The Future...?!

Paolo Franzini

Frascati, 19 October 2002

OUTLINE

- 2. The near future
- 3. The far future

What did we learn from kaons

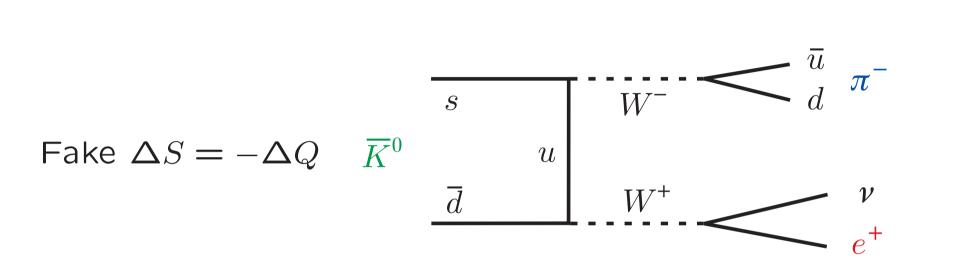
- 1. Flavor
- 2. *R*
- 3. $\Delta S = \Delta Q$
- 4. Dominance of $\Delta I = 1/2$

still embarassing

- 5. Mixing $(\sin \theta_{\rm C})$
- 6. Quarks
- 7. ČR

Other CR Kaon Physics

1. $K_S \rightarrow \pi^0 \pi^0 \pi^0$, BR~2 × 10⁻⁹NA48/1, KLOE 200?2. Odd pion slopes from $K^+ - K^-$ NA48/2, KLOE 200?3. $K \rightarrow \pi^+ \pi^- \gamma$ NA48/2, KLOE 200?4. $\Gamma(++-) \Leftrightarrow \Gamma(--+)$ etc.KLOE 200?5. $K_L \rightarrow \pi^0 e^+ e^-$, "SD"!NA48/1, KLOE 200?6. $K_L \rightarrow \pi^0 \nu \bar{\nu}$, BR~3 × 10⁻¹¹KLOE-DAΦNE- NO


Important Things

- 1. Measure V_{ij}
- 2. Verify unitarity
- 3. Find $K_S \rightarrow \pi^0 \pi^0 \pi^0$
- 4. Study $K_S \rightarrow \pi \ell \nu$
- 5. Verify $\Delta S = \Delta Q$
- 6. Keep an eye on TCP
- 7. Hopefully peek beyond the SM

$\Delta S = \Delta Q$

There is no $\Delta S = -\Delta Q$ in the SM: $s \to W^- u$, $\bar{s} \to W^+ \bar{u}$

 $x = \frac{A(\bar{K} \to \ell^+ \pi^- \nu)}{A(\bar{K} \to \ell^- \pi^+ \bar{\nu})} \sim Gm^2 \sim 10^{-6} \qquad \text{Exp: } x < 10^{-2} \text{ @90\% CL}$

NOT
$$x = \frac{A(\Delta S = -\Delta Q)}{A(\Delta S = \Delta Q)}$$

Frascati, 19 October 2002 Paolo Franzini - future.. 6

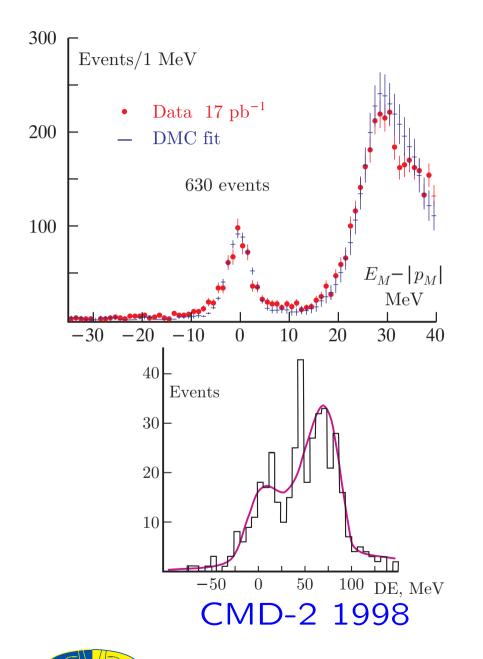
1.
$$K_S \rightarrow \pi^0 \pi^0 \pi^0$$

From K_S impurity:

BR=1.89 \times 10⁻⁹, uncertainty \sim 1.3%, a must!!

