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What do we want

Experiment︷ ︸︸ ︷
Fπ

mπ

mK

mD

mB

 LQCD(g0,mf )
=⇒

QCD parameters (RGI)︷ ︸︸ ︷
ΛQCD

M̂ = (Mu + Md)/2
Ms

Mc

Mb

 +

Predictions︷ ︸︸ ︷
ξ

FB

BB

...


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In this talk

I Concentrate on the determination of the Λ parameter

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Determinations of αs(µ) = αMS

I involve various theoretical assumptions/approximations

I most notably: PT is always needed:
– αMS(µ) is only defined perturbatively;

−→ makes sense when it is small

I potential for determinations of αs(µ) from Lattice QCD

- rather weak assumptions are necessary
- potentially very precise results can be obtained
- only way to compute αMS(MZ) with experimental

input from low energy QCD (hadron spectrum)
- Comparison to αMS(MZ) from LEP-data or HERA at high Q2

−→ confirmation that QCD describes both weakly coupled
quarks/gluons and hadrons

- Continuous progress (+ sometimes a little jump)
- on the technical problems
- in computer technology

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Renormalization group and Λ-parameter (mass–independent scheme)

RGE
µ ∂ḡ

∂µ = β(ḡ) ḡ(µ)2 = 4πα(µ)

β(ḡ)
ḡ→0∼ −ḡ3

{
b0 + b1ḡ

2 + b2ḡ
4 + . . .

}
b0 = 1

(4π)2

(
11− 2

3Nf

)

I exact equation for Λ (ḡ ≡ ḡ(µ))

Λ = µ (b0ḡ
2)−b1/2b2

0e−1/2b0ḡ
2

exp

{
−

∫ ḡ

0

dg [ 1
β(g) + 1

b0g3 − b1

b2
0g

]

}
I trivial scheme dependence:

Λa/Λb = exp{ca,b/(4πb0)} , αa = αb + ca,b α
2
b + O(α3

b)

I use a suitable physical coupling (scheme) and compute Λ

Requires non-perturbative computation of β(ḡ)

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory



Introduction Strategy Results Conclusions App goal name talk intro alpha RG scales

Renormalization group and Λ-parameter (mass–independent scheme)

RGE
µ ∂ḡ
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Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory



Introduction Strategy Results Conclusions App goal name talk intro alpha RG scales

Renormalization group and Λ-parameter (mass–independent scheme)

RGE
µ ∂ḡ
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Physical couplings

– what is a non-perturbatively defined coupling

Example

mq →∞

F (r) =
4

3

1

r2

{
αMS(µ) + c1[αMSbar(µ)]2 + . . .

}
, µ = 1/r

≡ 4

3

1

r2
αqq(µ)

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Physical couplings: their properties

I defined for all energies µ

I independent of the regularization procedure
−→ i.e. (on the lattice) the continuum limit can be taken

I any one of them defines a renormalization scheme

I the usual perturbative properties when α is small, e.g.

αa(µ) = αb(µ) + ca,b [αb(µ)]2 + . . .

(also for a = MS).

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Problem in a lattice computation (αqq as an example)

L � 1

0.2GeV
� 1

µ
∼ 1

10GeV
� a

↑ ↑ ↑
box size confinement scale spacing

⇓
L/a � 50

Solution: L = 1/µ −→ left with
L/a � 1

[Wilson, ... ,

Lüscher, Weisz, Wolff ]

Finite size effect as a physical observable; finite size scaling!

