The $a_0 - a_2$ pion scattering length from $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ decay

Nicola Cabibbo

Summary

- Pion scattering lengths and the cusp.
- Unitarity and analiticity.
- $\pi\pi$ scattering.
- $K \rightarrow 3\pi$ amplitudes at $O(a_i^2)$.

N. Cabibbo, *Phys. Rev. Lett.*, 93:121801, 2004. N. Cabibbo and G.Isidori, pre-preprint

Pion scattering lengths and chiral dynamics

:

Weinberg 1966

$$a_0 m_{\pi^+} = \frac{7 m_{\pi^+}^2}{16 \pi f_{\pi}^2} = 0.159$$
$$a_2 m_{\pi^+} = \frac{-m_{\pi^+}^2}{8 \pi f_{\pi}^2} = -0.045$$

Colangelo et al. 2001 :
$$a_0 m_{\pi^+} = 0.220 \pm 0.005$$

 $a_2 m_{\pi^+} = -0.0444 \pm 0.0010$

 $(a_0 - a_2) m_{\pi^+} = 0.265 \pm 0.004$

Can we match this precision?

 $\pi^+\pi^- \rightarrow \pi^0\pi^0$ re-scattering from $K^+ \rightarrow \pi^+\pi^+\pi^-$ causes a cusp singularity in the $\pi^0\pi^0$ spectrum at the $\pi^+\pi^-$ threshold. The cusp is proportional to $(a_0 - a_2)$

N. Cabibbo, Phys. Rev. Lett. 93 (2004) 121801.

The $\pi^0 \pi^0$ spectrum in $K^+ \to \pi^+ \pi^0 \pi^0$ in the $\pi^+ \pi^-$ threshold region, at the first order in an expansion in powers of a_i

How does the cusp arise

Let us write:

$$\mathcal{M}(K^+ \to \pi^+ \pi^0 \pi^0) = \mathcal{M} = \mathcal{M}_0 + \mathcal{M}_1$$

where \mathcal{M}_1 is the contribution of the re-scattering graph.

We must consider two cases, with $s_{\pi\pi}$ above or below the $\pi^+\pi^-$ threshold.

$$s_{\pi\pi} > 4 m_{\pi^+}^2 : \qquad \mathcal{M}_1 = i2 \frac{(a_0 - a_2) m_{\pi^+}}{3} \mathcal{M}_{+, \text{thr}} \sqrt{(s_{\pi\pi} - 4 m_{\pi^+}^2)/s_{\pi\pi}} \\ |\mathcal{M}|^2 = (\mathcal{M}_0)^2 + |\mathcal{M}_1|^2 \\ s_{\pi\pi} < 4 m_{\pi^+}^2 : \qquad \mathcal{M}_1 = -2 \frac{(a_0 - a_2) m_{\pi^+}}{3} \mathcal{M}_{+, \text{thr}} \sqrt{(4 m_{\pi^+}^2 - s_{\pi\pi})/s_{\pi\pi}} \\ |\mathcal{M}|^2 = (\mathcal{M}_0)^2 + (\mathcal{M}_1)^2 + 2\mathcal{M}_0 \mathcal{M}_1$$

where $\mathcal{M}_{+,\text{thr}}$ is the value of the $K^+ \to \pi^+ \pi^- \pi^-$ amplitude at the $\pi^+ \pi^-$ threshold.

- Above threshold: \mathcal{M}_1 imaginary No interference
- Below threshold: \mathcal{M}_1 real and negative Interferes destructively with \mathcal{M}_0

NA48 data are very precise.

7

With $10^8 K^+ \rightarrow \pi^+ \pi^0 \pi^0$ events, a $1 \div 2$ % measurement of $(a_0 - a_2)$ seems possible, but since the cusp is a 10% effect, this requires a theory good to $1 \div 2$ parts in 10^{-3} , and implicates higher order rescattering effects, and radiative corrections. It is possible to set up a systematic computation of the singular parts of an amplitude in terms of its non-singular parts. This leads to an expansion of the $K \rightarrow 3\pi$ amplitudes in powers of the $\pi\pi$ scattering lengths a_0, a_2 . The development is useful because the scattering lengths are small, which is

The development is useful because the scattering lengths are small, which is a general consequence of the fact that pions act as "pseudo Goldstone Bosons" for chiral symmetry breaking.

The development to the second order in powers of a_0 , a_2 reveals a second cusp above the $\pi^+\pi^-$ threshold.

New cusp results.

