Non-perturbative computation of Λ_{QCD} in the 2-flavour theory

Rainer Sommer, ALPHA Collaboration

DESY, Zeuthen

EURIDICE collaboration meeting, Frascati, February 2005

(日) (日) (日)

What do we want

< 注▶ < 注▶

The Collaboration

DESY, Zeuthen	H. Simma, R. Sommer, S. Dürr, D. Guazzini, B. Leder
NIC, Zeuthen	K. Jansen, I. Wetzorke, A. Shindler
Humboldt Univ. Berlin	U. Wolff, M. Della Morte, F. Knechtli, J. Rolf, R. Hoffmann, A. Jüttner
DESY, Hamburg	H. Wittig, C. Pena, J. Wennekes
Univ. Münster	J. Heitger, P. Fritzsch
Univ. Madrid	S. Sint
Univ. Milano	R. Frezzotti
Univ. Roma II	A. Vladikas, M. Guagnelli,
	P. Dimopoulos, F. Palombi

http://www-zeuthen.desy.de/alpha/

In this talk

Concentrate on the determination of the Λ parameter

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Determinations of $\alpha_{s}(\mu) = \alpha_{\overline{MS}}$

involve various theoretical assumptions/approximations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Determinations of $\alpha_{\rm s}(\mu) = \alpha_{\overline{\rm MS}}$

- involve various theoretical assumptions/approximations
- most notably: PT is always needed:
 - $-\alpha_{\overline{\rm MS}}(\mu)$ is only defined perturbatively;

 \longrightarrow makes sense when it is small

◆□ > ◆□ > ◆ □ > ◆ □ > □ > ● ○ ○ ○

Determinations of $\alpha_{\rm s}(\mu) = \alpha_{\overline{\rm MS}}$

involve various theoretical assumptions/approximations

most notably: PT is always needed:

 $-\alpha_{\overline{\mathrm{MS}}}(\mu)$ is only defined perturbatively;

 \longrightarrow makes sense when it is small

(日) (문) (문) (문) (문)

▶ potential for determinations of $\alpha_s(\mu)$ from Lattice QCD

- rather weak assumptions are necessary
- potentially very precise results can be obtained
- only way to compute $\alpha_{\overline{\text{MS}}}(M_Z)$ with experimental input from low energy QCD (hadron spectrum)
- Comparison to $\alpha_{\overline{\rm MS}}(M_Z)$ from LEP-data or HERA at high $Q^2 \longrightarrow$ confirmation that QCD describes both weakly coupled quarks/gluons and hadrons
- Continuous progress (+ sometimes a little jump)
 - on the technical problems
 - in computer technology

$$\begin{array}{rcl} \mathsf{RGE} & \mu \frac{\partial \bar{g}}{\partial \mu} & = & \beta(\bar{g}) & \bar{g}(\mu)^2 = 4\pi\alpha(\mu) \\ & \beta(\bar{g}) & \stackrel{\bar{g}\to 0}{\sim} & -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \dots \right\} \\ & b_0 & = & \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_{\mathrm{f}} \right) \end{array}$$

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

RGE

$$\mu \frac{\partial \bar{g}}{\partial \mu} = \beta(\bar{g}) \qquad \bar{g}(\mu)^2 = 4\pi\alpha(\mu)$$

$$\beta(\bar{g}) \stackrel{\bar{g} \to 0}{\sim} -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \dots \right\}$$

$$b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_f \right)$$

イロト イヨト イヨト イヨト

-2

• exact equation for Λ $(\bar{g} \equiv \bar{g}(\mu))$

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} e^{-1/2b_0 \bar{g}^2} \exp\left\{-\int_0^{\bar{g}} dg \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g}\right]\right\}$$

