The $a_{0}-a_{2}$ pion scattering length from $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ decay

Nicola Cabibbo

Summary

- Pion scattering lengths and the cusp.
- Unitarity and analiticity.
- $\pi \pi$ scattering.
- $K \rightarrow 3 \pi$ amplitudes at $O\left(a_{i}^{2}\right)$.
N. Cabibbo, Phys. Rev. Lett., 93:121801, 2004.

Pion scattering lengths and chiral dynamics

Weinberg 1966

$$
\begin{aligned}
& a_{0} m_{\pi^{+}}=\frac{7 m_{\pi^{+}}^{2}}{16 \pi f_{\pi}^{2}}=0.159 \\
& a_{2} m_{\pi^{+}}=\frac{-m_{\pi^{+}}^{2}}{8 \pi f_{\pi}^{2}}=-0.045
\end{aligned}
$$

Colangelo et al. 2001

$$
\begin{array}{ll}
: & a_{0} m_{\pi^{+}}=0.220 \pm 0.005 \\
& a_{2} m_{\pi^{+}}=-0.0444 \pm 0.0010 \\
& \left(a_{0}-a_{2}\right) m_{\pi^{+}}=0.265 \pm 0.004
\end{array}
$$

Can we match this precision?

$\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}$ re-scattering from $K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$causes a cusp singularity in the $\pi^{0} \pi^{0}$ spectrum at the $\pi^{+} \pi^{-}$threshold. The cusp is proportional to $\left(a_{0}-a_{2}\right)$
N. Cabibbo, Phys. Rev. Lett. 93 (2004) 121801.

The $\pi^{0} \pi^{0}$ spectrum in $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ in the $\pi^{+} \pi^{-}$threshold region, at the first order in an expansion in powers of a_{i}

How does the cusp arise

Let us write:

$$
\mathscr{M}\left(K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}\right)=\mathscr{M}=\mathscr{M}_{0}+\mathscr{M}_{1}
$$

where \mathscr{M}_{1} is the contribution of the re-scattering graph.
We must consider two cases, with $s_{\pi \pi}$ above or below the $\pi^{+} \pi^{-}$threshold.

$$
\begin{aligned}
& s_{\pi \pi}>4 m_{\pi^{+}}^{2}: \mathscr{M}_{1}= \\
& i 2 \frac{\left(a_{0}-a_{2}\right) m_{\pi^{+}}}{3} \mathscr{M}_{+, \operatorname{thr}} \sqrt{\left(s_{\pi \pi}-4 m_{\pi^{+}}^{2}\right) / s_{\pi \pi}} \\
&|\mathscr{M}|^{2}=\left(\mathscr{M}_{0}\right)^{2}+\left|\mathscr{M}_{1}\right|^{2} \\
& s_{\pi \pi}<4 m_{\pi^{+}}^{2}: \mathscr{M}_{1}=-2 \frac{\left(a_{0}-a_{2}\right) m_{\pi^{+}}}{3} \mathscr{M}_{+, \operatorname{thr}} \sqrt{\left(4 m_{\pi^{+}}^{2}-s_{\pi \pi}\right) / s_{\pi \pi}} \\
& \mid \mathscr{M}^{2}=\left(\mathscr{M}_{0}\right)^{2}+\left(\mathscr{M}_{1}\right)^{2}+2 \mathscr{M}_{0} \mathscr{M}_{1}
\end{aligned}
$$

where $\mathscr{M}_{+, \text {thr }}$ is the value of the $K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$amplitude at the $\pi^{+} \pi^{-}$threshold.

- Above threshold: \mathscr{M}_{1} imaginary — No interference
- Below threshold: \mathscr{M}_{1} real and negative - Interferes destructively with \mathscr{M}_{0}

NA48 data are very precise.

With $10^{8} K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ events, a $1 \div 2 \%$ measurement of ($a_{0}-a_{2}$) seems possible, but since the cusp is a 10% effect, this requires a theory good to $1 \div 2$ parts in 10^{-3}, and implicates higher order rescattering effects, and radiative corrections.

It is possible to set up a systematic computation of the singular parts of an amplitude in terms of its non-singular parts. This leads to an expansion of the $K \rightarrow 3 \pi$ amplitudes in powers of the $\pi \pi$ scattering lengths a_{0}, a_{2}.

The development is useful because the scattering lengths are small, which is a general consequence of the fact that pions act as "pseudo Goldstone Bosons" for chiral symmetry breaking.

The development to the second order in powers of a_{0}, a_{2} reveals a second cusp above the $\pi^{+} \pi^{-}$threshold.

New cusp results.