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory



Introduction Strategy Results Conclusions App goal name talk intro alpha RG scales

Problem in a lattice computation (αqq as an example)

L � 1

0.2GeV
� 1

µ
∼ 1

10GeV
� a

↑ ↑ ↑
box size confinement scale spacing

⇓
L/a � 50

Solution: L = 1/µ −→ left with
L/a � 1

[Wilson, ... ,
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Strategy

finite volume coupling αSF(µ), µ = 1/L
defined at zero quark mass

Lmax = const./Fπ = O( 1
2 fm) : −→ αSF(µ = 1/Lmax)

↓
αSF(µ = 2/Lmax)

↓
•

always a/L � 1 •
•
↓

αSF(µ = 2n/Lmax = 1/Lmin)

PT: ↓
ΛSFLmax = #

Result is a value for ΛSF/Fπ = #

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Schrödinger functional [Lüscher, Narayanan, Weisz & Wolff; Sint ]

practical finite volume renormalization scheme

I Boundary conditions at x0 = 0:

k = 1, 2, 3 : Ak(x) = Ck(x)
1
2(1 + γ0)ψ(x) = ρ(x),

ψ(x)1
2(1− γ0) = ρ̄(x)

Schrödinger functional =

∫
fields

e−S

time

space
(LxLxL box with periodic b.c.)

L

0

C’

C

ḡ infinitessimal variation of boundary fields C ,C ′

cf. Casimir effect

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Schrödinger functional renormalization scheme, few details

I Ak(0, x) = C (η) , Ak(T , x) = C ′(η)

Z(η) = e−Γ(η) =

∫
fields

e−S

Γ′ =
dΓ

dη
=

1

g2
0

Γ′0 + Γ′1 + g2
0 Γ′2 + . . .

ḡ2
SF(L) =

Γ′0
Γ′

time

space
(LxLxL box with periodic b.c.)

L

0

C’

C

I at zero quark mass:

mPCAC =
〈O ∂µ ψγµγ5τ

aψ〉
〈O ψγ5τ aψ〉

= 0

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Schrödinger functional [Lüscher, Narayanan, Weisz & Wolff; Sint ]

properties

I Dirac operator has spectral gap ∝ 1/L also at mquark = 0

I simulations with mass-less quarks possible and “easy”

I “easy” perturbation theory
– 3-loop β-function known [Lüscher, Weisz; Christou & Panagopoulos;

Bode, Weisz, Wolff ]
– 2-loop discretization errors known [Bode, Weisz, Wolff ]

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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The step scaling function

I ... is a discrete beta function:

σ(s, ḡ2(L)) = ḡ2(sL) mostly s = 2

I determines the
non-perturbative running:

u0 = ḡ2(Lmax)

↓
σ(2, uk+1) = uk

↓
uk = ḡ2(2−kLmax)

I can be determined on the lattice (spacing a)

Σ(s, u, a/L) = σ(s, u) + O(a/L)

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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The step scaling function

On the lattice:
additional dependence on the
resolution a/L

g0 fixed, L/a fixed:

ḡ2(L) = u, ḡ2(sL) = u′ ,

Σ(s, u, a/L) = u′

continuum limit:

Σ(s, u, a/L) = σ(s, u)+O(a/L)

quark mass is set to zero everywhere

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Results for the theory with Nf = 2
and comparison to previous results for Nf = 0

Nf = 2: Phys.Lett.B515:49-56,2001 [ Achim Bode, Roberto Frezzotti, Bernd Gehrmann,

Martin Hasenbusch, Jochen Heitger, Karl Jansen, Stefan Kurth, Juri Rolf, Hubert Simma, Stefan Sint,

R.S., Peter Weisz, Hartmut Wittig, Ulli Wolff ]

hep-lat/0411025, to appear in NPB [Michele Della Morte,
Roberto Frezzotti, Jochen Heitger, Juri Rolf, Rainer Sommer,
Ulli Wolff ]

Nf = 0: Nucl.Phys.B544:669-698,1999 [ Stefano Capitani, Martin Lüscher, R.S., Hartmut

Wittig ]

Nucl.Phys.B413:481-502,1994 [ Martin Lüscher, R.S., Peter Weisz, Ulli Wolff ]

Nf = 2: Numerical simulations on APE-computers at Zeuthen
(APE-100, APE-1000)

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Continuum limit of step scaling function, Nf = 2