RGE

$$\mu \frac{\partial \bar{g}}{\partial \mu} = \beta(\bar{g}) \qquad \bar{g}(\mu)^2 = 4\pi\alpha(\mu)$$

$$\beta(\bar{g}) \stackrel{\bar{g}\to 0}{\sim} -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \ldots \right\}$$

$$b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_{\rm f} \right)$$

・回・ ・ヨ・ ・ヨ・

-2

• exact equation for Λ $(\bar{g} \equiv \bar{g}(\mu))$

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} e^{-1/2b_0 \bar{g}^2} \exp\left\{-\int_0^{\bar{g}} dg \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g}\right]\right\}$$

trivial scheme dependence:

$$\Lambda_a/\Lambda_b = \exp\{c_{a,b}/(4\pi b_0)\}, \qquad \alpha_a = \alpha_b + c_{a,b}\,\alpha_b^2 + \mathcal{O}(\alpha_b^3)$$

RGE

$$\mu \frac{\partial \bar{g}}{\partial \mu} = \beta(\bar{g}) \qquad \bar{g}(\mu)^2 = 4\pi\alpha(\mu)$$

$$\beta(\bar{g}) \stackrel{\bar{g} \to 0}{\sim} -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \dots \right\}$$

$$b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_f \right)$$

- 4月 - 4日 - 4日 - -

• exact equation for Λ $(\bar{g} \equiv \bar{g}(\mu))$

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} e^{-1/2b_0 \bar{g}^2} \exp\left\{-\int_0^{\bar{g}} dg \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g}\right]\right\}$$

trivial scheme dependence:

 $\Lambda_{a}/\Lambda_{b} = \exp\{c_{a,b}/(4\pi b_{0})\}, \qquad \alpha_{a} = \alpha_{b} + c_{a,b} \alpha_{b}^{2} + \mathcal{O}(\alpha_{b}^{3})$

use a suitable physical coupling (scheme) and compute Λ
 Requires non-perturbative computation of β(ḡ)

Physical couplings

- what is a non-perturbatively defined coupling

Example

$$F(\mathbf{r}) = \frac{4}{3} \frac{1}{r^2} \left\{ \alpha_{\overline{\text{MS}}}(\mu) + c_1 [\alpha_{\overline{\text{MS}}} bar(\mu)]^2 + \dots \right\}, \quad \mu = 1/r$$
$$\equiv \frac{4}{3} \frac{1}{r^2} \alpha_{qq}(\mu)$$

▲圖▶ ▲屋▶ ▲屋▶

-2

Physical couplings: their properties

- defined for all energies μ
- independent of the regularization procedure
 i.e. (on the lattice) the continuum limit can be taken
- any one of them defines a renormalization scheme
- \blacktriangleright the usual perturbative properties when α is small, e.g.

$$\alpha_{a}(\mu) = \alpha_{b}(\mu) + c_{a,b} [\alpha_{b}(\mu)]^{2} + \dots$$

(also for $a = \overline{\mathrm{MS}}$).

Problem in a lattice computation (α_{aa} as an example)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Problem in a lattice computation (α_{qq} as an example)

Finite size effect as a physical observable; finite size scaling!

《曰》 《聞》 《臣》 《臣》 三臣

Strategy

finite volume coupling $\alpha_{\rm SF}(\mu), \mu = 1/L$ defined at zero quark mass

Result is a value for $\Lambda_{\rm SF}/F_{\pi} = \#$

Schrödinger functional

Lüscher, Narayanan, Weisz & Wolff; Sint

practical finite volume renormalization scheme

Boundary conditions at x₀ = 0:

$$k = 1, 2, 3: \quad A_k(\mathbf{x}) = C_k(\mathbf{x})$$
$$\frac{1}{2}(1 + \gamma_0)\psi(\mathbf{x}) = \rho(\mathbf{x}),$$
$$\overline{\psi}(\mathbf{x})\frac{1}{2}(1 - \gamma_0) = \overline{\rho}(\mathbf{x})$$

(LxLxL box with periodic b.c.)

