Long-distance effects in $\mathrm{K} \rightarrow \pi \vee \overline{\mathrm{V}}$

Christopher Smith

Laboratori Nazionali di Frascati

Introduction
Experimental status and Theoretical framework
OPE at the charm scale
Dimension eight operators and Matrix elements
Long-distance contributions
O $\left(G_{F}^{2}\right)$ FCNC currents in ChPT
Loop amplitude and Matching
Phenomenological implications

Conclusions

Introduction

- Experimental status

$$
\begin{aligned}
& \operatorname{Br}\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right)^{S M}=(7.8 \pm 1.2) \times 10^{-11} \\
& \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)^{S M}=(3.0 \pm 0.6) \times 10^{-11}
\end{aligned}
$$

Experiment	Place	Status
KTeV	Fermilab	Now finished. Upper limit $\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \overline{\mathrm{~V}}\right)<5.9 \times 10^{-7}$
AGS- E787/E949	Brookhaven	Observed 3 events: $\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \overline{\mathrm{V}}\right)=14.7_{-8.9}^{+13.0} \times 10^{-11}$ Expects around 10 events in all.
E391a	KEK	Now running. Expect sensitivity to 10^{-10} for $K_{L} \rightarrow \pi^{0} v \overline{\mathrm{~V}}$
KOPIO	Brookhaven	Start construction 2005? $\quad K_{L} \rightarrow \pi^{0} v \bar{v} \quad$ (60 events)
J-PARC	KEK	Construction ends 2008? $\quad K_{L} \rightarrow \pi^{0} \nu \bar{\nu} \quad$ (1000 events)
13 NA48 14 $15 \ldots$	CERN	$K^{+} \rightarrow \pi^{+} v \bar{v} \quad$ Letter of intent $\quad(100$ events by 2008) $K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-} \quad$ Proposals... running in 2008-2010? $K_{L} \rightarrow \pi^{0} v \bar{v}$
???	Fermilab	???

- Theoretical aspects of $K \rightarrow \pi \nu \bar{\nabla}$

1- Properties: Dominated by short-distance physics. Probe the SM at the quantum level (FCNC). Clean theoretical predictions. High sensitivity to New Physics.
$H_{e f f}(\bar{s} d \rightarrow v \bar{v})=\frac{G_{F}}{\sqrt{2}} \frac{\alpha}{2 \pi \sin ^{2} \theta_{W}}\left[V_{t s}^{*} V_{t d} X\left(x_{t}\right)+V_{c s}^{*} V_{c d} X\left(x_{c}\right)\right](\bar{s} d)_{V-A}(\bar{v} \nu)_{V-A}$

2- FCNC process: $\quad X_{0}\left(x_{t}\right)=C_{0}\left(x_{t}\right)-4 B_{0}\left(x_{t}\right) \approx x_{t}$ when $x_{t} \rightarrow \infty$ (short-distance)

$$
x_{q}=m_{q}^{2} / M_{W}^{2}
$$

3- Matrix elements are known from the well-measured $K^{+} \rightarrow \pi^{0} \ell^{+} v_{\ell}\left(K_{\ell 3}\right)$ using isospin symmetry:

$$
\left\langle\pi^{0}\right|(\bar{s} u)_{V}\left|K^{+}\right\rangle \sim\left\langle\pi^{0}\right|(\bar{s} d)_{V}\left|K^{0}\right\rangle \sim\left\langle\pi^{+}\right|(\bar{s} d)_{V}\left|K^{+}\right\rangle
$$

- Our goals:

Improving the theoretical control over subleading contributions:
1- Identification of dimension eight operators

generates new local operator of the kind $(\bar{s} d)_{V-A} \partial^{2}(\bar{V} V)_{V-A}$.
Typically, $q^{2} \approx m_{K}^{2} \Rightarrow$ expected corrections to $X_{0}\left(x_{c}\right)$ of the order of $\approx 15 \%$.
2- Residual non-local, long-distance u-quark contributions
Estimation from Chiral Perturbation Theory including, contrary to previous works, bosonization of all the relevant FCNC local interactions.
Effects of the order of $\Lambda_{Q C D}^{2} / m_{c}^{2} \approx 10 \%$ possible.
3- Improved estimation of matrix elements of c-quark dim-8 operators by matching with the LD, u-quark amplitude.
Dim. $6 \quad \operatorname{Dim} .8 \quad \operatorname{Dim} .10$

