385(24) ns	2.1
	30 measurements		26 measurements	
	χ^2 /ndf = 49/24 (0.21%)		χ^2 /ndf = 30.0/19 (5	.2%)

K_{l3} form-factor slopes

Hadronic matrix element:

$$\langle \pi | J_{\alpha} | K \rangle = f(0) \times [\tilde{f}_{+}(t)(P+p)_{\alpha} + \tilde{f}_{-}(t)(P-p)_{\alpha}]$$

 $f_{-}(t)$ term only important for $K_{\mu3}$. For $K_{\mu3}$, use $f_{+}(t)$ and $f_{0}(t) = f_{+}(t) + \frac{t}{m_{K}^{2} - m_{\pi}^{2}} f_{-}(t)$

For V_{us} , need integral over phase space of squared matrix element Expand form factor:

Linear: $\tilde{f}_{+,0}(t) = 1 + \lambda_{+,0} [t/m_{\pi^+}^2]$ Quadratic: $\tilde{f}_{+,0}(t) = 1 + \lambda'_{+,0} [t/m_{\pi^+}^2] + 1/2 \lambda''_{+,0} [t/m_{\pi^+}^2]^2$

Fits to *t*-distribution give poor sensitivity to quadratic terms

Polar fit:

$$\tilde{f}_{+,0}(t) = \frac{M_{V,S}^{2}}{M_{V,S}^{2} - t} \qquad \begin{array}{l} \lambda' = (m_{\pi^{+}}/M)^{2} \\ \lambda'' = 2\lambda'^{2} \end{array}$$

V_{us} from kaon decays: Experimental status - M. Moulson - FlaviaNet Mini-Workshop - Frascati - 19 May 2007

 $z=2E_{\pi}/M_{K}$

1.0

0.9

e

k' v

W

 $K \rightarrow \pi e \nu$

Without f(t)

0.8

with f(t)

5 g(z)

0.6

0.7

K_{e3} slopes: Quadratic vs. pole fits

Beyond quadratic and pole fits

Hill, PRD 74 (2006):

Power series expansion based on analyticity of form factors Constraints from crossing symmetry, e.g., bounds on $f_+(t)$ from $\tau \rightarrow K \pi \nu$ data Rigorous estimate of error from truncation of series expansion

KTeV PRD 74 (2006) Refit *Ke*³ data using Hill parameterization $I(K^0e^3) = 0.15392(48)_{exp}(6)_{th}$

Bernard et al., PLB 638 (2006):

Dispersion relation for $\ln f_0(t)$ subtracted at t = 0 and $t = m_K^2 - m_\pi^2$, giving:

$$f_0(t) = \exp\left[\frac{t}{m_K^2 - m_\pi^2} \left(\ln C - G(t)\right)\right]$$

G(t) evaluated using $K\pi$ scattering data and given as a polynomial

1 fit parameter: ln *C* = ln $f_0(m_K^2 - m_{\pi}^2)$ Value of ln *C* a test for right-handed quark currents

NA48 PLB 647 (2007) From new analysis of $K\mu 3$ form-factor slopes In C = 0.1438(138)

 $|V_{us}|f_{+}(0): K_{L.S}$ VS. K^{\pm}

Using separate fit results for form-factor slopes:

K^{\pm} only, e3 and μ 3:		
ISTRA+ <i>e</i> 3, μ3		
λ'_{+}	=	24.80 ± 1.54
λ''_+	=	1.94 ± 0.86
λ_0	=	16.76 ± 1.20
χ²/ndf	=	0.100/2 (95%)
<i>I(Ke</i> 3)	=	0.15910(32)
<i>I</i> (<i>K</i> µ3)	=	0.10595(30)

 K_L only, e3 and μ 3: KTeV avg, KLOE avg, NA48 e3, μ 3 $\lambda'_+ = 23.73 \pm 1.74 \ (S=1.7)$ $\lambda''_+ = 2.07 \pm 0.65 \ (S=1.6)$ $\lambda_0 = 11.49 \pm 1.41 \ (S=1.8)$ $\chi^2/\text{ndf} = 30.4/8 \ (0.02\%)$

I(Ke3) = 0.15428(48) $I(K\mu3) = 0.10156(43)$

With *SU*(2) corrections for K^{\pm} modes:

 $|V_{us}|f_{+}(0) = 0.21800(87)$ $\chi^{2}/ndf = 0.298/1 (59\%)$

 $|V_{us}|f_{+}(0) = 0.21670(57)$ χ^2 /ndf = 2.01/2 (37%)

With NO *SU*(2) corrections for K^{\pm} modes:

 $|V_{us}|f_{+}(0) = 0.22304(76)$

$$\Delta^{SU(2)}_{exp} = 2.93(43)\%$$

Results without NA48 *Kµ*3 slopes

Slope parameters \times 10 ³	Integrals
$\lambda'_{+} = 24.95 \pm 0.83$	$I(K^0 e^3)$ 0.15457(21)
$\lambda''_{+} =$ 1.59 ± 0.36	<i>I</i> (<i>K</i> ⁺ <i>e</i> 3) 0.15892(21)
$\lambda_0 = 16.01 \pm 0.79$	$I(K^0\mu 3)$ 0.10268(20)
χ^2 /ndf = 12.2/10 (27.1%)	$I(K^+\mu 3)$ 0.10565(21)
$ V_{us} f_{+}(0)$	<i>Kl</i> 3 average
<i>K_Le</i> 3 0.21636(53)	$ V_{us} f_{+}(0) = 0.21666(42)$ $\chi^2/ndf = 5.0/4 (28.5\%)$
$K_L \mu 3$ 0.21616(61) $K_S e 3$ 0.21552(142)	$K^+ - K^0 \text{ diff.: } 2.1\sigma$ $\Lambda^{SU(2)} = 3.27(39)\%$ $r_{\mu e} = 0.9981(45)$
K+e30.21841(100)K-μ30.21812(92)	$ V_{us} = 0.2255(19)$