向下 イヨト イヨト

 $\mathsf{Schrödinger} \ \mathsf{functional} = \int_{\mathrm{fields}} \mathrm{e}^{-\mathcal{S}}$

Schrödinger functional

Lüscher, Narayanan, Weisz & Wolff; Sint

practical finite volume renormalization scheme

- Boundary conditions at x₀ = 0:
 - $egin{array}{rcl} k = 1, 2, 3: & A_k(x) & = & m{C}_k(\mathbf{x}) \ & rac{1}{2}(1+\gamma_0)\psi(x) & = & m{
 ho}(\mathbf{x}), \ & \overline{\psi}(x)rac{1}{2}(1-\gamma_0) & = & ar{m{
 ho}}(\mathbf{x}) \end{array}$

(LxLxL box with periodic b.c.)

 $\mathsf{Schrödinger \ functional} = \int_{\mathrm{fields}} \mathrm{e}^{-S}$

 \bar{g} infinitessimal variation of boundary fields C, C' cf. Casimir effect

►

Schrödinger functional renormalization scheme, few details

$$egin{aligned} &A_k(0,\mathbf{x}) = m{C}(\eta)\,,\; A_k(T,\mathbf{x}) = m{C}'(\eta)\ &\mathcal{Z}(\eta) = \mathrm{e}^{-\Gamma(\eta)} = \int_{\mathrm{fields}} \mathrm{e}^{-S}\ &\mathbf{\Gamma}' = \mathrm{e}^{-\Gamma(\eta)} = \mathrm{e}^{-\Gamma(\eta)} = \mathrm{e}^{-\Gamma(\eta)} \mathbf{e}^{-\Gamma(\eta)} \mathbf{$$

$$\Gamma' = \frac{\mathrm{d}\Gamma}{\mathrm{d}\eta} = \frac{1}{g_0^2}\Gamma_0' + \Gamma_1' + g_0^2\Gamma_2' + \dots$$

(LxLxL box with periodic b.c.)

- 170

$$ar{g}_{
m SF}^2(L)=rac{\Gamma_0'}{\Gamma'}$$

►

Schrödinger functional renormalization scheme, few details

$$A_k(0, \mathbf{x}) = \mathbf{C}(\eta), \ A_k(T, \mathbf{x}) = \mathbf{C}'(\eta)$$
$$\mathcal{Z}(\eta) = e^{-\Gamma(\eta)} = \int_{\text{fields}} e^{-S}$$
$$\Gamma' = \frac{\mathrm{d}\Gamma}{\mathrm{d}\tau} = \frac{1}{2}\Gamma'_0 + \Gamma'_1 + g_0^2\Gamma'_2 + \dots$$

$$\Gamma' = \frac{\mathrm{d}\Gamma}{\mathrm{d}\eta} = \frac{1}{g_0^2}\Gamma_0' + \Gamma_1' + g_0^2\Gamma_2' + \dots$$

(LxLxL box with periodic b.c.)

$$ar{g}_{
m SF}^2(L)=rac{\Gamma_0'}{\Gamma'}$$

at zero quark mass:

$$m_{\rm PCAC} = \frac{\langle \mathcal{O} \; \partial_{\mu} \, \overline{\psi} \gamma_{\mu} \gamma_{5} \tau^{a} \psi \rangle}{\langle \mathcal{O} \; \overline{\psi} \gamma_{5} \tau^{a} \psi \rangle} = 0$$

Schrödinger functional

Lüscher, Narayanan, Weisz & Wolff; Sint

properties

- \blacktriangleright Dirac operator has spectral gap $\propto 1/L$ also at $m_{
 m quark}=0$
- simulations with mass-less quarks possible and "easy"
- "easy" perturbation theory
 - 3-loop β -function known [Lüscher, Weisz; Christou & Panagopoulos;
 - 2-loop discretization errors known

Bode, Weisz, Wolff Bode, Weisz, Wolff

The step scaling function

• ... is a discrete *beta* function:

$$\sigma(s, \bar{g}^2(L)) = \bar{g}^2(sL) \quad \text{mostly } s = 2$$

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of Λ_{QCD} in the 2-flavour theory