$$
\begin{aligned}
A_{e f f}\left(q^{2} \rightarrow 0\right) \approx & (\bar{s} d)_{V-A} \lambda_{t}\left[X_{0}\left(x_{t}\right)+x_{t} \frac{q^{2}}{m_{t}^{2}}\left(\log x_{t}+\frac{q^{2}}{m_{t}^{2}}+\ldots\right)\right](\overline{\mathrm{V}} v)_{V-A} \\
& \left.+(\bar{s} d)_{V-A} \lambda_{c}\left[X_{0}\left(x_{c}\right)+x_{c} \frac{q^{2}}{m_{c}^{2}}\left(\log x_{c}\right]+\frac{q^{2}}{m_{c}^{2}}+\ldots\right)\right](\overline{\mathrm{V}} v)_{V-A} \\
& \left.+(\bar{s} d)_{V-A} \lambda_{u}\left[X_{0}\left(x_{u}\right)+x_{u} \frac{q^{2}}{m_{u}^{2}}\left(\log x_{u}\right]+\frac{q^{2}}{m_{u}^{2}}+\ldots\right)\right](\overline{\mathrm{V}} v)_{V-A}
\end{aligned}
$$

- High-virtuality u-quarks are removed using CKM unitarity ($\mu_{I R}=\mu_{U V} \approx 1 \mathrm{GeV}$)

$$
\lambda_{c} \frac{q^{2}}{M_{W}^{2}}\left(\log x_{c}-\log x_{u}\right) \rightarrow \lambda_{c} \frac{q^{2}}{M_{W}^{2}}\left(\log \frac{m_{c}}{\mu_{I R}}-\log \frac{m_{u}}{\mu_{U V}}\right)
$$

- The remaining u-quark effects are non-local, since $q^{2} \approx m_{K}^{2}$. \Rightarrow Compute the one-loop amplitude in ChPT (matrix element).
- The ChPT amplitude UV-divergence is (approximately) matched with the c-quark dimension-eight operator matrix elements such that $\mu_{I R}=\mu_{U V}$ cancel out.

OPE at the Charm Scale

- Down from the M_{W} scale

Integrating out the W, Z and t, but keeping c and u as dynamical:

$$
\begin{aligned}
H_{e f f}\left(M_{W}\right) \sim\left[X\left(x_{t}\right) Q_{v \bar{v}}^{\bar{s} d}\right]_{t} & +\left[C_{v \bar{v}} Q_{v \bar{v}}^{c \bar{c}}+C_{\ell v} Q_{v \ell}^{\overline{c s}, \bar{c} d}+C_{1} Q_{1}^{c}+C_{2} Q_{2}^{c}+C_{3} Q_{v \bar{v}}^{\bar{s}}\right]_{c} \\
& +\left[C_{v \bar{v}} Q_{v \bar{v}}^{u \bar{u}}+C_{\ell v} Q_{v \ell}^{\overline{u s} s, \bar{u} d}+C_{1} Q_{1}^{u}+C_{2} Q_{2}^{u}+C_{3} Q_{v \bar{v}}^{\bar{s} d}\right]_{u}
\end{aligned}
$$

With the operators:
CC: $Q_{1}^{c}=(\bar{s} d)_{V-A} \otimes(\bar{c} c)_{V-A}, Q_{2}^{c}=(\bar{s} c)_{V-A} \otimes(\bar{c} d)_{V-A}$
CC: $Q_{\bar{v} \ell}^{\bar{c} s}=(\bar{c} s)_{V-A} \otimes(\overline{\mathrm{~V}} \ell)_{V-A} \quad(\Rightarrow W$ boxes $)$
NC: $Q_{\overline{\mathrm{V}} \nu}^{\bar{c} c}=\left(\bar{c} \gamma_{\mu}\left(v_{f}-a_{f} \gamma_{5}\right) c\right) \otimes(\overline{\mathrm{V}} V)_{V-A} \quad(\Rightarrow Z$ penguins $)$
FCNC: $Q_{\overline{\mathrm{V} v}}^{\bar{s} d}=(\bar{s} d)_{V-A} \otimes(\overline{\mathrm{~V}} v)_{V-A}$

And initial conditions: $C_{v \bar{v}}\left(M_{W}\right)=C_{\ell v}\left(M_{W}\right)=1$,

$$
C_{1}\left(M_{W}\right)=0, C_{2}\left(M_{W}\right)=1, C_{3}\left(M_{W}\right)=0
$$

