

Isospin Breaking in $K\to 3\pi$ Decays

Johan Bijnens Lund University

bijnens@thep.lu.se

http://www.thep.lu.se/~bijnens/chpt.html

Overview

- $K \rightarrow 3\pi$ Decays in Chiral Perturbation Theory, J. Bijnens, P. Dhonte and F. Persson, hep-ph/0205341, Nucl. Phys. B648 (2003) 317-344.
- Isospin Breaking in $K \rightarrow 3\pi$ Decays I: Strong Isospin Breaking, J. Bijnens and F. Borg, hep-ph/0405025, Nuclear Physics B697 (2004) 319-342.
- Isospin Breaking in $K \rightarrow 3\pi$ Decays II: Radiative Corrections, J. Bijnens and F. Borg, hep-ph/0410333, accepted in Eur. Phys. J. C.
- Isospin Breaking in $K \rightarrow 3\pi$ Decays III: Bremsstrahlung and Fit to Experiment, J. Bijnens and F. Borg, hep-ph/0501163.

Note: Fredrik Borg = Fredrik Persson, obtained PhD 28/1/2005

Overview

- ChPT in the nonleptonic mesonic sector
- Lagrangians
- $K \rightarrow 3\pi$ kinematics and isospin
- Overview of calculations and results
- Data and Fits
- Conclusions

- some earlier work: espescially on decays with photons
- Kambor, Missimer, Wyler (KMW) : Constructed \mathcal{L} and ∞ 1990
- \checkmark G. Esposito-Farese: Checked $\mathcal L$ and ∞ 1991
- KMW : Calculated $K \rightarrow 2\pi$ and $K \rightarrow 3\pi$ 1991
- Donoghue + Holstein + KMW : clarified the relations between observables 1992
- BUT: explicit formulas lost (US Mail)
- Solution Sector, Myler : simplified octet \mathcal{L} 1993
- $K \rightarrow 2\pi$ redone: Bijnens, Pallante, Prades 1998

- **•** First paper: redo $K \rightarrow 3\pi$
- Ecker Isidori Muller Neufeld Pich: Electromagnetic octet \mathcal{L} Lagrangian plus ∞ 2000
- applications to $K \rightarrow 2\pi$: Several papers
- Isospin breaking in $K \to 3\pi$: remaining papers $\mathcal{O}(p^4, p^2(m_u m_d), e^2p^2)$.

 $\mathcal{L}_2 = \mathcal{L}_{S2} + \mathcal{L}_{W2} + \mathcal{L}_{E2}$

 $\mathcal{L}_{S2} = \frac{F_0^2}{4} \left\langle u_\mu u^\mu + \chi_+ \right\rangle$

$$\mathcal{L}_2 = \mathcal{L}_{S2} + \mathcal{L}_{W2} + \mathcal{L}_{E2} \qquad \qquad \mathcal{L}_{S2} = \frac{F_0^2}{4} \left\langle u_\mu u^\mu + \chi_+ \right\rangle$$

$$u_{\mu} = iu^{\dagger} D_{\mu} U u^{\dagger} = u_{\mu}^{\dagger}, \quad u^2 = U, \quad \chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u,$$

U contains the Goldstone boson fields

$$U = \exp\left(\frac{i\sqrt{2}}{F_0}M\right), \qquad M = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\eta_8 & \pi^+ & K^+ \\ \pi^- & \frac{-1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\eta_8 & K^0 \\ K^- & \overline{K^0} & \frac{-2}{\sqrt{6}}\eta_8 \end{pmatrix}.$$

Here $\chi = 2B_0 \begin{pmatrix} m_u \\ m_d \\ m_s \end{pmatrix}$ and $D_\mu U = \partial_\mu U - ie\left[Q, U\right].$

$$\mathcal{L}_{W2} = CF_0^4 \left[G_8 \langle \Delta_{32} u_\mu u^\mu \rangle + G_8' \langle \Delta_{32} \chi_+ \rangle + G_{27} t^{ij,kl} \langle \Delta_{ij} u_\mu \rangle \langle \Delta_{kl} u^\mu \rangle \right]$$

