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Introduction

We define the two-point Green function

ΠLR
µν (q2) = 2i

∫
dx4 eiq·x

〈
0|Lµ(x) R†

ν(0)|0
〉

= (gµνq2 − qµqν)ΠLR(q2) (1)

Lµ(x) = q̄(x)γµ

(
1 − γ5

2

)
q(x) , Rν(0) = q̄(0)γµ

(
1 + γ5

2

)
q(0) (2)

that satisfies the (unsubstracted) dispersion relation

ΠLR(Q2) =
1

π

∫ ∞

0

dt

t + Q2 − iε
Im ΠLR(t) (3)

Common lore : Extraction of the OPE coefficients is performed by plugging in the OPE in

the left-hand side. This is mathematically wrong, but the error is expected to reduce if s

is sufficiently large. Before this asymptotic regime sets in, we see quark-hadron duality

violations.
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Figure 1:

Different approaches to extract the OPE coefficients, based on Cauchy’s theorem:
∫ s0

0

dt tn
1

π
ImΠLR(t) = −

1

2πi

∮

|q2|=s0

dq2q2n ΠLR(q2) (FESR) (4)

and ∫ s0

0

dt w(t)
1

π
ImΠLR(t) = −

1

2πi

∮

|q2|=s0

dq2w(q2) ΠLR(q2) (pFESR) (5)

where w(t) is a polynomial that cancels at duality points s∗0, and so kills contributions from the

OPE near the resonances.
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The Toy Model at large–NC

We choose as our spectral function:

1

π
ImΠLR(t) = −f2

πδ(t) + f2
ρ δ(t − m2

ρ) −

∞∑

n=0

f2δ(t − m2
A(n)) +

∞∑

n=0

f2δ(t − m2
V (n)) (6)

where resonances in the vector and axial towers are piled up as follows

m2
V (n) = m2

V + n Λ2 , m2
A(n) = m2

A + n Λ2 , f2
V,A(n) = f2 (7)

This leads to

ΠLR(Q2) = −
f2

π

Q2
+

f2
ρ

Q2 + m2
ρ

+
∞∑

n=0

f2

Q2 + m2
V (n)

−
∞∑

n=0

f2

Q2 + m2
A(n)

=
∑

k

c2k

Q2k
(8)

We determine the parameters of the model by demanding that the vector and axial components

reproduce the parton-model logarithm plus first and second Weinberg sum rules.

Finite Energy Sum Rules
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OPE coefficients can be computed and yield

c2 = +F 2
ρ − F 2

π − F 2

{
B1

(
m2

V

Λ2

)
− B1

(
m2

A

Λ2

)}
,

c4 = −F 2
ρ M2

ρ +
1

2
F 2Λ2

{
B2

(
m2

V

Λ2

)
− B2

(
m2

A

Λ2

)}
,

c6 = +F 2
ρ M4

ρ −
1

3
F 2Λ4

{
B3

(
m2

V

Λ2

)
− B3

(
m2

A

Λ2

)}
,

c8 = −F 2
ρ M6

ρ +
1

4
F 2Λ6

{
B4

(
m2

V

Λ2

)
− B4

(
m2

A

Λ2

)}
. (9)

On the other hand, moments are defined as

M2n(s0) = (−1)n−1

∫ s0

0

dt tn−1ρ(t) (10)

The first ones read

M2(s0) = c2 − F 2
[
B1(xV ) − B1(xA)

]
,

M4(s0) = c4 + F 2
[
B1(xV ) − B1(xA)

]
s0 + · · · ,

M6(s0) = c6 − F 2
[
B1(xV ) − B1(xA)

]
s2
0 + · · · ,

M8(s0) = c8 + F 2
[
B1(xV ) − B1(xA)

]
s3
0 + · · · . (11)
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Figure 2: First moments of the spectral function.

Pinched-weight FESR
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We define the following combination of moments

Jw1
(s0) ≡

∫ s0

0

dt

(
1 − 3

t

s0

) (
1 −

t

s0

)2

ρ(t) = 7
c̃6

s2
0

+ 3
c̃8

s3
0

Jw2
(s0) ≡

∫ s0

0

dt
t

s0

(
1 −

t

s0

)2

ρ(t) = −2
c̃6

s2
0

−
c̃8

s3
0

, (12)

which can be solved for c̃6 and c̃8

c̃6 = c6 −
1

3
F 2Λ4

[
B3(xV ) − B3(xA)

]

c̃8 = c8 + F 2Λ2
[
B3(xV ) − B3(xA)

]
s0 −

1

4
F 2Λ4

[
B4(xV ) − B4(xA)

]
, (13)
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1
NC

corrections

We want to add widths while respecting the analiticity of the Green function. One such possibility is