OPE at the c

- Integrating out the charm

The Wilson coefficients get modified by QCD effects through the running from M_{W} to m_{c}, at which point the c is removed from the degrees of freedom:

$$
H_{e f f}\left(>m_{c}\right) \sim\left[C_{v \bar{v}} Q_{v \bar{v}}^{c \bar{c}}+C_{\ell v} Q_{v \ell}^{\overline{c s}, \bar{c} d}+C_{1} Q_{1}^{c}+C_{2} Q_{2}^{c}+C_{3} Q_{v \bar{v}}^{\bar{s} d}\right]_{c} \quad\left(C_{i}=C_{i}\left(m_{c}\right)\right)
$$

$H_{e f f}\left(<m_{c}\right) \sim \lambda_{c}\left[C_{3}^{\prime} Q_{v \bar{v}}^{\bar{s} d}+\sum C_{i}^{(8)} Q_{i}^{(8)}+\ldots\right]_{c}$

OPE at the c

- Dimension eight operators

Concerning the dimension six $\left(C_{3}^{\prime}\right)$: known at NLL (Buchalla and Buras, 1993)
Three dimension-eight operators are generated (Falk, Lewandowski, Petrov, 2000)

$$
\begin{aligned}
& Q_{1}^{(8)}=(\bar{s} d)_{V-A} \otimes \partial^{2}(\overline{\mathrm{~V}} V)_{V-A} \\
& Q_{2}^{(8)}=\left(\bar{s} \bar{D}_{\alpha}\right) \gamma_{\mu}\left(1-\gamma_{5}\right)\left(\vec{D}^{\alpha} d\right) \otimes(\overline{\mathrm{V}} V)_{V-A} \\
& Q_{3}^{(8)}=\left(\bar{s} \bar{D}^{\alpha}\right) \gamma_{\mu}\left(1-\gamma_{5}\right) d \otimes\left(\overline{\mathrm{~V}}^{\alpha}\left[\bar{\partial}_{\alpha}-\vec{\partial}_{\alpha}\right]\right) \gamma_{\mu}\left(1-\gamma_{5}\right) v
\end{aligned}
$$

with weigths: $\quad C_{1}^{Z}\left(\mu_{I R}\right)=\frac{1}{6}\left(1-\frac{4}{3} \sin ^{2} \theta_{W}\right) \log \left(m_{c} / \mu_{I R}\right)\left[3 C_{1}\left(m_{c}\right)+C_{2}\left(m_{c}\right)\right]$

$$
\begin{gathered}
C_{2}^{e, \mu}\left(\mu_{I R}\right)=-C_{3}^{e, \mu}\left(\mu_{I R}\right)=\log \left(m_{c} / \mu_{I R}\right) C_{\ell V}\left(m_{c}\right) \\
C_{2}^{\tau}\left(\mu_{I R}\right)=-C_{3}^{\tau}\left(\mu_{I R}\right)=-f\left(m_{c}^{2} / m_{\tau}^{2}\right) C_{\ell V}\left(m_{c}\right)
\end{gathered}
$$

The CC Wilson coeff. $C_{1}\left(m_{c}\right), C_{2}\left(m_{c}\right)$ are known, while $C_{\ell v}\left(m_{c}\right)=1$.
The τ lepton mass is not neglected w.r.t. the c one:

$$
f(x)=\frac{1}{4}\left(\frac{6 x-2}{(x-1)^{2}}-2\right) \log x-\frac{x}{(x-1)^{2}}
$$

Chiral Perturbation Theory

- Generalities

Strong interactions are represented as

$$
L_{\text {strong }}^{(2)}=\frac{F_{\pi}^{2}}{4}\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi^{\dagger} U+U^{\dagger} \chi\right\rangle
$$

The current-current hadronic $\Delta S=1$ operators as

$$
L_{\Delta S \mid=1}^{(2)}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{g_{8}\left\langle\lambda_{6} L_{\mu} L^{\mu}\right\rangle+g_{27}\langle\ldots\rangle\right\} \quad L_{\mu}=i F_{\pi}^{2} U D_{\mu} U^{\dagger}
$$

The Z boson is introduced as an external source through the covariant derivative:

$$
D_{\mu} U=\partial_{\mu} U-i \frac{g}{\cos \theta_{W}} Z_{\mu}\left(\sin ^{2} \theta_{W}[Q, U]+U T_{3}\right) \quad T_{3}=a_{8} Q-a_{1} \frac{1}{6}
$$

The external W boson is introduced similarly (for the box diagram).