With Gino Isidori we have completed a computation of the $\mathrm{O}\left(a_{i}^{2}\right)$ corrections to the $K \rightarrow 3 \pi$ amplitudes. This work includes:

- Other rescattering corrections: $\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0}, \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0}$, etc.
- Corrections from "two-loops" graphs.
- Cover $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}, K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0}$, which have cusps, and $K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}, K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}$. which do not.

This work allows for a determination of $a_{0}-a_{2}$ with 5% theoretical uncertainty. To reach a 1% theoretical uncertainty we need:

- An evaluation of $\mathrm{O}\left(a_{i}^{2}\right)$ corrections.
- An evaluation of radiative corrections.

The accuracy of NA48 data merits this effort! Statistical errors in the $1 \div 2 \%$ range are foreseen, and systematic errors should also be small.
a)

b)
c)
$K \rightarrow 3 \pi$ rescattering topologies at the two-loop level:
a) single-channel $\pi \pi$ scattering;
b) irreducible $3 \pi \rightarrow 3 \pi$ contributions;
c) $3 \pi \rightarrow 3 \pi$ amplitude due to multi-channel $\pi \pi$ scattering.

The method

1. Time reversal: In the sectors of interest the Smatrix is symmetric,

$$
\langle B| \mathbf{S}|A\rangle=\langle A| \mathbf{S}|B\rangle \quad K \rightarrow 3 \pi \text { and } \pi \pi \rightarrow \pi \pi
$$

2. Unitarity:

$$
\mathbf{S}=\mathbf{1}+i(\mathbf{R}+i \mathbf{I})
$$

where \mathbf{R} and \mathbf{I} are hermitian.
From time reversal: \mathbf{R} and \mathbf{I} are symmetric, their matrix elements are the real and imaginary parts of the matrix elements of \mathbf{S}.

$$
\begin{aligned}
2 \mathbf{I} & =\mathbf{R}^{2}+\mathbf{I}^{2} \\
\mathbf{I} & =\mathbf{1}-\sqrt{\mathbf{1 - \mathbf { R } ^ { 2 }} \quad} \quad=\quad \frac{1}{2} \mathbf{R}^{2}+\frac{1}{8} \mathbf{R}^{4}+\frac{1}{16} \mathbf{R}^{6}+\frac{5}{128} \mathbf{R}^{8} \ldots
\end{aligned}
$$

3. Analiticity, illustrated by an example: $\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0}$ scattering.

$$
\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0} \text { scattering at } \mathrm{O}\left(a_{i}^{3}\right)-1
$$

Define the "velocities",

$$
v_{ \pm}(s)=\sqrt{\frac{\left|s-4 m_{\pi^{+}}^{2}\right|}{s}} \quad v_{00}(s)=\sqrt{\frac{\left|s-4 m_{\pi^{0}}^{2}\right|}{s}}
$$

We can then write

$$
\begin{array}{ll}
\mathscr{M}_{00}=A_{00}+B_{00} v_{ \pm}(s) & s>4 m_{\pi^{+}}^{2} \\
\mathscr{M}_{00}=A_{00}+i B_{00} v_{ \pm}(s) & s<4 m_{\pi^{+}}^{2},
\end{array}
$$

and, for $\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}$,

$$
\mathscr{M}_{x}=A_{x}+B_{x} v_{ \pm}(s) \quad s>4 m_{\pi^{+}}^{2}
$$

where $A_{00}, B_{00}, A_{x}, B_{x}$ are regular (analytic) at the $\pi^{+} \pi^{-}$threshold.

$$
\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0} \text { scattering at } \mathrm{O}\left(a_{i}^{3}\right)-2
$$

We can express $\operatorname{Re}(A)$ as a polynomial in s. Write:

$$
\operatorname{Re}\left(A_{00}\right)=\frac{8 a_{00}(s)}{\pi} ; \quad a_{00}(s)=a_{00}\left[1+r_{00} \frac{\left(s-4 m_{\pi^{+}}^{2}\right)}{4 m_{\pi^{+}}^{2}}+\ldots\right]
$$

and similarly for $\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}$,

$$
\operatorname{Re}\left(A_{x}\right)=\frac{8 a_{x}(s)}{\pi} ; \quad a_{x}(s)=a_{x}\left[1+r_{x} \frac{\left(s-4 m_{\pi^{+}}^{2}\right)}{4 m_{\pi^{+}}^{2}}+\ldots\right]
$$

In the limit of exact $\mathrm{SU}(2), \quad a_{00}=\frac{a_{0}+2 a_{2}}{3}, a_{x}=\frac{a_{0}-a_{2}}{3}$
The $\pi^{+} \pi^{-}$intermediate state contributes to $\operatorname{Im} \mathscr{M}_{00}$ only above the $\pi^{+} \pi^{-}$threshold, while the $\pi^{0} \pi^{0}$ state contributes both above and below, so that, at $\mathrm{O}\left(\mathbf{R}^{2}\right)$,

$$
\operatorname{Im} \mathscr{M}_{00}=\frac{\pi}{4} v_{ \pm}(s)\left(\operatorname{Re} \mathscr{M}_{x}\right)^{2} \Theta\left(s-4 m_{\pi^{+}}^{2}\right)+\frac{\pi}{8} v_{00}(s)\left(\operatorname{Re} \mathscr{M}_{00}\right)^{2}+O\left(\mathbf{R}^{4}\right)
$$

$$
\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0} \text { scattering at } \mathrm{O}\left(a_{i}^{3}\right)-3
$$

