

$\pi\pi$ and πK at Two Loops

Johan Bijnens Lund University

bijnens@thep.lu.se

http://www.thep.lu.se/~bijnens/chpt.html

Overview

- ππ Scattering in Three Flavour ChPT, J. Bijnens, P. Dhonte and P. Talavera, hep-ph/0401039, JHEP 0401(2004)050
- πK Scattering in Three Flavour ChPT, J. Bijnens, P. Dhonte and P. Talavera hep-ph/0404150, JHEP 0405(2004)036
- Introduction
- Why (Effective) Field Theory
- Chiral Perturbation Theory
- Two Loop: General
- Two Loop: Three Flavours
 - General fitting strategy and some comments
 - ππ, πK

Conclusions

Introduction

- $\pi\pi$ and πK scattering are basic strong processes Study them as precise as possible
- Earlier: $\pi\pi$ proved that two-flavour case of $\langle \overline{q}q \rangle$
- Three flavour case: works or problems with strange quark loops (in scalar sector)?
- πK excellent place to study this
- Need precise calculations also here

Why (Effective) Field Theory?

Effective: Juse right degrees of freedom : essence of (most) physics

- Gap in the spectrum \implies separation of scales
- With lower d.o.f.: build most general Lagrangian

Why (Effective) Field Theory?

Field Theory

- Only known way to combine QM and special relativity
- Taylor series does not work (convergence radius zero)
- Continuum of excitation states to be taken into account
- Off-shell effects fully under control: these effects are there as new free parameters
- model-independent and systematic: ALL effects at given order included
- $\implies \underline{\mathsf{Theory}} \Longrightarrow \text{ errors can be estimated}$
- Many parameters (but possible modelspace is large)
- Expansion might not converge (often still useful for model classification)

Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral Symmetry Spontaneous Breakdown Power counting: Dimensional counting Expected breakdown scale: Resonances, so M_{ρ} or higher depending on the channel

Chiral Symmetry

QCD: 3 light quarks: equal mass: interchange: $SU(3)_V$

But $\mathcal{L}_{QCD} = \sum_{q=u,d,s} \left[i \bar{q}_L \not D q_L + i \bar{q}_R \not D q_R - m_q \left(\bar{q}_R q_L + \bar{q}_L q_R \right) \right]$

So if $m_q = 0$ then $SU(3)_L \times SU(3)_R$.

Can also see that via
$$\longrightarrow v < c, m_q \neq 0 \Longrightarrow$$

 $v = c, m_q = 0 \Rightarrow$

Chiral Perturbation Theory

 $\langle \bar{q}q \rangle = \langle \bar{q}_L q_R + \bar{q}_R q_L \rangle \neq 0$ $SU(3)_L \times SU(3)_R$ broken spontaneously to $SU(3)_V$

8 generators broken \implies 8 massless degrees of freedom and interaction vanishes at zero momentum

Power counting in momenta:

Two Loop: General

Lagrangian Structure:

	2 flavour		3 flavour		3+3 PQChPT	
p^2	F,B	2	F_0, B_0	2	F_0, B_0	2
p^4	l^r_i, h^r_i	7+3	L_i^r, H_i^r	10+2	\hat{L}^r_i, \hat{H}^r_i	11+2
p^6	c_i^r	53+4	C^r_i	90+4	K^r_i	112+3

 p^2 : Weinberg 1966 p^4 : Gasser, Leutwyler 84,85 p^6 : JB, Colangelo, Ecker 99,00

Note $\begin{cases} \Longrightarrow \mathsf{PQ} \Longrightarrow \mathsf{Talk} \text{ by Timo Lähde} \\ \Longrightarrow \text{ All infinities known} \\ \boxplus \text{ Two Flavour Most Things Done} \end{cases}$

Three Flavours at Two Loop

$\Pi_{VV\pi}$, $\Pi_{VV\eta}$, Π_{VVK}	Kambor, Golowich; Kambor, Dürr; Amorós, JB, Talavera
$\Pi_{VV\rho\omega}$	Maltman
$\Pi_{AA\pi}$, $\Pi_{AA\eta}$, F_{π} , F_{η} , m_{π} , m_{π}	Rambor, Golowich; Amorós, JB, Talavera
Π_{SS}	Moussallam $oxed{L_4^r, L_6^r}$
Π_{VVK} , Π_{AAK} , F_K , m_K	Amorós, JB, Talavera
$K_{\ell 4}$, $\langle \overline{q}q angle$	Amorós, JB, Talavera $egin{array}{c} L_1^r, L_2^r, L_3^r \ \end{array}$
F_M , m_M , $\langle \overline{q}q \rangle \; (m_u \neq m_d)$	Amorós, JB, Talavera $igl[L^r_{5,7,8}, m_u/m_d igr]$
$F_{V\pi}$, F_{VK^+} , F_{VK^0}	Post, Schilcher; JB, Talavera L_9^r
$K_{\ell 3}$	Post, Schilcher; JB, Talavera V_{us}
$F_{S\pi}$, F_{SK} (includes σ -terms	JB, Dhonte L_4^r, L_6^r
$K, \pi \to \ell \nu \gamma$	Geng, Ho, Wu $igsilon L^r_{10}$
$\pi\pi$	JB,Dhonte,Talavera
πK	JB,Dhonte,Talavera