- GIM mechanism and FCNC

The G_{F}^{2} Lagrangian contains at tree-level (with or without weak rotation)

$$
\begin{aligned}
L_{\text {strong }}^{(2)}+L_{|\Delta S|=1}^{(2)}=4 & F_{\pi}^{3} G_{8} \frac{g}{\cos \theta_{W}}\left(\frac{a_{1}}{6}+\frac{a_{8}}{3}\right) Z^{\mu} \partial_{\mu} K_{L} \\
& -F_{\pi} \frac{g}{\cos \theta_{W}}\left(\frac{a_{8}}{2}\right) Z^{\mu}\left(\partial_{\mu} \pi^{0}+\frac{\partial_{\mu} \eta_{8}}{\sqrt{3}}\right)
\end{aligned}
$$

GIM mechanism forbids such a direct $K_{L}-Z$ coupling; it is already included in dimension 6 operators \Rightarrow remove from $L_{\Delta S \mid=1}^{(2)}$ the part corresponding to the structure $\left(\bar{s}_{L} \gamma_{\mu} d_{L}\right) Z^{\mu}$:

$$
L_{|\Delta S|=1}^{(2)}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*} g_{8}\left\{\left\langle\lambda_{6} L_{\mu} L^{\mu}\right\rangle-\frac{2 i g}{\cos \theta_{W}} F_{\pi}^{2}\left\langle\lambda_{6} L_{\mu} T_{3}\right\rangle Z^{\mu}\right\}
$$

With this new piece, the suppression appears in the same way for both:

$$
\underline{\mathrm{K}_{\mathrm{L}}} \pi^{0}, \eta_{8} \mathcal{V}_{\gamma_{\gamma}}^{\mathcal{J}_{\gamma}} \stackrel{\text { GMO }}{=} 0 \quad \underline{\mathrm{~K}_{\mathrm{L}}} \pi^{0}, \eta_{8} \sim_{\sim}^{\mathrm{Z}} \stackrel{\text { GMO }}{=} 0
$$

- Singlet part of the source

The fact that the T_{3} generator is not traceless $\Rightarrow\left\langle L_{\mu}\right\rangle \sim\left\langle U D_{\mu} U^{\dagger}\right\rangle \sim a_{1} Z_{\mu}$ With the previous modification, the a_{1} piece decouples at $O\left(p^{2}\right)$ in $\mathrm{SU}(3)$:

$$
\begin{aligned}
& L_{\text {strong }}^{(2)} \sim\left\langle L_{\mu}\right\rangle\left\langle L^{\mu}\right\rangle \sim Z_{\mu} Z^{\mu} \Rightarrow \text { decoupled, but in } U(3): L_{\text {strong }}^{(2)} \sim a_{1} \partial_{\mu} \eta_{1} Z^{\mu} \\
& L_{|\Delta S|=1}^{(2)} \sim\left\langle\lambda_{6} L_{\mu}\right\rangle\left\langle L^{\mu}\right\rangle \sim a_{1} \partial_{\mu} K_{L} Z^{\mu} \Rightarrow \text { forced to vanish. }
\end{aligned}
$$

The only sensitivity to a_{1} is through the singlet field pole diagrams:

$$
\begin{aligned}
& \mathrm{K}^{0} \\
& \mathfrak{M}\left(K^{0} \rightarrow \pi^{0} Z^{\mu}\right)_{\text {tree }}=0, \quad \mathfrak{M}\left(K^{+} \rightarrow \pi^{+} Z^{\mu}\right)_{\text {tree }}=i \frac{\pi^{0}, \eta_{8}, \eta_{1} \Omega^{\checkmark} \mathrm{Z}}{\cos \theta_{W}} F_{\pi}^{2} p_{K}^{\mu} \eta_{1} Z^{\mu} \rightarrow q_{\mu}\left(\bar{v}_{L} \gamma^{\mu} v_{L}\right)=0
\end{aligned}
$$

True also at loop level: no contribution from a_{1}, and no special sensitivity to η^{\prime}.
At $O\left(p^{4}\right)$, a lot of counterterms occur, but for a_{1}, only in a finite combination.