I Nf = 2:
continuum limit

• various ansätze for
O(a/L) terms

• no statistically significant
a-effects for a/L < 1/4

• detailed study of
a-effects in other
quantities
– other coupling
– current quark mass

u=0.9793
u=1.1814

u=1.5031

u=1.7319

u=2.0142

u=2.4792

u=3.3340

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Step scaling function as function of u = ḡ 2

SSF σ(u)

comparison to PT
... and NP fit

−2 log 2 =

∫ σ(u)

u

dx√
x β(

√
x)

determine also directly β(ḡ)

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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β-function in SF scheme, Nf = 2

comparison to PT and Nf = 0 β(ḡ)/ḡ3 = −b0 − b1ḡ
2 + . . .

non-perturbative deviations from 3-loop β for αSF > 0.25

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Non-perturbative running of α, Nf = 2

SF-scheme, NP, Nf = 2

error bars are smaller than symbol size

Experiment + PT
MS-scheme
[S. Bethke 2004 ]

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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The Lambda parameter

Define Lmax by ḡ2(Lmax) = 5.5
k steps with NP σ:
ḡ2(Lmax/2k ) = σ(ḡ2(Lmax/2k+1))

⇓
global fit const. fit, L/a = 6, 8 mixed cont. ext.

i ui − ln(ΛLmax) ui − ln(ΛLmax) ui − ln(ΛLmax)
0 5.5 0.957 5.5 0.957 5.5 0.957
1 3.309(40) 1.070(26) 3.291(18) 1.081(12) 3.291(19) 1.081(12)
2 2.485(31) 1.089(37) 2.480(20) 1.096(23) 2.471(20) 1.106(24)
3 2.015(27) 1.085(49) 2.010(19) 1.093(35) 2.004(19) 1.103(35)
4 1.700(22) 1.077(58) 1.693(16) 1.094(43) 1.693(17) 1.095(44)
5 1.473(19) 1.071(65) 1.464(14) 1.101(49) 1.468(15) 1.088(53)
6 1.300(16) 1.066(73) 1.290(12) 1.111(56) 1.296(14) 1.081(63)
7 1.164(15) 1.063(83) 1.153(11) 1.124(63) 1.162(13) 1.077(75)
8 1.054(13) 1.062(94) 1.043(10) 1.138(71) 1.053(13) 1.074(88)

Result: − ln(ΛLmax) = 1.07(7)

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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Λ in MeV

I − ln(ΛLmax) = 1.07(7) : 7% error on Λ-parameter

I ... but to put an MeV scale one needs
e.g. FK (large volume computation)

... at present use r0 = 0.5 fm instead

r0 defined from QQ-Force F (r0)r2
0 = 1.65 [R.S., 1994 ]

Nf = 0 : r0 × FK = 0.5 fm× F experimental
K ± 3%

√

I ... and r0/a available only at three values of a [UKQCD; JLQCD+CPPACS ]

umax = 3.65 umax = 4.61

β r0/a Lmax/a ΛMS r0 Lmax/a ΛMS r0

5.20 5.45(5)(20) 4.00(6) 0.655(27) 6.00(8) 0.610(25)
5.29 6.01(4)(22) 4.67(6) 0.619(25) 6.57(6) 0.614(24)
5.40 7.01(5)(15) 5.43(9) 0.621(17) 7.73(10) 0.609(16)

⇒ ΛMS = 0.62(4)(4) ⇒ Λ
Nf=2

MS
= 245(16)(16) MeV

I errors due to: (r0/a) (ln(ΛLmax))

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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umax = 3.65 umax = 4.61

β r0/a Lmax/a ΛMS r0 Lmax/a ΛMS r0

5.20 5.45(5)(20) 4.00(6) 0.655(27) 6.00(8) 0.610(25)
5.29 6.01(4)(22) 4.67(6) 0.619(25) 6.57(6) 0.614(24)
5.40 7.01(5)(15) 5.43(9) 0.621(17) 7.73(10) 0.609(16)

