RG evolution of the MSSM with MFV

UNIVERSITÄT BERN

EURIDICE Midterm Collaboration Meeting Frascati, February 8th - 11th , 2005

> Emanuel Nikolidakis University of Bern

Overview

- Supersymmetry and the Minimal Supersymmetric SM (MSSM)
 - Positive and Negative Aspects
- Minimal Flavour Violation (MFV)
 - Addressing the Flavour Problem in Low-Energy SUSY
 - Concept and Implementation
- RGE
 - Motivation and Use
 - Assumptions and Calculation
 - Results
- Summary
 - Summary and Outlook

Supersymmetry

Frascati 05, p.3

We consider a minimal extension of the SM with softly broken Supersymmetry, the MSSM.

• Lagrangean:
$$\mathcal{L} = \mathcal{L}_{SUSY-gauge} + \mathcal{L}_{soft}$$

$$\begin{aligned} \mathcal{L}_{soft} &= -(\text{gaugino masses}) \\ &- (\tilde{u} \mathbf{a}_{\mathbf{u}}^{\dagger} \tilde{Q} H_{u} - \tilde{d} \mathbf{a}_{\mathbf{d}}^{\dagger} \tilde{Q} H_{d} - \tilde{e} \mathbf{a}_{\mathbf{e}}^{\dagger} \tilde{L} H_{d}) + c.c. \\ &- \tilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^{2} \tilde{Q} - \tilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^{2} \tilde{L} - \tilde{u} \mathbf{m}_{\mathbf{u}}^{2} \tilde{u}^{\dagger} - \tilde{d} \mathbf{m}_{\mathbf{d}}^{2} \tilde{d}^{\dagger} \\ &- \tilde{e} \mathbf{m}_{\mathbf{e}}^{2} \tilde{e}^{\dagger} \\ &- (\text{Higgs masses}) \end{aligned}$$

- Positive aspects:
 - Supersymmetry provides for a solution of the Hierarchy-Problem (if the SUSY-breaking scale is not much larger than a TeV).

Supersymmetry

Frascati 05, p.4

- More positive aspects:
 - The gauge couplings unify at some high scale.
 - The LSP is a good Dark Matter candidate.
- Negative aspects:
 - A large number of new parameters due to the parametrization of the unknown mechanism of SUSY-breaking.
 - Flavour: Unconstrained SUSY breaking terms in the Lagrangean are potential sources of large Flavour Violation which is conflict with phenomenology.

An Example

Frascati 05, p.5

Contributions to the effective Zsd-Vertex from Squark-Chargino-loops:

- Mass Eigenstates $\chi_{i,j}$ and $\tilde{u}_{r,s}$. The Vertices contain the matrices needed to diagonalize the mass matrices.
- Evaluation in the limit of zero external momenta.
- Divergences in the sum cancel.

The Parameterspace of the MSSM has to be constrained in order to agree with phenomenology. Assumptions about how this can be done:

- Universality: Mass matrices proportional to the unit matrix, trilinear couplings proportional to the Yukawas, no new phases. Minimal SUGRA.
- MFV: The new terms are chosen in such a way, that the CKM-matrix remains the only source of flavour violation.
 Ciuchini et al., Nucl. Phys. B534 (1998) 3

We will follow the second proposal.

Frascati 05, p.7

We use an implementation of MFV introduced by D' Ambrosio, Giudice, Isidori and Strumia (Nucl. Phys. B645 (2002) 155). They identify MFV-allowed terms by means of a symmetry:

• The largest Group of unitary (MSSM-) field transformations that commutes with the gauge group is $U(3)^5$. Chivukula and Georgi, Phys. Lett. B 188 (1987) 99 It can be decomposed as:

$$G_F \equiv U(3)^5 = SU(3)^3_q \times SU(3)^2_l \times U(1)^5$$

with

$$SU(3)_q^3 = SU(3)_Q \times SU(3)_u \times SU(3)_d$$

$$SU(3)_l^2 = SU(3)_L \times SU(3)_e.$$

Minimal Flavour Violation

Frascati 05, p.8

• Introduce auxiliary fields Y_u , Y_d and Y_e which transform under $SU(3)^3_a \times SU(3)^2_l$ as

$$(3,\overline{3},1)_{SU(3)^3_q}, \quad (3,1,\overline{3})_{SU(3)^3_q}, \quad (3,\overline{3})_{SU(3)^2_l},$$

respectively.