The step scaling function

• ... is a discrete *beta* function:

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

The step scaling function

• ... is a discrete *beta* function:

can be determined on the lattice (spacing a)

$$\Sigma(s, u, a/L) = \sigma(s, u) + O(a/L)$$

・ロト ・回ト ・ヨト ・ヨト

-2

Strategy schroed schroed2 advant sigma

The step scaling function

```
On the lattice: additional dependence on the resolution a/L
```

```
g_0 fixed, L/a fixed:
```

$$\begin{split} & \bar{g}^2(L) = u, \qquad \bar{g}^2(sL) = u', \\ & \Sigma(s,u,a/L) = u' \end{split}$$

continuum limit:

 $\Sigma(s, u, a/L) = \sigma(s, u) + O(a/L)$

quark mass is set to zero everywhere

Results for the theory with $N_{\rm f}=2$ and comparison to previous results for $N_{\rm f}=0$

 $\mathit{N}_{\mathrm{f}}=2$: Phys.Lett.B515:49-56,2001 [Achim Bode, Roberto Frezzotti, Bernd Gehrmann,

Martin Hasenbusch, Jochen Heitger, Karl Jansen, Stefan Kurth, Juri Rolf, Hubert Simma, Stefan Sint,

R.S., Peter Weisz, Hartmut Wittig, Ulli Wolff

hep-lat/0411025, to appear in NPB [Michele Della Morte, Roberto Frezzotti, Jochen Heitger, Juri Rolf, Rainer Sommer, Ulli Wolff]

 $N_{\rm f}=0:~{
m Nucl.Phys.B544:669-698,1999}~{
m [Stefano Capitani, Martin Lüscher, R.S., Hartmut wittig]}$

Nucl.Phys.B413:481-502,1994 [Martin Lüscher, R.S., Peter Weisz, Ulli Wolff]

 $N_{\rm f}=2$: Numerical simulations on APE-computers at Zeuthen (APE-100, APE-1000)

Continuum limit of step scaling function, $N_{\rm f}=2$

- N_f = 2: continuum limit
 - various ansätze for O(a/L) terms
 - no statistically significant *a*-effects for *a/L* < 1/4
 - detailed study of *a*-effects in other quantities
 - other coupling
 - current quark mass

▲圖 ▶ | ▲ 圖 ▶ | ▲ 圖 ▶ | |

Step scaling function as function of $u = \bar{g}^2$

SSF $\sigma(u)$ comparison to PT ... and NP fit

▲□▶ ▲ □▶ ▲ □▶

Step scaling function as function of $u = \bar{g}^2$

▲圖→ ▲ 国→ ▲ 国→

β -function in SF scheme, $N_{\rm f} = 2$

comparison to PT and
$$N_{
m f}=0$$
 $\beta(ar{g})/ar{g}^3=-b_0-b_1ar{g}^2+\dots$