- Find enough inputs from experiment
 - kinematical dependence: agree well with single resonance saturation
 - quark mass+kinematical: if vector dominated, seems to be OK
 - quark mass+kinematical: if scalar dominated: which scalars? (not σ)
 - quark masses: which scalars? unrealistically large estimates
- in p⁶ physical or lowest order masses: thresholds in right place requires physical

 C_i^r :

Inputs:

 $\begin{array}{l} K_{\ell 4} \colon F(0), \ G(0), \ \lambda \\ m_{\pi^0}^2, \ m_{\eta}^2, \ m_{K^+}^2, \ m_{K^0}^2 \\ F_{\pi^+} \\ F_{K^+}/F_{\pi^+} \end{array}$

E865 BNL em with Dashen violation

Inputs:

$$\begin{array}{l} K_{\ell 4} \colon F(0), \ G(0), \ \lambda \\ m_{\pi^0}^2, \ m_{\eta}^2, \ m_{K^+}^2, \ m_{K^0}^2 \\ F_{\pi^+} \\ F_{K^+} / F_{\pi^+} \end{array}$$

E865 BNL em with Dashen violation

$$m_s/\hat{m}$$
 24 (26) $\hat{m} = (m_u + m_d)/2$
 L_4^r, L_6^r Vary \Rightarrow other L_i^r vary correlated

Inputs:

 $\begin{array}{ll} K_{\ell 4} \colon F(0), \ G(0), \lambda & & \mathsf{E865 \ BNL} \\ m_{\pi^0}^2, \ m_{\eta}^2, \ m_{K^+}^2, \ m_{K^0}^2 & & \mathsf{em \ with \ Dashen \ violation} \\ F_{\pi^+} & & \\ F_{K^+}/F_{\pi^+} & & \\ m_s/\hat{m} & & \mathbf{24} \ (\mathbf{26}) & & \\ L_4^r, \ L_6^r & & & \mathsf{other} \ L_i^r \ \mathsf{vary \ correlated} \end{array}$

 C_i^r from single resonance approximation

General Strategy: fit results

	fit 10	same p^4	fit B	fit D
$10^{3}L_{1}^{r}$	0.43 ± 0.12	0.38	0.44	0.44
$10^{3}L_{2}^{r}$	0.73 ± 0.12	1.59	0.60	0.69
$10^{3}L_{3}^{r}$	-2.53 ± 0.37	-2.91	-2.31	-2.33
$10^{3}L_{4}^{r}$	$\equiv 0$	$\equiv 0$	$\equiv 0.5$	$\equiv 0.2$
$10^{3}L_{5}^{r}$	0.97 ± 0.11	1.46	0.82	0.88
$10^{3}L_{6}^{r}$	$\equiv 0$	$\equiv 0$	$\equiv 0.1$	$\equiv 0$
$10^{3}L_{7}^{r}$	-0.31 ± 0.14	-0.49	-0.26	-0.28
$10^{3}L_{8}^{r}$	0.60 ± 0.18	1.00	0.50	0.54

- errors are very correlated
- \blacksquare $\mu = 770$ MeV; 550 or 1000 within errors
- \rightarrow varying C_i^r factor 2 about errors
- $largent L_4^r, L_6^r \approx -0.3, \dots, 0.6 \ 10^{-3} \ \mathsf{OK}$
- **fit B**: small corrections to pion "sigma" term, fit scalar radius
- **if D:** fit $\pi\pi$ and πK thresholds

General Strategy: some outputs

	fit 10	same p^4	fit B	fit D
$2B_0 \hat{m}/m_\pi^2$	0.736	0.991	1.129	0.958
m_π^2 : p^4, p^6	0.006,0.258	0.009, ≡ 0	-0.138, 0.009	-0.091,0.133
m_K^2 : p^4, p^6	0.007,0.306	0.075, ≡ 0	-0.149, 0.094	-0.096, 0.201
m_η^2 : p^4,p^6	-0.052,0.318	0.013 ,≡ 0	-0.197,0.073	-0.151,0.197
m_u/m_d	$0.45{\pm}0.05$	0.52	0.52	0.50
F_0 [MeV]	87.7	81.1	70.4	80.4
F_K/F_π : p^4, p^6	0.169,0.051	0.22, ≡ 0	0.153,0.067	0.159,0.061