 $\Delta_{ij} \equiv u\lambda_{ij}u^{\dagger}, \quad (\lambda_{ij})_{ab} \equiv \delta_{ia}\,\delta_{jb}, \quad t^{21,13} = t^{13,21} = 1/3, \dots$

$$\mathcal{L}_{W2} = CF_0^4 \left[G_8 \langle \Delta_{32} u_\mu u^\mu \rangle + G_8' \langle \Delta_{32} \chi_+ \rangle + G_{27} t^{ij,kl} \langle \Delta_{ij} u_\mu \rangle \langle \Delta_{kl} u^\mu \rangle \right]$$

$$\Delta_{ij} \equiv u\lambda_{ij}u^{\dagger}, \quad (\lambda_{ij})_{ab} \equiv \delta_{ia}\,\delta_{jb}, \quad t^{21,13} = t^{13,21} = 1/3, \dots$$

 $C = -\frac{3}{5} \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^*$: chiral and large N_c limits $G_8 = G_{27} = 1$

Г

$$\mathcal{L}_{W2} = CF_0^4 \left[G_8 \langle \Delta_{32} u_\mu u^\mu \rangle + G_8' \langle \Delta_{32} \chi_+ \rangle + G_{27} t^{ij,kl} \langle \Delta_{ij} u_\mu \rangle \langle \Delta_{kl} u^\mu \rangle \right]$$

$$\Delta_{ij} \equiv u\lambda_{ij}u^{\dagger}, \quad (\lambda_{ij})_{ab} \equiv \delta_{ia}\,\delta_{jb}, \quad t^{21,13} = t^{13,21} = 1/3, \dots$$

 $C = -\frac{3}{5} \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^*$: chiral and large N_c limits $G_8 = G_{27} = 1$

Electromagnetic: $\mathcal{L}_{E2} = e^2 F_0^4 Z \langle \mathcal{Q}_L \mathcal{Q}_R \rangle + \left(e^2 C F_0^6 G_E \langle \Delta_{32} \mathcal{Q}_R \rangle \right)$

$$\mathcal{Q}_L = uQu^{\dagger}, \quad \mathcal{Q}_R = u^{\dagger}Qu \text{ with } Q = \operatorname{diag}\left(2/3, -1/3, -1/3\right)$$

Г

$$\mathcal{L}_{W2} = CF_0^4 \left[G_8 \langle \Delta_{32} u_\mu u^\mu \rangle + G_8' \langle \Delta_{32} \chi_+ \rangle + G_{27} t^{ij,kl} \langle \Delta_{ij} u_\mu \rangle \langle \Delta_{kl} u^\mu \rangle \right]$$

$$\Delta_{ij} \equiv u\lambda_{ij}u^{\dagger}, \quad (\lambda_{ij})_{ab} \equiv \delta_{ia}\,\delta_{jb}, \quad t^{21,13} = t^{13,21} = 1/3, \dots$$

 $C = -\frac{3}{5} \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^*$: chiral and large N_c limits $G_8 = G_{27} = 1$

Electromagnetic: $\mathcal{L}_{E2} = e^2 F_0^4 Z \langle \mathcal{Q}_L \mathcal{Q}_R \rangle + \left(e^2 C F_0^6 G_E \langle \Delta_{32} \mathcal{Q}_R \rangle \right)$

$$Q_L = uQu^{\dagger}$$
, $Q_R = u^{\dagger}Qu$ with $Q = \text{diag}(2/3, -1/3, -1/3)$

Note: F_0 not well known, fit $CF_0^4G_8,\ldots$

Г

use *numerically* $F_0 = F_{\pi}$ to quote G_8, \ldots

 $\mathcal{L}_4 = \mathcal{L}_{S4} + \mathcal{L}_{W4} + \mathcal{L}_{S2E2} + \mathcal{L}_{W2E2}(G8) \,.$