non-perturbative deviations from 3-loop β for $\alpha_{\rm SF}$ > 0.25

▶ < Ξ ▶</p>

æ

Non-perturbative running of α , $N_{\rm f}=2$

SF-scheme, NP, $N_{\rm f}=2$

error bars are smaller than symbol size

▲□→ ▲ □→ ▲ □→

æ

Experiment + PT

イロト イヨト イヨト イヨト

3

Non-perturbative running of α , $N_{\rm f} = 2$

SF-scheme, NP, $N_{\rm f} = 2$

The Lambda parameter								
Define L_{\max} by $\overline{g}^2(L_{\max}) = 5.5$ k steps with NP σ : $\overline{g}^2(L_{\max}/2^k) = \sigma(\overline{g}^2(L_{\max}/2^{k+1}))$								
			JL	0 <u>1</u>	10 100 1 μ/Λ	000		
-		global	fit	const. fit. $L/a = 6.8$		mixed cont. ext.		
	i	u _i	$-\ln(\Lambda L_{max})$	u _i	$-\ln(\Lambda L_{max})$	ui	$-\ln(\Lambda L_{max})$	
-	0	5.5	0.957	5.5	0.957	5.5	0.957	
	1	3.309(40)	1.070(26)	3.291(18)	1.081(12)	3.291(19)	1.081(12)	
	2	2.485(31)	1.089(37)	2.480(20)	1.096(23)	2.471(20)	1.106(24)	
	3	2.015(27)	1.085(49)	2.010(19)	1.093(35)	2.004(19)	1.103(35)	
	4	1.700(22)	1.077(58)	1.693(16)	1.094(43)	1.693(17)	1.095(44)	
	5	1.473(19)	1.071(65)	1.464(14)	1.101(49)	1.468(15)	1.088(53)	
	6	1.300(16)	1.066(73)	1.290(12)	1.111(56)	1.296(14)	1.081(63)	
	7	1.164(15)	1.063(83)	1.153(11)	1.124(63)	1.162(13)	1.077(75)	
	8	1.054(13)	1.062(94)	1.043(10)	1.138(71)	1.053(13)	1.074(88)	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

The	The Lambda parameter								
Define L_{\max} by $\overline{g}^2(L_{\max}) = 5.5$ k steps with NP σ : $\overline{g}^2(L_{\max}/2^k) = \sigma(\overline{g}^2(L_{\max}/2^{k+1}))$									
			\Downarrow	1	10 100 Ι μ/Λ	000			
-		global	fit	const. fit, $L/a = 6,8$		mixed cont. ext.			
	i	u _i	$-\ln(\Lambda L_{max})$	u _i	$-\ln(\Lambda L_{max})$	ui	$-\ln(\Lambda L_{\max})$		
-	0	5.5	0.957	5.5	0.957	5.5	0.957		
	1	3.309(40)	1.070(26)	3.291(18)	1.081(12)	3.291(19)	1.081(12)		
	2	2.485(31)	1.089(37)	2.480(20)	1.096(23)	2.471(20)	1.106(24)		
	3	2.015(27)	1.085(49)	2.010(19)	1.093(35)	2.004(19)	1.103(35)		
	4	1.700(22)	1.077(58)	1.693(16)	1.094(43)	1.693(17)	1.095(44)		
	5	1.473(19)	1.071(65)	1.464(14)	1.101(49)	1.468(15)	1.088(53)		
	6	1.300(16)	1.066(73)	1.290(12)	1.111(56)	1.296(14)	1.081(63)		
	7	1.164(15)	1.063(83)	1.153(11)	1.124(63)	1.162(13)	1.077(75)		
	8	1.054(13)	1.062(94)	1.043(10)	1.138(71)	1.053(13)	1.074(88)		

Result: $-\ln(\Lambda L_{max}) = 1.07(7)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Λ in MeV

• $-\ln(\Lambda L_{max}) = 1.07(7)$: 7% error on Λ -parameter

◆□> ◆□> ◆三> ◆三> ● 三 の Q ()

Λ in MeV

 $- \ln(\Lambda L_{\max}) = 1.07(7) : 7\% \text{ error on } \Lambda \text{-parameter}$

• ... but to put an MeV scale one needs e.g. $F_{\rm K}$ (large volume computation)

... at present use $r_0 = 0.5 \,\mathrm{fm}$ instead

 r_0 defined from QQ-Force $F(r_0)r_0^2 = 1.65$ [R.S., 1994]

$$N_{\rm f} = 0$$
: $r_0 \times F_{\rm K} = 0.5 \, {\rm fm} \times F_{\rm K}^{\rm experimental} \pm 3\% \, \sqrt{100}$

《曰》 《圖》 《言》 《言》 三言

Λ in MeV

- $\ln(\Lambda L_{max}) = 1.07(7)$: 7% error on Λ -parameter

• ... but to put an MeV scale one needs e.g. $F_{\rm K}$ (large volume computation)

