

M. Dreucci, LNF/INFN for the KLOE collaboration

Frascati, 18 may, 2007

M. Dreucci

Outline

- Introduction
- KLOE detector
- Inclusive Ke3(γ) selection
- Efficiency. Corrections from control sample (CS)
- Ke3γ signal selection
- Efficiency. Correction from CS
- Monte Carlo reliability
- Fit
- Systematics
- Results
- Conclusion

Introduction

- We measure $R = BR(Ke3\gamma; E^*_{\gamma}>30 \text{ MeV}, \theta^*_{lep-\gamma}>20^\circ) / BR(Ke3(\gamma)),$ using a 328 pb^{-1} 2001-2002 data sample ;
- Both IB and DE emission contribute to R;
- Separation between IB and DE never measured^(*); for the first time the DE contribution is measured ;
- What needs : $E_{\gamma}^{*}-\theta_{ele-\gamma}^{*}$ analysis + low BKG

The KLOE detector

- Be beam pipe (spherical, 10 cm \emptyset , 0.5 mm thick ;
- Drift chamber (\emptyset =4 m, L=3.3 m); 90%He+10%lsoB, X₀=900m ; 2582 s.w.; $\sigma(p_t)/p_t = 0.4\%$, $\sigma(M_{\pi\pi}) \sim 1$ MeV; $\sigma_{hit} \sim 150 \ \mu m (xy)$, $\sim 2 \ mm (z)$; $\sigma_{vertex} \sim 1 \ mm$
- Electromagnetic calorimeter Lead/scintillating fibers 4880 PMT's ; $\sigma_E / E = 5.7 \% / \sqrt{E(GeV)}$; $\sigma_t = 54 \text{ ps} / \sqrt{E(GeV)} \oplus 100 \text{ ps}$; $\sigma_L(\gamma\gamma) \sim 1.5 \text{ cm} (\pi^0 \text{ from } K_L \rightarrow \pi^+\pi^-\pi^0)$

• **Superconducting coil**: *B* = 0.52 T

M. Dreucci

Inclusive Ke3(γ) sample selection

- Tag: $K_{S} \rightarrow \pi^{+}\pi^{-};$
- **Tracking** : distance $< f(r_{XY})$ w.r.t. K direction;
- Vertex inside FV=(35-150)xy and 120z;
- TCA: track-cluster distance < 30 cm
- Kinematic cuts: $(E_{miss} p_{miss})$ in different mass hypo -> ~ 12 % bkg
- **PID** with TOF : $\Delta t_i = t_{CLU} t_{EXP}(m)$

After selection ~ $2 \times 10^{6} \text{ K}_{e^{3(\gamma)}}$ bkg = 0.7 %

M. Dreucci

Efficiency

• All efficiencies (TRK, VTX, CLU and TCA) are checked and corrected from different control samples:

- trk+vtx (~54%) : $CS = \pi^{+}\pi^{-}\pi^{0}$ (98%) + K_{e3}(95%) --> $\delta\epsilon \sim 2\%$
- tca (~70%) : $CS = K_{e^3}(99.5\%)$ $--> \delta\epsilon \sim 1\%$ for e^{\pm} $--> \delta\epsilon \sim 3\%$ and 30% diff. for π^- and π^+

K_{e3y} signal selection

- Looks for a photon within $8\sigma_{R}$ from the K_charged vertex and $E_{CLU-\gamma} > 25$ MeV
- Uses the cluster position to close the kinematic and evaluate the photon energy :

$$p_{v}^{2} = 0 = (p_{\kappa}^{2} - p_{\pi}^{2} - p_{e}^{2} - p_{\gamma}^{2})^{2}$$

Rejection of accidentals

M. Dreucci

Control sample from $\pi^+\pi^-\pi^0$

- Needed to correct NV-CHV distance, E_{CLU}, efficiency and train neural net
- We require:
 - 1- narrow window on missing mass
 - 2- tight kinematic cuts
 - 3- one hard tagging $\boldsymbol{\gamma}$

 E_{γ} evaluation in the same way as in $K_{e^{3\gamma}}$ selection

• The tagged photon reconstruction is similar to the photon energy reconstruction for the signal

$$p_{\gamma-\text{hard}}^{2} = 0 = (p_{\kappa} - p_{\pi} - p_{\pi} - p_{\gamma})^{2}$$
$$p_{\nu}^{2} = 0 = (p_{\kappa} - p_{\pi} - p_{e} - p_{\gamma})^{2}$$