$\mathcal{L}_4 = \mathcal{L}_{S4} + \mathcal{L}_{W4} + \mathcal{L}_{S2E2} + \mathcal{L}_{W2E2}(G8).$

 \mathcal{L}_{S4} values of L_i^r use Amoros, Bijnens, Talavera p^4 fit \mathcal{L}_{W4} thirteen N_i^r (octet) and twelve D_i^r might contribute (two N_i^r and two D_i^r extra for photon-reducible)

 \mathcal{L}_{S2E2} eleven K_i^r can contribute

 \mathcal{L}_{W2E2} fourteen Z_i^r can contribute, 27 part not classified

$\mathcal{L}_4 = \mathcal{L}_{S4} + \mathcal{L}_{W4} + \mathcal{L}_{S2E2} + \mathcal{L}_{W2E2}(G8).$

\mathcal{L}_{S4} values of L_i^r use Amoros, Bijnens, Talavera p^4 fit \mathcal{L}_{W4} thirteen N_i^r (octet) and twelve D_i^r might contribute (two N_i^r and two D_i^r extra for photon-reducible)

- \mathcal{L}_{S2E2} eleven K_i^r can contribute
- \mathcal{L}_{W2E2} fourteen Z_i^r can contribute, 27 part not classified

Done here :

- **Isospin conserved:** 11 combinations of N_i^r, D_i^r relevant: \tilde{K}_i
 - 7 coefficients order m_K^4 , 4 order $M_K^2 m_\pi^2$
 - 2 (virtually) indistinguishable from G_8 and G_{27} .

$\mathcal{L}_4 = \mathcal{L}_{S4} + \mathcal{L}_{W4} + \mathcal{L}_{S2E2} + \mathcal{L}_{W2E2}(G8).$

\mathcal{L}_{S4} values of L_i^r use Amoros, Bijnens, Talavera p^4 fit \mathcal{L}_{W4} thirteen N_i^r (octet) and twelve D_i^r might contribute (two N_i^r and two D_i^r extra for photon-reducible)

 \mathcal{L}_{S2E2} eleven K_i^r can contribute

 \mathcal{L}_{W2E2} fourteen Z_i^r can contribute, 27 part not classified

Done here :

Isospin conserved: 11 combinations of N_i^r, D_i^r relevant: \tilde{K}_i

- 7 coefficients order m_K^4 , 4 order $M_K^2 m_\pi^2$
- 2 (virtually) indistinguishable from G_8 and G_{27} .

Isospin Broken: 30 combinations of N_i^r, D_i^r, Z_i^r relevant

Results from isospin breaking with $K_i^r = Z_i^r = 0$

$K \rightarrow 3\pi$ Kinematics and Isospin

$$\begin{aligned}
K_L(k) &\to \pi^0(p_1)\pi^0(p_2)\pi^0(p_3), & [A_{000}^L], \\
K_L(k) &\to \pi^+(p_1)\pi^-(p_2)\pi^0(p_3), & [A_{+-0}^L], \\
K_S(k) &\to \pi^+(p_1)\pi^-(p_2)\pi^0(p_3), & [A_{+-0}^S], \\
K^+(k) &\to \pi^0(p_1)\pi^0(p_2)\pi^+(p_3), & [A_{00+}], \\
K^+(k) &\to \pi^+(p_1)\pi^+(p_2)\pi^-(p_3), & [A_{++-}],
\end{aligned}$$

plus charge conjugate ones

$K \to 3\pi$ Kinematics and Isospin

$$\begin{aligned}
K_L(k) &\to \pi^0(p_1)\pi^0(p_2)\pi^0(p_3), & [A_{000}^L], \\
K_L(k) &\to \pi^+(p_1)\pi^-(p_2)\pi^0(p_3), & [A_{+-0}^L], \\
K_S(k) &\to \pi^+(p_1)\pi^-(p_2)\pi^0(p_3), & [A_{+-0}^S], \\
K^+(k) &\to \pi^0(p_1)\pi^0(p_2)\pi^+(p_3), & [A_{00+}], \\
K^+(k) &\to \pi^+(p_1)\pi^+(p_2)\pi^-(p_3), & [A_{++-}],
\end{aligned}$$

plus charge conjugate ones even under $p_1 \leftrightarrow p_2$ except A_{+-0}^S odd (CP and Bose symmetry)