Note that $\operatorname{Im} \mathscr{M}_{00}=\left\{\begin{array}{lll}\operatorname{Im} A_{00}+\operatorname{Im} B_{00} v_{ \pm}(s) & : & s>4 m_{\pi^{+}}^{2} \\ \operatorname{Im} A_{00}+\operatorname{Re} B_{00} v_{ \pm}(s) & : & s<4 m_{\pi^{+}}^{2}\end{array}\right.$

Applying unitarity, $\mathbf{I}=\mathbf{R}^{2} / 2$ at $\mathrm{O}\left(\mathbf{R}^{2}\right)$ both above and below the $\pi^{+} \pi^{-}$threshold we then obtain

$$
\begin{aligned}
& \operatorname{Im} B_{00}=\frac{\pi}{4}\left(\operatorname{Re} A_{x}\right)^{2}=\frac{16}{\pi}\left(a_{x}(s)\right)^{2} \\
& \operatorname{Re} B_{00}=-\frac{\pi v_{00}(s)}{4} \operatorname{Re} A_{00} \operatorname{Im} B_{00}=-\frac{32 v_{00}(s)}{\pi} a_{00}(s)\left(a_{x}(s)\right)^{2} \\
& \operatorname{Im} A_{00}=\frac{\pi v_{00}(s)}{8}\left(\operatorname{Re} A_{00}\right)^{2}=\frac{8 v_{00}(s)}{\pi}\left(a_{00}(s)\right)^{2}
\end{aligned}
$$

These results (and similar ones for other channels) are then fed into the unitarity relations for $K \rightarrow 3 \pi$ to obtain all corrections at $\mathrm{O}\left(a_{i}^{2}\right)$.

The theoretical $\pi^{0} \pi^{0}$ spectrum in $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ (lower) computed at second order in powers of the scattering lengths.

Theoretical $\pi^{0} \pi^{0}$ spectrum in $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ (lower) at $O\left(a_{i}{ }^{2}\right)$ normalized to the "unperturbed" amplitude.

The picture will be complicated by the existence of a $\pi^{+} \pi^{-}$pionium atom signal at the $\pi^{+} \pi^{-}$threshold!.

Space for improvement

- Stopping at $O\left(a_{i}{ }^{2}\right)$ level and neglecting radiative corrections implies a $\sim 5 \%$ theoretical error on $\left(a_{0}-a_{2}\right)$. This may be sufficent at the present state of NA48 systematics.
- $O\left(a_{i}^{3}\right)$ terms and radiative corrections can be computed with a finite, but lengthy effort.
- \rightarrow Compute $O\left(a_{i}{ }^{3}\right)$ terms.
- \rightarrow Compute radiative corrections
- \rightarrow These computations will to a large extent be independent from Chiral Perturbation Theory which we wish to test!
- \rightarrow The theoretical error on $\left(a_{0}-a_{2}\right)$ can be reduced to the 1% level.

Conclusions

- The experimental study of $K \rightarrow 3 \pi$ decays is a powerful tool for gathering information on $\pi \pi$ scattering in the low energy region.
- We have outlined a method that allows to systematically evaluate rescattering effects in $K \rightarrow 3 \pi$ decays by means of an expansion in powers of the $\pi \pi$ scattering lengths. This approach is less ambitious than the ordinary loop expansion performed in effective field theories, such as CHPT: the scope is not a dynamical calculation of the entire decay amplitudes, but a systematic evaluation of the singular terms due to rescattering effects. In particular, our main goal has been a systematical description of the cusp effect in $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ in terms of the $\pi \pi$ scattering lengths. From this point of view, the approach we have proposed is more efficient and substantially simpler than ordinary CHPT.
- Using this method we have explicitly computed all the $O\left(a_{i}^{2}\right)$ corrections to the leading cusp effect in $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$, extending the results of my previos paper. The extra terms produce a small square-root behavior also above the $\pi^{+} \pi^{-}$singularity.
- The 5% level of precision is probably not sufficient to fully exploit the potentially very accurate data of NA48, and is also larger than the error on the CHPT predictions of $a_{0}-a_{2}$. To improve the situation we need a complete evaluation of the $O\left(a_{i}^{3}\right)$ corrections and of the effects due to radiative corrections.