With Gino Isidori we have completed a computation of the $O(a_i^2)$ corrections to the $K \rightarrow 3\pi$ amplitudes. This work includes:

- Other rescattering corrections: $\pi^0 \pi^0 \to \pi^0 \pi^0$, $\pi^+ \pi^0 \to \pi^+ \pi^0$, etc.
- Corrections from "two-loops" graphs.
- Cover $K^+ \to \pi^+ \pi^0 \pi^0$, $K_L \to \pi^0 \pi^0 \pi^0$, which have cusps, and $K^+ \to \pi^+ \pi^+ \pi^-$, $K_L \to \pi^+ \pi^- \pi^0$. which do not.

This work allows for a determination of $a_0 - a_2$ with 5% theoretical uncertainty. To reach a 1% theoretical uncertainty we need:

- An evaluation of $O(a_i^2)$ corrections.
- An evaluation of radiative corrections.

The accuracy of NA48 data merits this effort! Statistical errors in the $1\div 2\%$ range are foreseen, and systematic errors should also be small.

 $K \rightarrow 3\pi$ rescattering topologies at the two-loop level: a) single-channel $\pi\pi$ scattering;

b) irreducible $3\pi \rightarrow 3\pi$ contributions;

c) $3\pi \rightarrow 3\pi$ amplitude due to multi-channel $\pi\pi$ scattering.

The method

1. Time reversal: In the sectors of interest the Smatrix is symmetric,

 $\langle B|\mathbf{S}|A\rangle = \langle A|\mathbf{S}|B\rangle \qquad K \to 3\pi \text{ and } \pi\pi \to \pi\pi$

2. Unitarity:

$$S = I + i(R + iI)$$
 where R and I are hermitian

From time reversal: **R** and **I** are symmetric, their matrix elements are the real and imaginary parts of the matrix elements of **S**.

$$2\mathbf{I} = \mathbf{R}^{2} + \mathbf{I}^{2}$$
 or, solving for **I**,
$$\mathbf{I} = \mathbf{1} - \sqrt{\mathbf{1} - \mathbf{R}^{2}} = \frac{1}{2}\mathbf{R}^{2} + \frac{1}{8}\mathbf{R}^{4} + \frac{1}{16}\mathbf{R}^{6} + \frac{5}{128}\mathbf{R}^{8}...$$

3. Analiticity, illustrated by an example: $\pi^0 \pi^0 \rightarrow \pi^0 \pi^0$ scattering.

$$\pi^0 \pi^0 \rightarrow \pi^0 \pi^0$$
 scattering at $O(a_i^3) - 1$

Define the "velocities",

$$v_{\pm}(s) = \sqrt{\frac{|s - 4m_{\pi^{\pm}}^2|}{s}} \qquad v_{00}(s) = \sqrt{\frac{|s - 4m_{\pi^0}^2|}{s}}$$

We can then write

$$\begin{aligned} \mathcal{M}_{00} &= A_{00} + B_{00} \, \nu_{\pm}(s) & s > 4 \, m_{\pi^+}^2 \\ \mathcal{M}_{00} &= A_{00} + i B_{00} \, \nu_{\pm}(s) & s < 4 \, m_{\pi^+}^2, \end{aligned}$$

and, for $\pi^+\pi^- \rightarrow \pi^0\pi^0$,

$$\mathcal{M}_x = A_x + B_x v_{\pm}(s) \qquad \qquad s > 4 m_{\pi^+}^2$$

where A_{00} , B_{00} , A_x , B_x are regular (analytic) at the $\pi^+\pi^-$ threshold.

$$\pi^0 \pi^0 \rightarrow \pi^0 \pi^0$$
 scattering at $O(a_i^3) - 2$

We can express Re(*A*) as a polynomial in *s*. Write:

$$\operatorname{Re}(A_{00}) = \frac{8a_{00}(s)}{\pi}; \qquad a_{00}(s) = a_{00} \left[1 + r_{00} \frac{(s - 4m_{\pi^+}^2)}{4m_{\pi^+}^2} + \dots \right]$$

and similarly for $\pi^+\pi^- \rightarrow \pi^0\pi^0$,

Re
$$(A_x) = \frac{8a_x(s)}{\pi};$$
 $a_x(s) = a_x \left[1 + r_x \frac{(s - 4m_{\pi^+}^2)}{4m_{\pi^+}^2} + \dots \right]$

In the limit of exact SU(2), $a_{00} = \frac{a_0 + 2a_2}{3}, a_x = \frac{a_0 - a_2}{3}$