$K \to 3\pi$ Kinematics and Isospin

$$\begin{aligned}
K_L(k) &\to \pi^0(p_1)\pi^0(p_2)\pi^0(p_3), & [A_{000}^L], \\
K_L(k) &\to \pi^+(p_1)\pi^-(p_2)\pi^0(p_3), & [A_{+-0}^L], \\
K_S(k) &\to \pi^+(p_1)\pi^-(p_2)\pi^0(p_3), & [A_{+-0}^S], \\
K^+(k) &\to \pi^0(p_1)\pi^0(p_2)\pi^+(p_3), & [A_{00+}], \\
K^+(k) &\to \pi^+(p_1)\pi^+(p_2)\pi^-(p_3), & [A_{++-}],
\end{aligned}$$

plus charge conjugate ones even under $p_1 \leftrightarrow p_2$ except A_{+-0}^S odd (CP and Bose symmetry)

Kinematics: $s_1 = (k - p_1)^2$, $s_2 = (k - p_2)^2$, $s_3 = (k - p_3)^2$. Dalitz plot variables:

$$y = (s_3 - s_0)/m_{\pi^+}^2$$
, $x = (s_2 - s_1)/m_{\pi^+}^2$, $s_0 = (s_1 + s_2 + s_3)/3$.

$K \to 3\pi$ Kinematics and Isospin

$$\begin{aligned}
K_L(k) &\to \pi^0(p_1)\pi^0(p_2)\pi^0(p_3), & [A_{000}^L], \\
K_L(k) &\to \pi^+(p_1)\pi^-(p_2)\pi^0(p_3), & [A_{+-0}^L], \\
K_S(k) &\to \pi^+(p_1)\pi^-(p_2)\pi^0(p_3), & [A_{+-0}^S], \\
K^+(k) &\to \pi^0(p_1)\pi^0(p_2)\pi^+(p_3), & [A_{00+}], \\
K^+(k) &\to \pi^+(p_1)\pi^+(p_2)\pi^-(p_3), & [A_{++-}],
\end{aligned}$$

plus charge conjugate ones even under $p_1 \leftrightarrow p_2$ except A_{+-0}^S odd (CP and Bose symmetry)

Kinematics: $s_1 = (k - p_1)^2$, $s_2 = (k - p_2)^2$, $s_3 = (k - p_3)^2$. Dalitz plot variables:

$$y = (s_3 - s_0)/m_{\pi^+}^2$$
, $x = (s_2 - s_1)/m_{\pi^+}^2$, $s_0 = (s_1 + s_2 + s_3)/3$.

Bremsstrahlung problem: s_i from E_i or $m_{\pi\pi}^2$ different

Kinematics and Isospin

Valid also at p^6

$$\begin{aligned} A_{000}^{L} &= M_{0}(s_{1}) + M_{0}(s_{2}) + M_{0}(s_{3}), \\ A_{+-0}^{L} &= M_{1}(s_{3}) + M_{2}(s_{1}) + M_{2}(s_{2}) + M_{3}(s_{1})(s_{2}-s_{3}) + M_{3}(s_{2})(s_{1}-s_{3}), \\ A_{+-0}^{S} &= M_{4}(s_{1}) - M_{4}(s_{2}) + M_{5}(s_{1})(s_{2}-s_{3}) - M_{5}(s_{2})(s_{1}-s_{3}) + M_{6}(s_{3})(s_{1}-s_{2}), \\ A_{00+} &= M_{7}(s_{3}) + M_{8}(s_{1}) + M_{8}(s_{2}) + M_{9}(s_{1})(s_{2}-s_{3}) + M_{9}(s_{2})(s_{1}-s_{3}), \\ A_{++-} &= M_{10}(s_{3}) + M_{11}(s_{1}) + M_{11}(s_{2}) + M_{12}(s_{1})(s_{2}-s_{3}) + M_{12}(s_{2})(s_{1}-s_{3}). \end{aligned}$$

