

Testing a topology conserving action in lattice QCD

W. Bietenholz*, K. Jansen[†], K.I. Nagai[†], S. Necco^{**}, L. Scorzato^{*}, S. Shcheredin^{*}

* Humboldt Universität Berlin, † NIC/DESY Zeuthen, ** CNRS/CPT Marseille

Euridice Network EURIDICE Collaboration Meeting 8-13 February 2004, Frascati

Silvia Necco, CPT Marseille - p.1/13

Motivations

$$\begin{split} \epsilon\text{- expansion of QCD:} \\ m_{\pi} &\sim \frac{1}{L^2} \sim \mathcal{O}(\epsilon^2) \\ m_{\pi}^{-1} \gg L \qquad \qquad \left(L \gg \frac{1}{2F_{\pi}}\right) \end{split}$$

Gasser, Leutwyler (1987)

- within χ PT one can account for finite size effects in a systematic manner \rightarrow the low energy constants of χ PT take the same value as in infinite volume

- The topology is relevant: predictions for observables defined in fixed topological sectors

Leutwyler, Smilga (1992)

Constraints for lattice calculations:

- \checkmark The physical volume must be $\gtrsim 1.1 {
 m fm}$
- Chiral properties must be preserved as much as possible, to reach small pion masses
- A definition of the topological charge is needed

 \rightarrow Ginsparg-Wilson fermions

Ginsparg, Wilson (1982), Neuberger (1997)

- exact, lattice modified chiral symmetry
- no additive mass renormalization
- exact zero modes with definite chirality

topological charge: $\nu = n_+ - n_-$

P. Hasenfratz et al.(1998), Lüscher (1998)

Recent results in the ϵ -regime with quenched Ginsparg-Wilson fermions:

- Dirac spectrum (comparison with RMT)

Bietenholz et al. (2003), Giusti et al. (2003), Galletly et al. (2004)

- Axial correlation functions

Bietenholz et al. (2004), Giusti et al. (2003,2004)

results compared with quenched χPT

Damgaard et al (2002,2003), Bijnens et al (2004)

- Low-energy constant of the weak χ Lagrangian for non-leptonic Giusti et al (2004) Giusti et al (2004)

Lattice gauge action:

 $S = \beta \sum_P S_P$ $S_P = 1 - \frac{1}{3} \operatorname{ReTr} U_P$ plaquette variable

The overlap Dirac operator is **local** (with exponentially decaying tails) if the gauge field is assumed to satisfy the smoothness condition

 $||S_P|| < \varepsilon$, for all plaquettes P, $\varepsilon < \frac{1}{6(2+\sqrt{2})} \sim \frac{1}{20.45}$

Lüscher (1999), Hernández et al (1999), Neuberger (2000)

Gauge actions that suppress the occurrence of small plaquette values:

-improves the locality of D_{ov}

-could speed up the dynamical simulations

-suppresses the change of ν

 \rightarrow the continuum property of stable topologies is reproduced

 \rightarrow collect large number of configurations at fixed topological charge ($|\nu| = 1, 2$ are the most useful; $\nu = 0$ has large fluctuations; for $|\nu| > 2$ quenched χ PT fails for $L \lesssim 1.5 {
m fm}$)

Possible gauge actions:

(1)
$$\beta S_{\varepsilon,n}(U_P) = \beta \frac{S_P}{(1-\varepsilon^{-1}S_P)^{\alpha}} \text{ if } S_P < \varepsilon, \text{ and } +\infty \text{ otherwise}$$

(2)
$$\beta S_{\varepsilon,n}(U_P) = \beta S_P + \varepsilon^{-1} S_P^n$$

(3)
$$\beta S_{\varepsilon,n}(U_P) = \beta S_P \exp\left[\varepsilon^{-1} S_P^n\right]$$

still in the same universality class as Wilson plaquette action

(1) introduced by Lüscher (1999) ($\alpha = 1$); already applied for the Schwinger model

Fukaya, Onogi (2003,2004)

Update with local hybrid Monte Carlo algorithm. Aim: conciliate advantages with reasonable lattice spacings and lattice sizes, with moderate lattice artefacts and reasonably decorrelated sampling of observables

Results with action (1)

ε^{-1}	eta	r_0/a	eta_W	$ au^{ m plaq}$	f_J	dt	Acceptance
0	6.18	7.14(3)	6.18	7(1)	0.015	0.1	> 99%
1.00	1.5	6.6(2)	6.13(2)	2.0(1)	0.0027	0.05	> 99%
1.18	1.0	7.2(2)	6.18(2)	1.3(1)	0.0014	0.02 - 0.01	> 99%
1.25	0.8	7.0(1)	6.17(1)	1.1(1)	0.0025	0.1	> 99%
1.52	0.3	7.3(4)	6.19(4)	0.8(1)	0.0008	0.1	$\sim 95\%$
1.64	0.1	6.8(3)	6.15(3)	1.0(1)	0.0007	0.1	$\sim 65\%$

 $V = 16^{4}$

topological charge estimated through *cooling* technique

llgenfritz et al (1986)

dt: discretization of the HMC trajectories (trajectory length =1)

 f_J : (# of jumps of ν)/(# trajectories in the full history)

 τ_{plaq} : autocorrelation of the plaquette

 r_0/a : Sommer scale ($r_0 = 0.5 \text{ fm}$)

 β_W : Wilson coupling corresponding to the same physical scale

 \rightarrow the topological stability improves by decreasing ε along lines of approximately constant physics (ε still >> theoretical bound)

MC history of the topological charge/I

Silvia Necco, CPT Marseille - p.7/13

MC history of the topological charge/II

Lattice artefacts

Comparison with continuum results

 $G(r) = r^2 F(r)$

S.N., R.Sommer (2001)

Lattice artefacts $\lesssim 10\%$ (comparable with Iwasaki, DBW2)

Action (3)

Possible problems of actions (1):

- do not allow for the existence of a positive definite transfer matrix?

Creutz (2004)

- for *global* HMC updatings: *local* rejection due to the violation of the constraint \rightarrow rejection of the complete configuration \rightarrow small acceptance rate

 \rightarrow use an action with same behavior at small values of the plaquette, but no infinite wall.

Possible candidates:

$$S'(U_P) = S_P \ e^{90 \ S_P^6};$$
 $S'(U_P) = S_P \ e^{30 \ S_P^4};$

Conclusions

Topology conserving gauge actions could be highly profitable in QCD simulations \rightarrow suppression of small plaquette values may speed up dynamical simulations

 \rightarrow a stable ν could be useful in the ϵ -regime

Work in progress, a completely satisfactory formulation for topology-conserving SU(3) gauge actions is still under construction

Next steps:

- check whether small eigenvalues of AA^{\dagger} are repelled/suppressed
- try other formulations

- check sampling of correct topological charge distribution in the dynamical case

Action (3)

 $S_P(U_P) \to S'(U_P) = S_P(U_P) \exp(\gamma S_P^{\delta}(U_P))$

Lattice artefacts