ΠLR(z) = −
f2

π

z
+

f2
ρ

z + m2
ρ

+

∞∑

n=0

f2

z + m2
V (n)

−

∞∑

n=0

f2

z + m2
A(n)

(14)

where the variable z is defined as

z = Q2

(
Q2

Λ2

)− a

πNC

∼ Q2

(
1 −

a

πNC

log
Q2

Λ2

)
(15)

such that Γi ∼
a

πNC
mi(n). Again, we determine the parameters of the model by imposing

2

3

Nc

16π2
=

F 2

Λ2

(
1 −

a

πNC

)
, (16)

[
F 2

ρ − F 2

(
m2

V

Λ2
−

1

2

)] (
1 +

a

NC

log

(
Q2

Λ2

))
= 0

[
F 2

π − F 2

(
m2

A

Λ2
−

1

2

)] (
1 +

a

NC

log

(
Q2

Λ2

))
= 0 , (17)

[
2F 2

ρ M2
ρ − F 2Λ2

(
m4

V

Λ4
−

m2
V

Λ2
+

1

6

)
+ F 2Λ2

(
m4

A

Λ4
−

m2
A

Λ2
+

1

6

)] (
1 +

2a

NC

log

(
Q2

Λ2

))
= 0 , (18)
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We choose Fπ, Mρ, mA and a as our free parameters and determine them to fit to a reasonable

extend the experimental curve. The full set of parameters of the model then reads

Fπ = 92.5 MeV, Fρ = 141 MeV, F = 146.5 MeV ,

mρ = 767 MeV, mA = 1.186 GeV, mV = 1.49 GeV ,

Λ = 1.25 GeV, a = 0.72 (19)

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1

2

3

Figure 4:
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and OPE coefficients are determined to be

C2 = 0 , C4 = 0

C6 =

{
−3.1 · 10−3 + 8.1 · 10−4 log

(
1

s0

)}
GeV8

C8 =

{
2.8 · 10−3 − 1.0 · 10−3 log

(
1

s0

)}
GeV10 (20)

It is interesting to know the asymptotic behaviour of the spectral function. In the Minkowskian,

z = t
(
1 − a

πNC
log

(
t

Λ2

)
+ i a

NC

)
, and

ImΠLR(t) ∼ −
3aC6

NC

1

t3
+

+ 4πe
− 2πat

Λ2NC

[
sin

(
2π

Λ2

(
2t + m2

A + m2
V

2

))
sin

(
2π

Λ2

(
m2

V − m2
A

2

))]
. (21)

The first piece is just the analytical continuation of the OPE and the second one is a damped

oscillation not seen by the OPE. At some t the oscillation is killed and the power fall-off, dictated

by the OPE, takes over.
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Figure 5: First moments of the spectral function
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Duality points at s
(1)
0 = 1.5 GeV 2 and s

(2)
0 = 2.4 GeV 2
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Figure 6: Blow-up regions near the first two duality points

c6 (GeV 6) c8 (GeV 8)

OPE(s
(1)
0 ) -3.5 ·10−3 3.2 ·10−3

FESR (s
(1)
0 ) -5 ·10−3 9.7 ·10−3

OPE (s
(2)
0 ) -3.9 ·10−3 3.7 ·10−3

FESR (s
(2)
0 ) -1.8 ·10−3 -3.0 ·10−3

13



For pinched-weights the delicate cancellation we encounter in the zero-width spectrum no longer

takes place. Instead, each moment is polluted with the highest divergence entering w(t).

Jw1
(s0) ≡

∫ s0

0

dt

(
1 − 3

t

s0

) (
1 −

t

s0

)2

ρ(t) = 7
c̃6

s2
0

+ 3
c̃8

s3
0

Jw2
(s0) ≡

∫ s0

0

dt
t

s0

(
1 −

t

s0

)2

ρ(t) = −2
c̃6

s2
0

−
c̃8

s3
0

, (22)
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Conclusions

• In the zero-width model duality points

M2k(s∗0) = c2k

sit on the mass poles of the resonances.

• They are common to all moments, but for FESR there is no predictability at all (infinite

slope).

• On the contrary, pinched-weights are indeed effective if one averages over a full oscillation.

• As a general rule, moments diverge and it is safer to stay to low values of s.

• When adding widths, duality points disalign but some memory remains and they sit

close to the mass poles of resonances.

• Pinched-weights do not seem to help much.

• Surprisingly enough, moments still diverge and so it is not a good strategy to do

the analysis at high duality points. This has to happen also in QCD, for there the OPE

coefficients also have logarithmic corrections. Therefore, it is not true that the higher the

duality point where the analysis is done, the closer the results to the asymptotic values of

the OPE.
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