polynomial ambiguity from $s_1 + s_2 + s_3 = \sum_i m_i^2$

Isospin:

$$M_0(s) = M_1(s) + 2M_2(s),$$

$$2M_7(s) + 4M_8(s) = M_{10}(s) + 2M_{11}(s),$$

$$M_4(s) = \frac{1}{3} (M_7(s) - M_8(s) + M_{10}(s) - M_{11}(s)),$$

$$M_5(s) - M_6(s) = M_9(s) + M_{12}(s).$$

Expressions for the $M_i(s)$: see first paper

Confirmed by Gamiz, Prades, Scimemi, hep-ph/0305164 Lashin, hep-ph/0308200 (how not clear) Includes:

- $m_u m_d$ and the effects of \mathcal{L}_{E2} , \mathcal{L}_{E2S2} and $\mathcal{L}_{W2E2}(G_8)$
- π^0 - η mixing (η' via LECs)
- Same diagrams as before
- Formulas immediately a lot longer: see http://www.thep.lu.se/~bijnens/chpt.html

Includes:

- $m_u m_d$ and the effects of \mathcal{L}_{E2} , \mathcal{L}_{E2S2} and $\mathcal{L}_{W2E2}(G_8)$
- π^0 - η mixing (η' via LECs)
- Same diagrams as before
- Formulas immediately a lot longer: see http://www.thep.lu.se/~bijnens/chpt.html

Effects:

- F_{π^+} , F_{K^+} overall factor
- \bullet Mass difference $\pi^+\text{-}\pi^0$
- Others typically a few %

Phasespace

 $K_L \to \pi^0 \pi^0 \overline{\pi^0}$

Isospin Breaking in $K o 3\pi$ Decays

Johan Bijnens

Extra N_i^r, D_i^r from $K \to \pi \ell^+ \ell^-$

 $K^+ \to \pi^+ \pi^+ \pi^-$

 $K^+ \to \pi^0 \pi^0 \pi^+$

- Include hard photon Bremsstrahlung to lowest order Full amplitude from Low's theorem
- Do everything also for $K \rightarrow 2\pi$ to have same treatment Note: some new pieces, e.g., $e^2 p^2 G_{27}$

- Include hard photon Bremsstrahlung to lowest order Full amplitude from Low's theorem
- Do everything also for $K \rightarrow 2\pi$ to have same treatment Note: some new pieces, e.g., $e^2p^2G_{27}$

- (*) \circledast Everything done twice indepently \circledast UV infinities cancel analytically: no 1/(d-4)

Experimental Inputs

- Decay Rates
- Dalitz Plot Parameters

$$\begin{aligned} \left| \frac{A(s_1, s_2, s_3)}{A(s_0, s_0, s_0)} \right|^2 &= 1 + gy + hy^2 + kx^2 \\ g, h, k \text{ for } K_L \to \pi^+ \pi^- \pi^0, \\ K^+ \to \pi^0 \pi^0 \pi^0, \\ K^+ \to \pi^+ \pi^+ \pi^- \\ h \text{ for } K_L \to \pi^0 \pi^0 \pi^0 \\ (g = 0 \text{ and } k = h/3) \\ A_{+-0}^S &= \gamma_S x - \xi_S xy \text{ for } K_S \to \pi^+ \pi^- \pi^0 \end{aligned}$$

• All input taken from PDG2004

Treatment of Bremsstrahlung

Old experiments: what to do?

Treatment of Bremsstrahlung

Old experiments: what to do?

Typically: Decay rate and distribution measured in part of phasespace and then extrapolated to whole decay region

Old experiments: what to do?