... at present use $r_0 = 0.5\,\mathrm{fm}$ instead

 r_0 defined from QQ-Force $F(r_0)r_0^2 = 1.65$ [R.S., 1994]

 $N_{
m f}=0:$ $r_0 imes F_{
m K}=0.5\,{
m fm} imes F_{
m K}^{
m experimental}\pm 3\%\,\, \surd$

... and r₀/a available only at three values of a [UKQCD; JLQCD+CPPACS]

		$u_{\rm max} = 3.65$		$u_{\rm max} = 4.61$	
β	<i>r</i> ₀ / <i>a</i>	$L_{ m max}/a$	$\Lambda_{\overline{\mathrm{MS}}} r_0$	$L_{ m max}/a$	$\Lambda_{\overline{\mathrm{MS}}} r_0$
5.20	5.45(5)(20)	4.00(6)	0.655(27)	6.00(8)	0.610(25)
5.29	6.01(4)(22)	4.67(6)	0.619(25)	6.57(6)	0.614(24)
5.40	7.01(5)(15)	5.43(9)	0.621(17)	7.73(10)	0.609(16)

 $\Rightarrow \Lambda_{\overline{\rm MS}} = 0.62(4)(4) \qquad \qquad \Rightarrow \Lambda_{\overline{\rm MS}}^{N_f=2} = 245(16)(16)\,{\rm MeV}$

• errors due to: (r_0/a) $(\ln(\Lambda L_{max}))$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Discussion

Running close to perturbative below $\alpha_{\rm SF} = 0.2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Discussion

- Running close to perturbative below $\alpha_{\rm SF} = 0.2$
- Running non-perturbative above $\alpha_{SF} = 0.25$ SF-coupling grows exponentially for large L
 - ... follows from a strong coupling expansion
 - ... was demonstrated explicitly for $N_{
 m f}=0$

Discussion

- Running close to perturbative below $\alpha_{\rm SF} = 0.2$
- Running non-perturbative above $\alpha_{\rm SF} = 0.25$ SF-coupling grows exponentially for large *L*
 - ... follows from a strong coupling expansion
 - ... was demonstrated explicitly for $\textit{N}_{\rm f}=0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

► $N_{\rm f}$ dependence of $\Lambda_{\overline{\rm MS}}$ [MeV] and comparison to phenomenology

	N_{f} :	0	2	4	5
[ALPHA]		000(10)			
input r ₀		238(19)	245(16)(16)		
Bethke 2004					
"experiment"				294(40)	212(32)

Discussion

- Running close to perturbative below $\alpha_{\rm SF} = 0.2$
- Running non-perturbative above $\alpha_{SF} = 0.25$ SF-coupling grows exponentially for large *L*
 - ... follows from a strong coupling expansion
 - ... was demonstrated explicitly for $\textit{N}_{\rm f}=0$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三三 - のへで

► $N_{\rm f}$ dependence of $\Lambda_{\overline{\rm MS}}$ [MeV] and comparison to phenomenology

	N_{f} :	0	2	4	5
[ALPHA]		000(10)			
input r ₀		238(19)	245(16)(16)		
Bethke 2004					
"experiment"				294(40)	212(32)

looks like an irregular $N_{
m f}$ -dependence ... but relatively large errors

Discussion

- Running close to perturbative below $\alpha_{\rm SF} = 0.2$
- Running non-perturbative above α_{SF} = 0.25 SF-coupling grows exponentially for large L
 - ... follows from a strong coupling expansion
 - ... was demonstrated explicitly for $N_{\rm f}=0$
- ▶ $N_{\rm f}$ dependence of $\Lambda_{\overline{\rm MS}}[{
 m MeV}]$ and comparison to phenomenology

	N_{f} :	0	2	4	5
[ALPHA] input ro		238(19)	245(16)(16)		
Bethke 2004					
"experiment"				294(40)	212(32)

Iooks like an irregular $N_{\rm f}$ -dependence ... but relatively large errors

▶ Perturbatively: $N_f = 4 \rightarrow N_f = 3$: Λ grows further, but Is a perturbatively determined $\Lambda_{M_f=3}^{N_f=3}$ accurate ?