- Pattern of mass corrections can vary a lot
- \blacksquare F_K/F_{π} always OK expansion
- $m_u = 0$ always very far from the fits
- \rightarrow F_0 : pion decay constant in the chiral limit

 $\pi\pi$

 $a_0^0 = 0.220 \pm 0.005, a_0^2 = -0.0444 \pm 0.0010$ Colangelo, Gasser, Leutwyler

$$a_0^0 = 0.159 \ a_0^2 = -0.0454$$
 at order p^2

$\pi\pi$ subthreshold parameters

 $C_1 = 1.104 \pm 0.009$, $C_2 = 1.120 \pm 0.027$ Colangelo, Gasser, Leutwyler

 $C_1 = C_2 = 1$ at order p^2

 $a_0^{1/2} = 0.224 \pm 0.022$, $a_{3/2}^2 = -0.0448 \pm 0.0077$ Büttiker, Descotes-Genon, Moussallam

$$a_0^{1/2} = 0.142 \ a_0^2 = -0.0708$$
 at order p^2

πK subthreshold parameters

 $c_{10}^+ = 0.87 \pm 0.08$, $c_{00}^- = 8.92 \pm 0.38$

Büttiker, Descotes-Genon, Moussallam

πK subthreshold parameters

	Vector	Scalar	Sum Reso	chiral order	p^2	p^4	p^6
c_{00}^{+}	-0.02	0.13	0.11	2	0	0.122	0.007
c_{10}^{+}	0.018	-0.063	-0.045	2	0.5704	-0.113	0.460
c_{00}^{-}	0.21	0.17	0.38	2	8.070	0.311	0.017
c_{20}^{+}	-0.0053	0.0023	-0.0030	4	—	0.0256	-0.0254
c_{10}^{-}	-0.11	-0.04	-0.15	4	—	-0.0254	0.121
c_{01}^{+}	-0.27	0.28	0.01	4	—	1.667	1.492
c_{30}^{+}	0.00026	0.00010	0.00036	6	—	0.00121	0.00071
c_{20}^{-}	0.0037	0.00060	0.0043	6	—	0.00478	0.00320
c_{11}^{+}	0.017	-0.008	0.009	6		-0.126	-0.006
c_{01}^{-}	0.25	0.04	0.29	6	—	0.229	0.196

Resonance contributions, units: $m_{\pi^+}^{2i+2j}$ (c_{ij}^+) and $m_{\pi^+}^{2i+2j+1}$ (c_{ij}^-) Chiral order at which they first have tree level contributions Contributions with the $L_i^r = C_i^r = 0$ at $\mu = 0.77$ GeV.

πK subthreshold parameters

	Fit 10	BDM	Lang
c_{00}^{+}	0.278	2.01 ± 1.10	-0.52 ± 2.03
c_{10}^{+}	0.898	0.87 ± 0.08	0.55 ± 0.07
c_{00}^{-}	8.99	8.92 ± 0.38	7.31 ± 0.90
c_{20}^{+}	0.003	0.024 ± 0.006	
c_{10}^{-}	0.088	0.31 ± 0.01	0.21 ± 0.04
c_{01}^{+}	3.8	2.07 ± 0.10	2.06 ± 0.22
c_{30}^{+}	0.0025	0.0034 ± 0.0008	
c_{20}^{-}	0.013	0.0085 ± 0.0001	
c_{11}^+	-0.10	-0.066 ± 0.010	
c_{01}^{-}	0.71	0.62 ± 0.06	0.51 ± 0.10
c_{02}^{+}	0.23	0.34 ± 0.03	

$\pi\pi$ and πK

 $\pi\pi$ constraints

$\pi\pi$ and πK

$\pi\pi$ and πK

preferred region: fit D: $10^3 L_4^r \approx 0.2$, $10^3 L_6^r \approx 0.0$

Conclusions

Three flavour ChPT at 2 loops doing fine: much progress

- many calculations done
- things seem to work but convergence is fairly slow
- "kinematical" and "vector" C_i^r seem to be OK
- L_4^r, L_6^r nonzero but reasonable for large N_c
- $\eta \to 3\pi$, isobreaking in $K_{\ell 3}$: parts done

Conclusions

- Three flavour ChPT at 2 loops doing fine: much progress
 - many calculations done
 - things seem to work but convergence is fairly slow
- "kinematical" and "vector" C_i^r seem to be OK
- L_4^r, L_6^r nonzero but reasonable for large N_c
- $\eta \rightarrow 3\pi$, isobreaking in $K_{\ell 3}$: parts done
- πK open problems
 - Cleaning up C_i^r contributions and uncertainties
 - Properly predicting threshold parameters