Typically: Decay rate and distribution measured in part of phasespace and then extrapolated to whole decay region

Subtract hard Bremsstrahlung from Decay Rate

- We adopted: $\begin{cases}
 \bullet \text{ From remainder get } |A(s_0, s_0, s_0)|^2 \\
 \text{ using experimental } g, h, k \\
 \bullet \text{ Fit } |A(s_0, s_0, s_0)|^2, g, h, k \text{ with soft} \\
 \text{ Bremsstrahlung and loops, ...}
 \end{cases}$

Old experiments: what to do?

Typically: Decay rate and distribution measured in part of phasespace and then extrapolated to whole decay region

- We adopted: $\begin{cases} \bullet \text{ Subtract hard Bremsstrahlung from } \\ \mathsf{Decay Rate} \\ \bullet \text{ From remainder get } |A(s_0, s_0, s_0)|^2 \\ \text{ using experimental } g, h, k \\ \bullet \text{ Fit } |A(s_0, s_0, s_0)|^2, g, h, k \text{ with soft } \\ \text{ Bremsstrahlung and loops, } ... \end{cases}$

- Advantages: {
 Mimicks experimental determination (well, sort of) Coulomb singularity avoided

Old experiments: what to do?

Typically: Decay rate and distribution measured in part of phasespace and then extrapolated to whole decay region

(• Subtract hard Bremsstrahlung from
	Decay Rate

- We adopted: $\begin{cases} \bullet \text{ From remainder get } |A(s_0, s_0, s_0)|^2 \\ \text{using experimental } g, h, k \\ \bullet \text{ Fit } |A(s_0, s_0, s_0)|^2, g, h, k \text{ with soft} \\ \text{Bremsstrahlung and loops, } \dots \end{cases}$
- Advantages: {
 Mimicks experimental determination (well, sort of) Coulomb singularity avoided

We really need to know what Phasespace/Photons covered

Results

 $K \rightarrow \pi\pi$ only: essentially same as Ecker et al.

Tree level: $G_8 = 10.36$ $G_{27} = 0.550$

Full: $G_8 = 5.39$ $G_{27} = 0.359$

Results

 $K \rightarrow \pi\pi$ only: essentially same as Ecker et al.

Tree level: $G_8 = 10.36$ $G_{27} = 0.550$ Full: $G_8 = 5.39$ $G_{27} = 0.359$

Full fit:

μ	0.77 GeV	1.0 GeV	0.6 GeV	0.77 GeV	
G_8	5.39(1)	4.60(1)	6.43(1)	5.39(1)	
G_{27}	0.359(2)	0.301(1)	0.438(2)	0.359(2)	
$\delta_2 - \delta_0$	$-57.9(1.5)^{o}$	$-57.3(1.4)^{o}$	$-58.9(1.4)^{o}$	$-57.9(1.4)^{o}$	varv
$10^{3}\tilde{K}_{1}/G_{8}$	$\equiv 0$	$\equiv 0$	$\equiv 0$	$\equiv 0$	
$10^{3}\tilde{K}_{2}/G_{8}$	48.5(2.4)	56.5(2.4)	41.2(1.9)	46.6(1.6)	K_1, K_4
$10^{3}\tilde{K}_{3}/G_{8}$	2.6(1.2)	-1.7(1.1)	6.7(1.0)	3.5(0.8)	see first
$10^3 \tilde{K}_4 / G_{27}$	$\equiv 0$	$\equiv 0$	$\equiv 0$	$\equiv 0$	paper
$10^3 \tilde{K}_5 / G_{27}$	-41.2(16.9)	-52.0(17.7)	-31.1(12.0)	-27.0(8.3)	
$10^3 \tilde{K}_6 / G_{27}$	-102(105)	-114(105)	-93(76)	$\equiv 0$	
$10^3 \tilde{K}_7 / G_{27}$	78.6(33)	78.0(33.5)	79.6(22.7)	50.0(13.0)	
$\chi^2/{\sf DOF}$	29.3/10	27.2/10	33.0/10	30.5/11	