Need $\mu \ll m_{\rm beauty}$ where pert. theory is accurate.

・ロト ・ 日 ・ モー・ ・ モー・ クタマ

Discussion

 Improvements of lattice results: needs continuum limit of F_π × L_{max}
 Not immediate: signs of large *a*-effects at a = 0.1 fm smaller *a* and quark masses more difficult

< 同 > (目 > (目 >) 目

Discussion

 Improvements of lattice results: needs continuum limit of F_π × L_{max}
 Not immediate: signs of large *a*-effects at *a* = 0.1 fm smaller *a* and quark masses more difficult

▶ also
$$N_{\rm f} = 3$$
 and $N_{\rm f} = 4$

 $\textit{N}_{\rm f}=3$ is on the agenda of JLQCD and CPPACS, using the same methods.

▲帰▶ ★注▶ ★注▶ 二注

Discussion

 Improvements of lattice results: needs continuum limit of F_π × L_{max}
 Not immediate: signs of large *a*-effects at *a* = 0.1 fm smaller *a* and quark masses more difficult

quark masses are in progress along the same lines
 N_f = 2 simulations for the µ-dependence are finished final analysis to be done

(1日) (日) (日) (日)

On the lattice (continuum limit ...)

with $(m_{\rm PS}(m_{\rm u}, m_{\rm d}, m_{\rm s})...)$

$m_{\mathrm{PS}}(m_{\mathrm{ref}}, m_{\mathrm{ref}}, m_{\mathrm{ref}})$	$m_{\rm K}$
$F_{\rm PS}(m_{\rm ref}, m_{\rm ref}, m_{\rm ref})$	$\overline{F_{\rm K}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

On the lattice (continuum limit ...)

with $(m_{\rm PS}(m_{\rm u}, m_{\rm d}, m_{\rm s})...)$

$$rac{m_{
m PS}(m_{
m ref},m_{
m ref},m_{
m ref})}{F_{
m PS}(m_{
m ref},m_{
m ref},m_{
m ref},m_{
m ref})} = rac{m_{
m K}}{F_{
m K}}$$

Combine with ChPT:

$$rac{M_{
m s}}{M_{
m ref}} = rac{m_{
m s}}{m_{
m ref}} = R(m_{\pi},m_{
m K},{\sf F},\{{\sf L}_i\}) + {
m O}\left(m_{
m K}^4/{
m F}^4
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

On the lattice (continuum limit ...)

with $(m_{\rm PS}(m_{\rm u}, m_{\rm d}, m_{\rm s})...)$

$$rac{m_{
m PS}(m_{
m ref},m_{
m ref},m_{
m ref})}{F_{
m PS}(m_{
m ref},m_{
m ref},m_{
m ref},m_{
m ref})} = rac{m_{
m K}}{F_{
m K}}$$

Combine with ChPT:

$$rac{M_{
m s}}{M_{
m ref}} = rac{m_{
m s}}{m_{
m ref}} = R(m_\pi,m_{
m K},{\sf F},\{{\sf L}_i\}) + {
m O}\left(m_{
m K}^4/{
m F}^4
ight)$$

Where are up-to-date, accepted values for {L_i}? and

 $\operatorname{cov}(L_i, L_j)$

publication? private communication?

