Meson Masses and Decay Constants at Two Loops in Partially Quenched ChPT

Timo Lähde

Lund University, Department of Theoretical Physics,

Sölvegatan 14A, SE - 223 62 Lund, Sweden

e-mail: talahde@thep.lu.se

– Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

Overview of Objectives

- Calculation of pseudoscalar meson masses and decay constants to NNLO, or $\mathcal{O}(p^6)$ in Partially Quenched Chiral Perturbation Theory (PQ χ PT).
- Calculation of electromagnetic form factors of pseudoscalar mesons to NNLO in PQ χ PT are also planned.
- Expressions in NNLO PQ χ PT are very large; Numerical implementation of the results for the benefit of the Lattice QCD community will be made available from the authors websites.
- Collaboration at Lund University with Dr. Johan Bijnens and Niclas Danielsson (Graduate Student).

– Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

Valence and Sea Quarks in QCD

• Valence quark and sea quark contributions can be treated separately in Lattice QCD - no such distinction in standard χ PT.

- The valence quark loops are relatively easy to treat in Lattice QCD, but sea quarks are very difficult.
- Lattice QCD simulations with physical u, d sea quark masses are not (yet?) possible \longrightarrow Partially Quenched χ PT required !

– Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

Quenching of Meson Loops

• A first step toward Partially Quenched theories is to remove the contributions with disconnected quark lines from the meson loops:

• The cancellation of loops with disconnected quark lines by means of bosonic ghost quarks is referred to as the Supersymmetric formulation¹ of quenched χ PT.

¹C.W. Bernard and M.F.L. Golterman, Phys.Rev. **D49** (1994) 486

[–] Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

Partially Quenched Theories

• Partially Quenched χ PT is obtained by addition of explicit sea quarks q, \bar{q} , whose masses are free parameters, to the quenched valence quark loops. Thus the valence and sea sectors are now treated independently.

• $PQ\chi PT$ is a systematic Lagrangian framework² where all necessary cancellations are carried out automatically, for any given set of Feynman diagrams.

²S. Sharpe and N. Shoresh, Phys.Rev. **D64** (2001) 114510, Phys.Rev. **D62** (2000) 094503

[–] Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

- The Lagrangians of PQ χ PT may be obtained from those of unquenched SU(n) χ PT by replacement of traces with supertraces.
- The low-energy constants of PQ χ PT are simply related to those of unquenched $SU(n) \ \chi$ PT \longrightarrow PQ simulations may yield direct information about unquenched QCD!
- The mesons and quark masses of PQ χ PT are arranged into the meson matrix ϕ_{ij} and the mass matrix χ , where $\chi_i = 2B_0 m_i$:

$$\phi_{ij} = \begin{pmatrix} q\bar{q} & q\bar{q} & q\bar{q} \\ \hline \end{pmatrix} \qquad \chi_i = \begin{pmatrix} \chi_v & | \\ \hline \chi_s & | \\ \hline & \chi_s & | \\ \hline & | & \chi_g \\ \hline & | & \chi_g \\ \hline \end{pmatrix}$$

• For the case of 3 valence and 3 sea quarks ϕ is a 9×9 matrix, consequently 81 fields as compared to 9 in SU(3)!

The Self-Energy $-i\Sigma$ at $\mathcal{O}(p^6)$

• The contributions from irreducible self-energy insertions $-i\Sigma$ to the propagator of a pseudoscalar field may be summed by means of a geometric series:

$$- \bigcirc = - + - \oslash + - \oslash - + \cdots$$
$$i\Delta(p) = i\Delta_0 + i\Delta_0[-i\Sigma]i\Delta_0 + i\Delta_0[-i\Sigma]i\Delta_0[-i\Sigma]i\Delta_0 + \cdots$$
$$= \frac{i}{p^2 - M_0^2 - \Sigma(p^2) + i\varepsilon}.$$

• The physical meson mass M^2 is then defined in terms of the pole position

$$M^2 = M_0^2 + \Sigma(M^2),$$

where M_0^2 denotes the lowest order Goldstone boson mass.

[–] Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

• At NNLO, the following diagrams contribute to $-i\Sigma$:

• Black dots, open squares and shaded squares denote vertices of $\mathcal{O}(p^2)$, $\mathcal{O}(p^4)$ and $\mathcal{O}(p^6)$, respectively.

[–] Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

Meson Masses to NNLO

• The physical squared masses $M_{\rm phys}^2 = M^2$ are calculated from the pole position of the summed propagator,

$$M^2 = M_0^2 + \Sigma(M^2).$$

• Up to NNLO, in terms of the lowest order mass M_0 and the self-energy contribution Σ , the masses of the pseudoscalar mesons are given by

$$M_{\rm phys}^2 = M_0^2 + \Sigma_4(M_0^2) + \underbrace{\Sigma_4(M_0^2) \frac{\partial \Sigma_4(p^2)}{\partial p^2}}_{\mathcal{O}(p^6) \text{ contribution}} + \Sigma_6(M_0^2) + \mathcal{O}(p^8).$$

• The self-energy Σ_4 represents the NLO (one-loop) mass shift.