Octet and μ -variation

		-	-
octet	μ variation	μ variation	
0.77 GeV	1.0 GeV	0.6 GeV	
4.84(1)	_	_	
0.430(1)	-	-	K
$-57.9(0.2)^{o}$	-	-	W
2.0(1)	-5.88	5.61	
63.0(1.5)	-2.69	2.57	
-6.0(7)	0.159	-0.152	$\mid \mu$
$\equiv 0$	-9.93	9.48	\tilde{K}
$\equiv 0$	0	0	
$\equiv 0$	27.0	-25.8	
$\equiv 0$	-21.5	20.5	F
20.4(1)	-0.546	0.521	b
9.1(1)	-2.92	2.79	in
$\equiv 0$	11.6	-11.1	
$\equiv 0$	-1.66	1.58	
33.3/10	_	_	
	octet 0.77 GeV $4.84(1)$ $0.430(1)$ $-57.9(0.2)^o$ $2.0(1)$ $63.0(1.5)$ $-6.0(7)$ $\equiv 0$	octet μ variation0.77 GeV1.0 GeV4.84(1)-0.430(1)- $-57.9(0.2)^o$ -2.0(1) -5.88 63.0(1.5) -2.69 $-6.0(7)$ 0.159 $\equiv 0$ -9.93 $\equiv 0$ 0 $\equiv 0$ 27.0 $\equiv 0$ 27.0 $\equiv 0$ -21.520.4(1)-0.5469.1(1)-2.92 $\equiv 0$ 11.6 $\equiv 0$ -1.6633.3/10-	octet μ variation μ variation0.77 GeV1.0 GeV0.6 GeV4.84(1)0.430(1)57.9(0.2)°2.0(1)-5.885.6163.0(1.5)-2.692.57-6.0(7)0.159-0.152 $\equiv 0$ -9.939.48 $\equiv 0$ 00 $\equiv 0$ -21.520.520.4(1)-0.5460.5219.1(1)-2.922.79 $\equiv 0$ 11.6-11.1 $\equiv 0$ -1.661.5833.3/10

Octet: $G_{27} = 0$ keep also \tilde{K}_i with $m_K^2 m_\pi^2$ factors

```
\mu variation
\tilde{K}_i(\mu) - \tilde{K}_i(0.77 \ GeV)
```

Fit about same as before, some experiments fit better, others smaller error

Models

See Ecker, Kambor, Wyler 1993 for explanations

• Vector octet dominance $\implies \tilde{K}_3 = -\frac{1}{2}\tilde{K}_2$: Not at all

Models

See Ecker, Kambor, Wyler 1993 for explanations

- Vector octet dominance $\implies \tilde{K}_3 = -\frac{1}{2}\tilde{K}_2$: Not at all
- Weak Deformation and Factorization

$$N_1^r = 2k_f (32/3L_1^r + 4L_3^r + 2/3L_9^r),$$

- $N_2^r = 2k_f (16/3L_1^r + 4L_3^r + 10/3L_9^r),$
- $N_3^r = 2k_f(8L_2^r 2L_9^r),$

$$N_4^r = 2k_f(-16/3L_1^r - 8/3L_3^r - 4/3L_9^r),$$

- $N_5^r = 2k_f(-L_5^r),$
- $N_6^r = 2k_f (2/3 L_5^r) \,,$
- $N_7^r = 2k_f(L_5^r),$
- $N_8^r = 2k_f (4L_4^r + 2L_5^r),$
- $N_9^r = N_{10}^r = N_{11}^r = N_{12}^r = N_{13}^r = 0$

Models

See Ecker, Kambor, Wyler 1993 for explanations

- Vector octet dominance $\implies \tilde{K}_3 = -\frac{1}{2}\tilde{K}_2$: Not at all
- Weak Deformation and Factorization

$$N_1^r = 2k_f (32/3 L_1^r + 4 L_3^r + 2/3 L_9^r),$$

- $N_2^r = 2k_f (16/3L_1^r + 4L_3^r + 10/3L_9^r),$
- $N_3^r = 2k_f(8L_2^r 2L_9^r),$

$$N_4^r = 2k_f(-16/3L_1^r - 8/3L_3^r - 4/3L_9^r),$$

- $N_5^r = 2k_f(-L_5^r),$
- $N_6^r = 2k_f (2/3 L_5^r) \,,$
- $N_7^r \quad = \quad 2k_f(L_5^r) \,,$
- $N_8^r = 2k_f (4L_4^r + 2L_5^r),$
- $N_9^r = N_{10}^r = N_{11}^r = N_{12}^r = N_{13}^r = 0$