◆□ > ◆□ > ◆ □ > ◆ □ > □ > ● ○ ○ ○

On the lattice (continuum limit ...)

with $(m_{\mathrm{PS}}(m_{\mathrm{u}},m_{\mathrm{d}},m_{\mathrm{s}})...)$

$$rac{m_{
m PS}(m_{
m ref},m_{
m ref},m_{
m ref})}{F_{
m PS}(m_{
m ref},m_{
m ref},m_{
m ref},m_{
m ref})} = rac{m_{
m K}}{F_{
m K}}$$

Combine with ChPT:

$$rac{M_{
m s}}{M_{
m ref}} = rac{m_{
m s}}{m_{
m ref}} = R(m_\pi,m_{
m K},{\sf F},\{{\sf L}_i\}) + {
m O}\left(m_{
m K}^4/{
m F}^4
ight)$$

Where are up-to-date, accepted values for {L_i}? and

 $\operatorname{cov}(L_i, L_j)$

publication? private communication?

thanks

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

(more assumptions/approx.'s)

▶ At present the only lattice-method with results for $N_{\rm f}=3$

・ロト ・日ト ・ヨト ・ヨト

-2

(more assumptions/approx.'s)

- At present the only lattice-method with results for $N_{\rm f}=3$
- Take the lattice spacing from the computation of some hadronic quantity like the Υ spectrum:

$$a = \frac{(a\Delta m)_{\text{lattice}}}{(\Delta m)_{\text{exp}}}, \qquad a \leftrightarrow g_0$$

then $\alpha_{\overline{\text{MS}}}(s_0 a^{-1}) = \alpha_0 + 4.45\alpha_0^3 + O(\alpha_0^4) + O(a), \quad \alpha_0 = g_0^2/(4\pi)$

•
$$s_0 = 28.8$$
 !

- badly behaved expansion (for $s_0 = O(1)$ it is even worse!)
- α_0 is a bad expansion parameter

▶ improved bare couplings: "tadpole improvement" [Parisi; Lepage, Mackenzie]

・ロト ・回ト ・ヨト ・ヨト

-2

- ► improved bare couplings: "tadpole improvement" [Parisi; Lepage,Mackenzie]
- \blacktriangleright idea: there is some approximately universal, large renormalization of α_0

use some short distance observable such as

$$P = \frac{1}{N} \langle \operatorname{tr} U(p) \rangle \qquad -\frac{1}{C_{\mathrm{F}}\pi} \ln(P) = \alpha_0 + 3.373 \alpha_0^2 + 17.70 \alpha_0^3 + \dots$$

to define an improved bare coupling

$$\alpha_{\Box} \equiv -\frac{1}{C_{\rm F}\pi} \ln(\underbrace{P}_{\rm from MC!})$$

then

$$\alpha_{\overline{\mathrm{MS}}}(s_0a^{-1}) = \alpha_{\Box} + 0.614\alpha_{\Box}^3 + \mathrm{O}(\alpha_0^4) + \mathrm{O}(a)$$

properties of improved bare couplings

- only calculation of a hadronic scale is needed
- ▶ 2-loop relation to $\alpha_{\overline{\mathrm{MS}}}$ is known [Lüscher,Weisz; Christou, Panagopoulos, Feo, Vicari]

<同→ < 回→ < 回→ = 三回

properties of improved bare couplings

- only calculation of a hadronic scale is needed
- ▶ 2-loop relation to $\alpha_{\overline{\mathrm{MS}}}$ is known [Lüscher,Weisz; Christou, Panagopoulos, Feo, Vicari]
- no continuum limit
- ► can't reach high energy scales (a⁻¹ ≈ 2GeV) must assume that perturbative running and matching is accurate

properties of improved bare couplings

- only calculation of a hadronic scale is needed
- ▶ 2-loop relation to $\alpha_{\overline{\mathrm{MS}}}$ is known [Lüscher,Weisz; Christou, Panagopoulos, Feo, Vicari]
- no continuum limit
- ► can't reach high energy scales (a⁻¹ ≈ 2GeV) must assume that perturbative running and matching is accurate
- results (not up to date)

```
Davies et al.
```

SESAM collaboration

 $\alpha_{\overline{\mathrm{MS}}}(M_Z) = 0.117(2)$

$$\alpha_{\overline{\rm MS}}(M_Z) = 0.112(2)$$

 $\alpha_{\overline{\rm MS}}(M_Z) = 0.115(3)$

(average of PDG) errors appear quite optimistic!