

Radiative corrections for the $e^+e^- \rightarrow e^+e^-$, $\mu^+\mu^-$, $\pi^+\pi^-$, $\gamma\gamma$ processes

Alexei Sibidanov

A.L.Sibidanov@inp.nsk.su

BINP - Novosibirsk

Beijing, China - October, 2008 – p. 1/27

Large Angle Bhabha Scattering

- 6 The first order $\frac{\alpha}{\pi}$ is taken into account exactly.
- 6 All orders of large leading logarithms $\left(\frac{\alpha}{\pi}L\right)^n$ are calculated by means of the Structure Function method, where $L = \ln \frac{s}{m_e^2}$ is large logarithm.

Estimated accuracy \leq 0.2%

Primary integral for $e^+e^- \rightarrow e^+e^-\gamma$

$$\frac{\mathrm{d}\sigma^{e^+e^-(\gamma)}}{\mathrm{d}\Omega_-} = \int_{z_1}^1 \mathrm{d}z_1 \int_{z_2}^1 \mathrm{d}z_2 \ \mathcal{D}(z_1)\mathcal{D}(z_2) \frac{\mathrm{d}\tilde{\sigma}_0(z_1, z_2)}{\mathrm{d}\Omega_-} \left(1 + \frac{\alpha}{\pi} K_{SV}\right) \Theta$$

$$\times \int_{y_{\text{th}}}^{Y_1} \frac{\mathrm{d}y_1}{Y_1} \int_{y_{\text{th}}}^{Y_2} \frac{\mathrm{d}y_2}{Y_2} \,\mathcal{D}(\frac{y_1}{Y_1}) \mathcal{D}(\frac{y_2}{Y_2}) - \text{Compensators}$$

$$-\frac{\mathrm{d}\tilde{\sigma}_{0}}{\mathrm{d}\Omega_{-}}\frac{8\alpha}{\pi}\ln(\mathrm{ctg}\frac{\theta}{2})\ln\frac{\Delta\varepsilon}{\varepsilon} + \frac{\alpha^{3}}{2\pi^{2}s}\int\frac{WT}{4}\Theta\frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega_{-}}$$

$$\pi-\theta_{0}>\theta>\theta_{0}$$

 $\mathcal{D}(z)$ – structure function giving probability for electron to have an energy $E_e = z \times E_{beam}$ without angular dependency.

Shifted Born cross-section

$$\begin{aligned} & \ln \text{quasi-real electron approximation considering process} \\ & e^{-}(z_{1}p_{-}) + e^{+}(z_{2}p_{+}) \longrightarrow e^{-}(\tilde{p}_{-}) + e^{+}(\tilde{p}_{+}) \\ & \frac{\mathrm{d}\tilde{\sigma}_{0}(z_{1}, z_{2})}{\mathrm{d}\Omega_{-}} = \frac{4\alpha^{2}}{sa^{2}} \left\{ \frac{1}{|1 - \Pi(\tilde{t})|^{2}} \left[\frac{a^{2} + z_{2}^{2}(1 + c)^{2}}{2z_{1}^{2}(1 - c)^{2}} = \frac{5}{2} \right] \\ & + \frac{1}{|1 - \Pi(\tilde{s})|^{2}} \left[\frac{z_{1}^{2}(1 - c)^{2} + z_{2}^{2}(1 + c)^{2}}{2a^{2}} = \frac{1}{4} \right] \\ & - \operatorname{Re} \frac{1}{(1 - \Pi(\tilde{t}))(1 - \Pi(\tilde{s}))^{*}} \left[\frac{z_{2}^{2}(1 + c)^{2}}{az_{1}(1 - c)} = \frac{1}{2} \right] \right\} \end{aligned}$$

where $a = z_1 + z_2 + (z_1 - z_2)c$. Red numbers for $d\tilde{\sigma}_0(1, 1)$ at 90 degree.

Beijing, China - October, 2008 – p. 4/27

Calculating integral

To merge one photon and \mathcal{D} -function we have to introduce auxiliary parameters:

6 $\omega/\varepsilon < \Delta$ – soft and virtual region, hard photon $\omega/\varepsilon > \Delta$

6
$$\frac{1}{\gamma} \ll \theta_0 \sim \frac{1}{\sqrt{\gamma}} \ll 1 - \text{collinear region}$$

And we also need to introduce compensator to subtract first order nonleading part integrating outside collinear region from \mathcal{D} -function because we already have this part in one photon.

Singularities isolation

Primary integral is taken by Monte Carlo method \Rightarrow isolate singularities to increase generator efficiency.