P~ 99.8%

CS: DT-MC comparison

• Efficiency correction from CS < 2%

Monte Carlo reliability

• $BR(K_{e3y})$ is largely dominated by the IB, while the SD contribution via IB-SD interference is $\sim 1\%$ level (the pure SD rate is negligibly). SD e ects becomes more significant at high energy, but the number of events is IB Kubis / IB Kloe severely reduced. 1.8 1.6 • KLOE MC ⁽¹⁾, $\mathcal{O}(p^2)$ accuracy ~ few % for K_{e3y} 1.4 1.2after integration, but DE contribution $\sim 1\%$ IB 1 -> δ(DE)~100% 0.8 We use a stand alone MC production for IB 0.6 and DE, $O(p^6)$ (2) 0.4 $E_{v}^{*}(MeV)$ 0.2 (1) C.Gatti, "Monte Carlo Simulation for radiative kaon decay" Eur.Phys. J C45 (2006) 417 0 140 160 80 100 2060 120 180 0 ⁽²⁾ J. Gasser, B. Kubis, N. Paver, M. Verbeni KUBIS-MC~14 mill, KLOE-MC~270000 Eur.Phys. J C40 (2005) 205

Signal counting : fitting with MC shapes

 $\mathbf{A} \mathbf{\theta}^*$

 $9 \times 9 \text{ bin}^2$

B2 reduction

- NN output to remove B2 background :
- $K\mu3$: trained with calorimetric informations (centroid, p/E)
- $\pi^+\pi^-\pi^0$: trained with kinematic informations

Fit result

- Inputs => 4 MC shapes
- free parameters = IB + B1 + DE normalization
- fixed = B2, from MC normalized to Data
- **Goodness of fit** => $\chi^2/dof = 60/69$

DE contribution

• The information on the SD terms is contained in the e ective strength $\langle X \rangle^{(1)}$ that multiplies $f(E_{y}^{*})$, defined in the formula :

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\mathrm{E}^{*}_{\gamma}} = \frac{\mathrm{d}\Gamma}{\mathrm{d}\mathrm{E}^{*}_{\gamma}} + \langle \mathrm{X}\rangle f(\mathrm{E}^{*}_{\gamma})$$

- The authors⁽¹⁾ quote, in *ChPT@O*(p^6): $\langle X \rangle = -1.2 \pm 0.4$
- From IB and DE counting, taking into account the different efficiency for IB and DE photons, KLOE measures :

KLOE:
$$\langle X \rangle = (-2.3 \pm 1.3_{stat})$$

⁽¹⁾ Gasser J. et al, Eur.Phys. J C40 (2005) 205

M. Dreucci

Systematics		
Source 1	$10^5 \times \Delta \mathbf{R}$	ΔΧ
 Tagging 	4.0	0.7
 Tracking 	1.5	0.8
• TCA ~	5.5	0.1
• Kine. cut	~0	~0
 TOF cut 	1.3	0.5
• P-miscal	3.5	0.2
• P-resol.	7.2	0.4
• FV	3.0	0.5
• Rejection of acc.	5.2	0.4
 NV acceptance 	2.9	0.3
 BKG rejection 	9.0	0.1
TOTAL	15.5	1.4

Results

 $\langle X \rangle = -1.2 \pm 0.4$

M. Dreucci

DE result: comparison with KTeV

- KTeV measurement refers to a phenomenological model for DE, the FFS model ⁽¹⁾, based on four parameters. No enough sensitivity to measure all parameters -> *soft kaon approximation*
- Gasser J. relates the $\langle X \rangle$ parameters with the FFS parameters :

 $\langle X \rangle = 1.4 \langle A \rangle + 0.4 \langle B \rangle + \langle C \rangle + 0.4 \langle D \rangle + 1.5 M_{K}^{2} f_{+}(0) = -1.2$ -1.9 +0.1 +0.1 -0.1 +0.6

where $\langle ... \rangle$ are the structure-dependent terms ;

In the *soft kaon approximation* (A=B=0) KTeV ⁽²⁾ measures:

 $C = -5 \pm 10$, $D = 5 \pm 20$

KTeV measurement does not allow one to draw a definitive conclusion on $\langle X \rangle$

⁽²⁾ A. Alavi-Harati et al., Phys.Rev.D64 (2001)

M. Dreucci

⁽¹⁾ Fearing, Fishbach, Smith; for example *Fearing et al.*, Phys.Rev.D2 (1970)

• **DE** : this is a first measurement of DE contribution; it is in agreement with $ChPT@O(p^6)$ prediction ;

- **R**: our accuracy on R is not sufficient to solve experimental disagreement ;
- KLOE uses only 1/5th of whole statistic (a 3σ significance for DE could be achieved);
- We thank *B. Kubis* for the use of his Monte Carlo generator code

M. Dreucci

Ke3 radiative BR

20

CS: efficiency correction

shape correction

global correction

M. Dreucci

MC-Data comparison

After photon selection

M. Dreucci