μ	0.77 GeV	0.9 GeV	0.842 GeV
G_8	4.18(1)	4.42	4.22(1)
G_{27}	0.360(2)	0.326(10)	0.339(10)
k_F	2.61(1)	4.94(2)	3.60(5)
$\chi^2/{\rm DOF}$	109/14	182/14	60.4/13

WDM or $k_f = 1/2$ No Factorization: surprisingly OK But k_f not naive one

Data and Fits

Decay	Width [GeV]			hPT [GeV]	Fact. [GeV]	
$K^+ \to \pi^+ \pi^0$	$(1.1231 \pm 0.0078) \cdot 10^{-17}$			$123 \cdot 10^{-17}$	$1.127 \cdot 10^{-1}$	17
$K_S \to \pi^0 \pi^0$	$(2.2828 \pm 0.0104) \cdot 10^{-15}$			$282 \cdot 10^{-15}$	$2.283 \cdot 10^{-1}$	15
$K_S \to \pi^+ \pi^-$	$(5.0691 \pm$	$0.0108) \cdot 10^{-15}$	$5.069 \cdot 10^{-15}$		$5.069 \cdot 10^{-1}$	15
$K_L \to \pi^0 \pi^0 \pi^0$	$(2.6748 \pm$	$(0.0358) \cdot 10^{-18}$	2.0	$618 \cdot 10^{-18}$	$2.698 \cdot 10^{-1}$	18
$K_L \to \pi^+ \pi^- \pi^0$	$(1.5998 \pm$	$0.0271) \cdot 10^{-18}$	1.0	$658 \cdot 10^{-18}$	$1.711 \cdot 10^{-1}$	18
$K^+ \to \pi^0 \pi^0 \pi^+$	$(9.195 \pm 0.0213) \cdot 10^{-19}$		8.9	$934 \cdot 10^{-19}$	$8.816 \cdot 10^{-1}$	19
$K^+ \to \pi^+ \pi^+ \pi^-$	$(2.9737 \pm 0.0174) \cdot 10^{-18}$		2.9	$971 \cdot 10^{-18}$	$2.933 \cdot 10^{-1}$	18
Decay	Quantity	Experiment		ChPT	Fact.]
$K_L \to \pi^0 \pi^0 \pi^0$	h	-0.0050 ± 0.001		-0.0062	-0.0025	
$K_L \to \pi^+ \pi^- \pi^0$	g	0.678 ± 0.008		0.678	0.654	
	h	0.076 ± 0.006		0.088	0.083	
	k	0.0099 ± 0.0015		0.0057	0.0068	
$K_S \to \pi^+ \pi^- \pi^0$	γ_S	$(3.3 \pm 0.5) \cdot 10^{-8}$		$3.0 \cdot 10^{-8}$	$2.9 \cdot 10^{-8}$	
$K^{\pm} \to \pi^0 \pi^0 \pi^{\pm}$	g	0.638 ± 0.020		0.636	0.648	
	h	0.051 ± 0.013	1	0.077	0.080	
	k	0.004 ± 0.007		0.0047	0.0069	
$K^+ \to \pi^+ \pi^+ \pi^-$	g	-0.2154 ± 0.0035		-0.215	-0.226	
	h	0.012 ± 0.008)	0.012	0.019	
	1		0.4	0.0004	0 0000	1

Conclusions

- Calculated $K \rightarrow 3\pi$ to first nontrivial order in isospin breaking fully
- New fit done and tested a few models
- Fit with/without isospin breaking seems similar
- Need Photon/Phasespace information from experiment
- OP violation: not started yet
- Corrections for previous talk: higher order than those included here