⇒ ΛMS = 0.62(4)(4) ⇒ Λ
Nf=2

MS
= 245(16)(16) MeV

I errors due to: (r0/a) (ln(ΛLmax))
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Discussion

I Running close to perturbative below αSF = 0.2

I Running non-perturbative above αSF = 0.25

SF-coupling grows exponentially for large L
... follows from a strong coupling expansion

... was demonstrated explicitly for Nf = 0

I Nf dependence of ΛMS[MeV] and comparison to phenomenology

Nf : 0 2 4 5
[ALPHA ]
input r0 238(19) 245(16)(16)

[Bethke 2004 ]
“experiment” 294(40) 212(32)

I looks like an irregular Nf -dependence ... but relatively large errors

I Perturbatively: Nf = 4 → Nf = 3: Λ grows further, but

Is a perturbatively determined Λ
Nf=3

MS
accurate ?

Need µ � mbeauty where pert. theory is accurate.
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Discussion

I Improvements of lattice results:
needs continuum limit of Fπ × Lmax

Not immediate: signs of large a-effects at a = 0.1 fm
smaller a and quark masses more difficult

I also Nf = 3 and Nf = 4
Nf = 3 is on the agenda of JLQCD and CPPACS, using the
same methods.

I quark masses are in progress along the same lines
Nf = 2 simulations for the µ-dependence are finished
final analysis to be done
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Appendix: Quark masses, a (trivial?) question

I On the lattice (continuum limit ...)

Mref| {z }
RGI

= ZM|{z}
SSF etc.

× mref|{z}
bare

with (mPS(mu, md, ms)...)

mPS(mref , mref , mref)

FPS(mref , mref , mref)
=

mK

FK

I Combine with ChPT:

Ms

Mref
=

ms

mref
= R(mπ , mK, F , {Li}) + O

`
m4

K/F 4
´

I Where are up-to-date, accepted values for {Li}?
and

cov(Li , Lj )

publication? private communication?

I thanks

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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A short cut: bare couplings

(more assumptions/approx.’s)

I At present the only lattice-method with results for Nf = 3

I Take the lattice spacing from the computation of some hadronic
quantity like the Υ spectrum:

a =
(a∆m)lattice

(∆m)exp
, a ↔ g0

then αMS(s0 a−1) = α0 + 4.45α3
0 + O(α4

0)+O(a) , α0 = g2
0 /(4π)

I s0 = 28.8 !
I badly behaved expansion (for s0 = O(1) it is even worse!)
I α0 is a bad expansion parameter

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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A short cut: bare couplings

I improved bare couplings: “tadpole improvement” [Parisi; Lepage,Mackenzie ]

I idea: there is some approximately universal, large renormalization of
α0

use some short distance observable such as

P = 1
N 〈 trU(p)〉 − 1

CFπ ln(P) = α0 + 3.373α2
0 + 17.70α3

0 + . . .

to define an improved bare coupling

α� ≡ − 1
CFπ ln( P︸︷︷︸

from MC!

)

then

αMS(s0a
−1) = α� + 0.614α3

� + O(α4
0) + O(a)

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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properties of improved bare couplings

I only calculation of a hadronic scale is needed

I 2–loop relation to αMS is known [Lüscher,Weisz; Christou, Panagopoulos, Feo, Vicari ]

I no continuum limit

I can’t reach high energy scales (a−1 ≈ 2GeV)
must assume that perturbative running and matching is accurate

I results (not up to date)
αMS(MZ ) = 0.117(2)

[Davies et al. ]

αMS(MZ ) = 0.112(2)
[SESAM collaboration ]

αMS(MZ ) = 0.115(3)
(average of PDG)

errors appear quite optimistic!

Rainer Sommer, ALPHA Collaboration Non-perturbative computation of ΛQCD in the 2-flavour theory
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