The $\pi^+\pi^-$ intermediate state contributes to Im \mathcal{M}_{00} only above the $\pi^+\pi^-$ threshold, while the $\pi^0\pi^0$ state contributes both above and below, so that, at O(**R**²),

$$[m\mathcal{M}_{00} = \frac{\pi}{4}v_{\pm}(s)(\operatorname{Re}\mathcal{M}_{x})^{2}\Theta(s-4m_{\pi^{+}}^{2}) + \frac{\pi}{8}v_{00}(s)(\operatorname{Re}\mathcal{M}_{00})^{2} + O(\mathbf{R}^{4})$$

$$\pi^0 \pi^0 \rightarrow \pi^0 \pi^0$$
 scattering at $O(a_i^3) - 3$

Note that
$$\operatorname{Im} \mathcal{M}_{00} = \begin{cases} \operatorname{Im} A_{00} + \operatorname{Im} B_{00} v_{\pm}(s) & : & s > 4 m_{\pi^+}^2 \\ \operatorname{Im} A_{00} + \operatorname{Re} B_{00} v_{\pm}(s) & : & s < 4 m_{\pi^+}^2 \end{cases}$$

Applying unitarity, $\mathbf{I} = \mathbf{R}^2/2$ at $O(\mathbf{R}^2)$ both above and below the $\pi^+\pi^-$ threshold we then obtain

$$\operatorname{Im} B_{00} = \frac{\pi}{4} (\operatorname{Re} A_x)^2 = \frac{16}{\pi} (a_x(s))^2$$

$$\operatorname{Re} B_{00} = -\frac{\pi v_{00}(s)}{4} \operatorname{Re} A_{00} \operatorname{Im} B_{00} = -\frac{32 v_{00}(s)}{\pi} a_{00}(s) (a_x(s))^2$$

$$\operatorname{Im} A_{00} = \frac{\pi v_{00}(s)}{8} (\operatorname{Re} A_{00})^2 = \frac{8 v_{00}(s)}{\pi} (a_{00}(s))^2$$

These results (and similar ones for other channels) are then fed into the unitarity relations for $K \rightarrow 3\pi$ to obtain all corrections at $O(a_i^2)$.

The theoretical $\pi^0 \pi^0$ spectrum in $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ (lower) computed at second order in powers of the scattering lengths.

Theoretical $\pi^0 \pi^0$ spectrum in $K^+ \to \pi^+ \pi^0 \pi^0$ (lower) at $O(a_i^2)$ normalized to the "unperturbed" amplitude.

The picture will be complicated by the existence of a $\pi^+\pi^-$ pionium atom signal at the $\pi^+\pi^-$ threshold!.

Space for improvement

- Stopping at $O(a_i^2)$ level and neglecting radiative corrections implies a ~ 5% theoretical error on $(a_0 a_2)$. This may be sufficient at the present state of NA48 systematics.
- $O(a_i^{3})$ terms and radiative corrections can be computed with a finite, but lengthy effort.
- \rightarrow Compute $O(a_i^3)$ terms.
- \rightarrow Compute radiative corrections
- → These computations will to a large extent be independent from Chiral Perturbation Theory which we wish to test!
- \rightarrow The theoretical error on $(a_0 a_2)$ can be reduced to the 1% level.

Conclusions

- The experimental study of $K \rightarrow 3\pi$ decays is a powerful tool for gathering information on $\pi\pi$ scattering in the low energy region.
- We have outlined a method that allows to systematically evaluate rescattering effects in $K \rightarrow 3\pi$ decays by means of an expansion in powers of the $\pi\pi$ scattering lengths. This approach is less ambitious than the ordinary loop expansion performed in effective field theories, such as CHPT: the scope is not a dynamical calculation of the entire decay amplitudes, but a systematic evaluation of the singular terms due to rescattering effects. In particular, our main goal has been a systematical description of the cusp effect in $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ in terms of the $\pi\pi$ scattering lengths. From this point of view, the approach we have proposed is more efficient and substantially simpler than ordinary CHPT.
- Using this method we have explicitly computed all the $O(a_i^2)$ corrections to the leading cusp effect in $K^+ \to \pi^+ \pi^0 \pi^0$, extending the results of my previos paper. The extra terms produce a small square-root behavior also above the $\pi^+ \pi^-$ singularity.
- The 5% level of precision is probably not sufficient to fully exploit the potentially very accurate data of NA48, and is also larger than the error on the CHPT predictions of $a_0 a_2$. To improve the situation we need a complete evaluation of the $O(a_i^3)$ corrections and of the effects due to radiative corrections.