- Build new operators respecting G_F with the help of the Y.
- Identify the Y with the Yukawas.
- One can redefine the fields using $SU(3)_q^3 \times SU(3)_l^2$ such that

$$Y_d = \lambda_d, \quad Y_l = \lambda_l \text{ and } Y_u = V^{\dagger} \lambda_u,$$

with diagonal λ 's and V being the CKM-matrix.

as

Frascati 05, p.9

Following this approach, one writes the soft square masses and trilinear couplings

D' Ambrosio et al., Nucl. Phys. B645 (2002) 155

$$\begin{split} \mathbf{m_Q^2} &= m^2(a_1\mathbf{1} + b_1Y_uY_u^{\dagger} + b_2Y_dY_d^{\dagger} \\ &+ b_3Y_dY_d^{\dagger}Y_uY_u^{\dagger} + b_4Y_uY_u^{\dagger}Y_dY_d^{\dagger}) \\ \mathbf{m_u^2} &= m^2(a_2\mathbf{1} + b_5Y_u^{\dagger}Y_u), \\ \mathbf{m_d^2} &= m^2(a_3\mathbf{1} + b_6Y_d^{\dagger}Y_d), \\ \mathbf{a_u} &= a(a_4\mathbf{1} + b_7Y_dY_d^{\dagger})Y_u, \\ \mathbf{a_d} &= a(a_5\mathbf{1} + b_8Y_uY_u^{\dagger})Y_d, \end{split}$$

where m^2 and a define the scale and the a_i and b_i form a new set of parameters describing the soft breaking in the squark sector. Higher-order terms of the first two families can be neglected: The above equations are complete.

- Relate the low-energy model to things that occur at the unification scale.
- Relate different energy scales below the SUSY-breaking scale.
- It is possible to rewrite the RG equations for the parameters a_i and b_i . \rightarrow The model respects MFV at every scale.
- W. Porod, SPheno (Comput. Phys.Commun. 153:275 (2003)): FV RGE's now included.

The basis of the calculation is the article of Martin and Vaughn (Phys. Rev. D50 (1994) 2282) on the two-loop RGE's in the MSSM.

• We assume that the relevant flavour-changing structures can be written in terms of the following four matrices ($V = V_{CKM}$):

$$M_{1} = V_{3i}^{*} V_{3j}, \qquad M_{2} = V_{3i}^{*} \delta_{3j},$$
$$M_{3} = \delta_{3i} V_{3j}, \qquad M_{4} = \delta_{3i} \delta_{3j}.$$

- The product of two M_i 's is again an M_i (times a factor ≈ 1).
- The Yukawas, as defined above, can then approximately be written as

$$Y_d \approx y_b M_4 \quad Y_e \approx y_e M_4 \quad Y_u \approx y_t M_2.$$

RGE: Derivation

• The set y_u, y_b and y_τ is not RGE-invariant. The β -function of Y_d contains also Y_u and vice versa.

 \rightarrow Add a correction:

$$Y_d \approx y_b M_4 + \frac{c_b}{M_2} \quad Y_u \approx y_t M_2 + \frac{c_t}{M_4}.$$

- The resulting set of the y_i and the c_i is RGE-invariant and evolves together with the gauge couplings independently from the other parameters.
- Substituting the Y in the β -functions and projecting out the coefficients of the respective M yields the β 's for the y and c.
- Set the $c_i = 0$ at low energy.
- Small c_i remain small.

- The RGE's for the a_i and the b_i are obtained in a similar way:
 - Differentiate the equations on page 9 and replace the MSSM-parameters.
 - Project out the coefficient of the *combination* of M's which comes with the respective a' or b'.
- In the following plots the parameters are tuned to meet at the unification scale.
- Setting the b's to zero at some scale does not prevent them from being driven to nonzero values by the RGE's: Universality ($b_i = 0$) does not survive RG evolution.
- Example:

$$\beta_{b1}^{1} = b_{1}(13/15g_{1}^{2} + 3g_{2}^{2} + 16/3g_{3}^{2}) + \cdots$$
$$\cdots + a_{1} + 2a_{2} + 2a_{4}^{2} + \cdots$$

- I presented some relevant topics of the MSSM and MFV.
- I described the derivation of the RGE's for the parameters *a* and *b* which define FV.
- Outlook: Derivation of low-energy results and comparison with phenomenology in order to constrain the parameter space of the MSSM in the context of MFV.
- The Flavour problem can be evaded too in supersymmetric models with very heavy scalars, often called "Split" SUSY. In such a model for instance the FCNC in the example above is suppressed by the large mass of the particles in the loop.