[–] Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

Decay Constants to NNLO

• The decay constants F^a are calculated from the matrix element of the axial current operator,

$$\langle 0|A^a_\mu(0)|\phi^a(p)\rangle = i\sqrt{2}\,p_\mu\,F^a,$$

• Up to NNLO, in terms of the lowest order result $F_2 = F_0$ and the self-energy contributions Σ from the wavefunction renormalization, one obtains

$$F_{\text{phys}} = F_{0} + F_{4}(M_{0}^{2}) + F_{0} \frac{\partial \Sigma_{4}(p^{2})}{2 \partial p^{2}} \Big|_{M_{0}^{2}} + F_{0} \frac{3}{8} \left(\frac{\partial \Sigma_{4}(p^{2})}{\partial p^{2}} \Big|_{M_{0}^{2}} \right)^{2}$$

+ $F_{0} \frac{\partial \Sigma_{6}(p^{2})}{2 \partial p^{2}} \Big|_{M_{0}^{2}} + F_{4}(M_{0}^{2}) \frac{\partial \Sigma_{4}(p^{2})}{2 \partial p^{2}} \Big|_{M_{0}^{2}} + F_{6}(M_{0}^{2}) + \mathcal{O}(p^{8}).$

- Johan Bijnens and Timo Lähde - EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

Technical Issues and Numerical Results

- The main technical problem in NNLO PQ χ PT calculations is the size of the expressions \longrightarrow Heavy use of FORM³.
- The results obtained in FORM are highly redundant in the number of terms and require simplification → End results have been compressed by an order of magnitude with MAPLE
- The simplification is a difficult and tedious task, since most of the possible simplifications are not easily apparent. Most problems are now solved, but publication delayed by ~ 6 months.

³J. Vermaseren, http://www.nikhef.nl/~form

[–] Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

- In the most general case, the masses and decay constants of the charged pseudoscalar mesons are functions of the valence quark masses χ_1, χ_3 and the sea quark masses χ_4, χ_5, χ_6 .
- All results are calculated for three flavors of valence and sea quarks, and are characterized by:
 - Number of nondegenerate valence quarks, $d_{\rm val}$
 - Number of nondegenerate sea quarks, $d_{\rm sea}$
- The results are plotted along different curves in the χ_1 χ_4 plane, for the cases of:
 - Constant ratio between sea and the valence masses, $\chi_4/\chi_1 = \tan(\theta)$
 - Constant sea quark mass, $\chi_4 = C$
- Unquenched NNLO $\chi {\rm PT}$ is thus recovered for $\theta = 45^{\circ}.$

[–] Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

- Numerical results for M^2 to NNLO in PQ χ PT, for $d_{val} = 1$ and $d_{sea} = 1$. The quantity plotted, Δ , is defined as $M^2 = M_0^2(1 + \Delta)$.
- The NNLO expression for M^2 depends on 9 $\mathcal{O}(p^4)$ and 12 $\mathcal{O}(p^6)$ LEC:s.

- Johan Bijnens and Timo Lähde - EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

- Numerical results for F_a to NNLO in PQ χ PT, for $d_{val} = 1$ and $d_{sea} = 1$. The quantity plotted, Δ , is defined as $F = F_0(1 + \Delta)$.
- The NNLO expression for F_a depends on 9 $\mathcal{O}(p^4)$ and 5 $\mathcal{O}(p^6)$ LEC:s.

– Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

- Left-hand plot: F_a for $d_{val} = 1$, $d_{sea} = 2$, and $z = \chi_6/\chi_4$.
- Right-hand plot: F_a for $d_{val} = 2$, $d_{sea} = 2$, and $x = \chi_3/\chi_1$.

- Johan Bijnens and Timo Lähde - EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005

The following NNLO calculations in PQ χ PT are completed and published:

- The mass of a pseudoscalar meson for $d_{val} = 1$, $d_{sea} = 1$ for $n_{fl} = 3$; \longrightarrow Phys.Rev.**D70**:111503 (2004), hep-lat/0406017
- The decay constants of charged pseudoscalar mesons for $d_{val} = 2$, $d_{sea} = 2$ and $d_{val} = 1$, $d_{sea} = 3$ for $n_{fl} = 3$; \longrightarrow hep-lat/0501014

The following calculations will appear shortly:

- Meson masses and decay constants in two-flavor PQ χ PT ($n_{\rm fl}=2$)
- Full results for charged meson masses in three-flavor PQ χ PT ($n_{\rm fl} = 3$)

The following calculations are planned:

- Pion and kaon electromagnetic form factors in $\mathsf{PQ}\chi\mathsf{PT}$
- Masses and decay constants of neutral pseudoscalars

[–] Johan Bijnens and Timo Lähde – EURIDICE Midterm Collaboration Meeting, Frascati, Feb 8-12, 2005