Beijing, China - October, 2008 – p. 6/27

Selection criteria

- $|\Delta \theta| < 0.25$ rad, where $\Delta \theta = \theta_+ + \theta_- \pi$
- 6 $|\Delta \phi| < 0.15$ rad, where $\Delta \phi = |\phi_+ \phi_-| \pi$
- 6 $1.1 < \theta_{\text{average}} < \pi 1.1$, where $\theta_{\text{average}} = (\theta_+ \theta_- + \pi)/2$
- $\circ P_{\text{tran}}^{\pm} > 90 \text{ MeV/c}$

This selections are used in the pictures below unless otherwise pointed

Beijing, China - October, 2008 – p. 8/27

Beijing, China - October, 2008 - p. 9/27

Comparison with one photon

Cross section difference for one photon emission and high order contributions depend on $\Delta\theta$

Beijing, China - October, 2008 – p. 10/27

 $|\Delta \theta| < 1$ rad, $|\Delta \phi| < \pi$ rad

Comparison with BHWIDE

Comparison with BHWIDE

Comparison with BHWIDE & Babayaga

Cross section difference with Cross section difference with BHWIDE depend on $\Delta \theta$ Babayaga v.3.5 depend on $\Delta \theta$

Cross section difference with Cross section difference with BHWIDE depend on $\Delta\phi$ Babayaga v.3.5 depend on $\Delta\phi$

Muon pair production

A.Arbuzov, E.Kuraev *et al.*, JHEP 97 10(1997) 001 Eur. Phys. J. C 46, 689 (2006)

- 6 The first order $\frac{\alpha}{\pi}$ is taken into account exactly.
- The contribution of higher orders was considered in the leading logarithmic approximation.

Estimated accuracy \leq 0.2%

Beijing, China - October, 2008 - p. 17/27

Comparison with KKMC

Beijing, China - October, 2008 - p. 19/27

Pion production

A.Arbuzov, E.Kuraev *et al.*, JHEP 97 10(1997) 006 Eur. Phys. J. C 46, 689 (2006)

- 6 The first order $\frac{\alpha}{\pi}$ is taken into account exactly.
- 6 The contribution of higher orders was considered in the leading logarithmic approximation.
- 6 Considering the pseudoscalar mesons as point like objects.
- Vacuum polarization corrections (by hadrons and leptons) are included in the pion form factor as usually.

Estimated accuracy $\leq 0.2\%$

Beijing, China - October, 2008 – p. 21/27

Comparison with Babayaga v3.5

$\gamma\gamma$ production

A.Arbuzov, E.Kuraev et al., JHEP 97 10(1997) 001

- 6 The first order $\frac{\alpha}{\pi}$ is taken into account exactly.
- 6 The contribution of higher orders was considered in the leading logarithmic approximation.
- Solution No vacuum polarization → cross check with Bhabha luminosity determination

Estimated accuracy \leq 0.2%

Photon vacuum polarization

$$\Pi(s) = \Pi_l(s) + \Pi_h(s)$$
$$\Pi_l(s) = \frac{\alpha}{\pi} \Pi_1(s) + \left(\frac{\alpha}{\pi}\right)^2 \Pi_2(s) + \dots$$
$$\Pi_h(s) = \frac{s}{4\pi^2 \alpha} \left[\text{PV} \int_{4m_\pi^2}^{\infty} \frac{\sigma^{e^+e^- \to \text{hadrons}}(s')}{s' - s} \text{d}s' - i\pi \sigma^{e^+e^- \to \text{hadrons}}(s) \right]$$

- 6 Analytical expression of $\Pi_l(s)$ is well known.
- 6 We used the most precise $e^+e^- \rightarrow \text{hadrons}$ data for $\Pi_h(s)$ calculation.

Photon vacuum polarization

Contribution to VP from lep- Difference in VP when tons and hadrons "dressed" and "bare" hadron cross-sections are used

- 6 Codes for calculation of $e^+e^- \rightarrow e^+e^-\gamma$, $\mu^+\mu^-\gamma$, $\pi^+\pi^-\gamma$ cross-sections with precision \leq 0.2% have been written and tested
- No dependencies on auxiliary parameters within claim precision in wide range
- 6 Good agreement with BHWIDE for $e^+e^- \rightarrow e^+e^-\gamma$ process and with KKMC for $e^+e^- \rightarrow \mu^+\mu^-\gamma$ process have been shown
- 6 No program for the $e^+e^- \rightarrow \pi^+\pi^-\gamma$ process with the same or better precision
- 6 Vacuum polarization calculation is based on the most precise e^+e^- data
- 6 Code can be downloaded at Beijing, China October, 2008 p. 27/27