- Loop processes
(with weak rotation)
- QCD
- Z (QCD)
- $\Delta S=1$
- $\mathrm{Z}(\Delta S=1)$

(5)

- Amplitude

The general structure is

$$
\begin{array}{r}
\mathfrak{M}\left(K^{+} \rightarrow \pi^{+} Z^{\mu}(q)\right)=i \frac{G_{8} g}{\cos \theta_{W}} F_{\pi}^{2} p_{K}^{\mu}\left[2 a_{8}+\frac{\mathfrak{M}_{\text {loops }}}{\left(4 \pi F_{\pi}\right)^{2}}\right] \\
\mathfrak{M}_{\text {loops }}=a_{8} \mathbf{M}_{A}\left(q^{2}\right)+\left(a_{8}-\frac{4}{3} \sin ^{2} \theta_{W}\right) \mathbf{M}_{B}\left(q^{2}\right)
\end{array}
$$

The leading part of \mathbf{M}_{A} is proportional to m_{K}^{2}, m_{π}^{2}, and corresponds to dimension 6, i.e. $X\left(m_{u}\right)$. Terms proportional to q^{2} are small. In addition, $\left.\mathbf{M}_{A}\right|_{S U(3)}=0$.

The leading part of \mathbf{M}_{B} is proportional to q^{2}, and corresponds to dimension 8 operators. This function is exactly the one occuring in $K^{+} \rightarrow \pi^{+} \gamma^{*}$.

The divergence is fully contained in \mathbf{M}_{B}, and appears with the same coefficient as in the short-distance analysis:

$$
C_{1}^{Z}\left(\mu_{I R}\right)=\frac{1}{6}\left(1-\frac{4}{3} \sin ^{2} \theta_{W}\right) \log \left(m_{c} / \mu_{I R}\right)\left[3 C_{1}\left(m_{c}\right)+C_{2}\left(m_{c}\right)\right]
$$

The removal of the FCNC piece is crucial: only then the q^{2} piece has this coefficient

Phenomenology

- Final parametrization

$$
\begin{aligned}
\operatorname{Br}\left(K^{+} \rightarrow \pi^{0} v \bar{v}\right) & =\kappa^{+}\left[\left|\operatorname{Im} \lambda_{t} X\left(x_{t}\right)\right|^{2}+\left|\operatorname{Re} \lambda_{t} X\left(x_{t}\right)+\operatorname{Re} \lambda_{c} P_{L Q}\right|^{2}\right] \\
& \approx \kappa^{+}\left[\left|A^{2} \lambda^{5} \eta X\left(x_{t}\right)\right|^{2}+\left|A^{2} \lambda^{5}(1-\rho) X\left(x_{t}\right)+\lambda P_{L Q}\right|^{2}\right] \\
& \approx 4.1 \times 10^{-11} A^{4} X^{2}\left(x_{t}\right)\left[\eta^{2}+\left(\rho_{0}-\rho\right)^{2}\right]
\end{aligned}
$$

with

$$
\kappa^{+}=\frac{3 \alpha^{2} B r\left(K^{+} \rightarrow \pi^{0} e^{+} v\right)}{2 \pi \lambda^{2} \sin ^{4} \theta_{W}}, \rho_{0}=1+\frac{P_{L Q}}{A^{2} \lambda^{4} X\left(x_{t}\right)}, \eta \approx \frac{1}{3}, \rho \approx \lambda \approx \frac{1}{5}, A \approx \frac{4}{5}
$$

The matrix element of the leading dimension 6 operator is hidden in κ^{+}.
The top quark effects are included in the function $X\left(x_{t}\right)=1.529 \pm 0.042$
All the light quarks (c and u) effects are contained in $P_{L Q}$:

$$
P_{L Q}=P_{c}+P_{c}^{(8)}+\operatorname{Re} P_{L D} \quad P_{c}=\frac{2}{3} X_{N L}^{e}+\frac{1}{3} X_{N L}^{\tau} \approx \lambda^{4}(0.39 \pm 0.07)
$$

Conclusion

- For c-quark, dimension-eight operators:

We confirm both the basis and Wilson coefficients obtained by
Falk, Lewandowski and Petrov in 2000.

- For u-quark, long-distance effects:

We have motified the basis of operators to be used in ChPT at $O\left(G_{F}^{2} p^{2}\right)$ by including a FCNC local operator, in order to satisfy GIM mechanism.

Contrary to earlier works: 1/ No sensitivity to the singlet part of the Z current.
2/ At loop level, a structure that matches SD arises.

- For the final estimation of the impact on P_{c} :

For both $P_{c}^{(8)}$ and $\operatorname{Re} P_{L D}$, everything is in place, just a little more work needed. Completion expected very soon...

