CP Violation in B-physics Status and perspectives

Fernando Ferroni Universita' di Roma "La Sapienza"

Network Euridice LNF 10 February 2005

Outline

What is all about
B factories
CP Violation in B decays
Future
Conclusions

CP violation and Standard Model

CP violation generated by complex coupling constant in the quark mixing matrix Cabibbo Kobayashi Maskawa matrix

$$V_{pq} = : \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} =$$

$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^2)$$

3 quark generations allows for one non-removable phase

The 'Triangles'

CKM matrix is unitary

B_d system

phases \rightarrow angles α , β , and γ a.k.a. $\varphi_1, \varphi_2, \varphi_3$

CP violation proportional to triangle area: measure sides and angles independently

The B (and K) triangle

B sector:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

\$\approx A\lambda^3 \approx -A\lambda^3 \approx A\lambda^3\$

K sector:

$$V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0$$

$$\propto \lambda \quad \propto -\lambda \quad \propto -A^2\lambda^5$$

As simple as such, as difficult as can it be

CP violation is the area of the triangle.
 Roughly (if SM holds): 10⁻⁶

 \bigcirc CP violation is roughly ($\Gamma - \overline{\Gamma}$)

 \odot It is a large effect only if Γ is painfully low

 $A(t) = rac{\Gamma(t) - \overline{\Gamma}(t)}{\Gamma(t) + \overline{\Gamma}(t)}$

To measure a 10⁻⁶effect, take a channel with 10⁻⁵BR and measure 10³ of them. So that you end up with a couple of % error. If your global efficiency is very high ! Little annoyance: produce no less than 10⁸ B's

Experimental Technique for B-factories

for being Luminous they are !

Exp	BaBar	Belle
Lpeak	9.2 10 ³³	12.3 10 ³³
Lint	250	350

BaBar Detector

Reconstruction of B mesons

 ^β as measured by Golden Channel to validate SM

 ^β as measured in b→sss to open a window on New
 Physics

 $\oslash \alpha$ and γ for the elegance of closing a triangle

(the sides are also well measured but this would be another talk)

BaBar result on sin2ß

Oh yeah, SM is invincible !

 $\sin 2\beta = 0.734 \pm 0.043$ (from UT sides) $\sin 2\beta = 0.726 \pm 0.028$ (all constraints)

 $\sin 2\beta = 0.726 \pm 0.037 \text{ (from J/}\Psi \text{K}^{\text{U}}\text{)}$

The most important prediction

 $\Delta m_{\rm s} = 21.2 \pm 3.2$

and some more

 $\gamma = (60.3 \pm 6.8)^{\circ}$

$\alpha = (96.1 \pm 7.0)^{\circ}$

Hic sunt leones

P Modes

$$\phi K_{s}(K_{L})$$

 $\eta' K_{s}$
 $f_{0}K_{s}$
 $\pi^{0}K_{s}$
 ωK_{s}
 $k K K_{s}$
 $K_{s}K_{s}K_{s}$

С

$$\frac{b \to s\overline{ss}}{\lambda_{\phi Ks}} = + \left(\frac{q}{p}\right)_{B} \left(\frac{V_{tb}V_{ts}}{V_{tb}^{*}V_{ts}}\right) \left(\frac{p}{q}\right)_{K} \approx -e^{-2i\beta}$$

the same phase as:
$$\frac{b \to c\overline{cs}}{\lambda_{J/\psi Ks}} = + \left(\frac{q}{p}\right)_{B} \left(\frac{V_{cb}V_{cs}^{*}}{V_{cb}^{*}V_{cs}}\right) \left(\frac{p}{q}\right)_{K} = -e^{-2i\beta}$$

sin2\beta(charmonium) = sin2\beta(penguin)

The experimental status

fair agreement BaBar-Belle

from which

y at the B-factories

There is no straight (easy) way of measuring it at the B-factories running at the B

As for β (mixing phase (V_{td}) + real V_{cb} decay) the equivalent for γ is (no mixing phase (V_{ts}) + V_{ub} decay) that unfortunately requires a B

but.....if we...

get rid of β → go to charged B's find relatively large BR → scan the PD

discard most of theorist proposals → after a couple of failures it comes natural

• find diagrams interfering as much as they can \rightarrow cross the fingers

Determining γ using $B^{\pm} \to DK^{\pm}$ with multibody D decays

Anjan Giri,¹ Yuval Grossman,¹ Abner Soffer,² and Jure Zupan^{1,3}

Take the many decays common to D^{0} and \overline{D}^{0} ; as an illustration $D^{0} \rightarrow K_{s}\pi^{+}\pi^{-}$

CP violating decays in B-physics only

The constraint from the angle alone (CP violating quantities) is as strong as it was the one from the sides at the beginning of the B-factories adventure

all together now

$$\label{eq:rho} \begin{split} \rho &= 0.207 \pm 0.038 \\ \eta &= 0.341 \pm 0.023 \end{split}$$

Future

statistics improve as 1/N^α and α≥1/2
 (add more channels)

experimental systematics will never be a problem

theoretical understanding improves as 1/t
 (better models tuned on several decay modes)

Now BaBar+Belle ~ 500 fb⁻¹; at the end of the decade ≥ 2 ab⁻¹

Conclusion

- CP violation observed in B physics : mission accomplished
- A has become a precision measurement
- are laborious but will be done pretty well in the lifespan of the B-factories
- Never give up on New Physics search