2. $K^{\pm} \rightarrow 3\pi$ Let $\Gamma(K^+ \rightarrow \pi^+ \pi^+ \pi^-) \equiv \Gamma^+_{++-}$ then $\Gamma^+_{++-} - \Gamma^-_{--+} \neq 0 \Rightarrow \&R$, etc. 3. Odd pion slope $A = (g_+ - g_-)/(g_+ + g_-) \neq 0 \Rightarrow \&R$

It has been said that finding a different answer would be proof that QM is no good (JE).



$$K_S {
ightarrow} \pi \ell
u$$

Learn about 1. $\Delta S = \Delta Q$ 2. TCPby measuring 3. $\Gamma(K_S \rightarrow \pi \ell \nu)$ 4. \mathcal{A}_{ℓ}^S

KLOE 2000, 17 pb⁻¹

ALSO

The first truly inclusive measurment of $\Gamma(K_S \rightarrow \pi^+ \pi^-)/\dots \pi^0 \pi^0$ The first quantitative measurements of scalar's (and ps) properties.

KLOE 2001-2, 200+300 pb⁻¹

Absolute BR

 $\mathcal{O}(10^{-3})$ accuracies on $K_S \rightarrow \pi^+ \pi^-, \pi^0 \pi^0, K_{L3}, K^{\pm}_{\pi^2,..\ell_3}, \text{ all}_{+\gamma}$

Radiation spectra

 $\Delta S/\Delta Q$, \mathcal{A}^{ℓ}_S

High precision in $\phi \rightarrow \gamma + ??$

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma + n\gamma)$

The program remains valid up to about 2000 pb⁻¹. In particular one can measure $K_L \rightarrow \pi^+ \pi^-, \pi^0 \pi^0$ which are poorly known.. $\Re(\epsilon'/\epsilon)$ requires at least 20,000 pb⁻¹ to be significant today

Moving up to 100 or more fb⁻¹ opens really new fields. Like measuring $\delta = \epsilon_S - \epsilon_L$ to maybe $\ll 10^{-4}$. This by the way means reaching $\Delta M_K/M_K > / < M_K/M_{\text{Planck}}$

It might finally become feasible to measure slope and rate asymmetries in τ , τ' , measure well $K_S \rightarrow \pi^0 \pi^0 \pi^0 \dots$, another number which is quite well known in the SM.

Conclusions

 $DA\Phi NE$ is beginning to show promise.

KLOE has begun its program.

Major $DA\Phi NE$ upgrades in 2002. *TCP* and $\Delta S = \Delta Q$

 $K \rightarrow \pi \ell \nu$

$$\Gamma(K_S \to \pi \ell \nu) = \Gamma(K_L \to \pi \ell \nu)$$

Leptonic Asymmetry

$$\mathcal{A}_{\ell}^{S} = \mathcal{A}_{\ell}^{L}$$

this is

tex

Frascati, 19 October 2002 Paolo Franzini - future.. 14

It is not possible to disentangle both within the K_S - K_L system.

It is necessary to combine with K^0 (or $\overline{K^0}$) states tagged by SI.

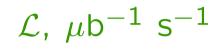
TCP can be violated in mass-matrix and/or decay amplitudes: 5 complex parameters for $K \rightarrow \pi \ell \nu$.

 $2\delta = \epsilon_S - \epsilon_L$ $a = A(TCP\text{-even}, \ \Delta S = \Delta Q)$ $b = A(TCP\text{-odd}, \ \Delta S = \Delta Q)$ $c = A(TCP\text{-even}, \ \Delta S = -\Delta Q)$ $d = A(TCP\text{-odd}, \ \Delta S = -\Delta Q)$

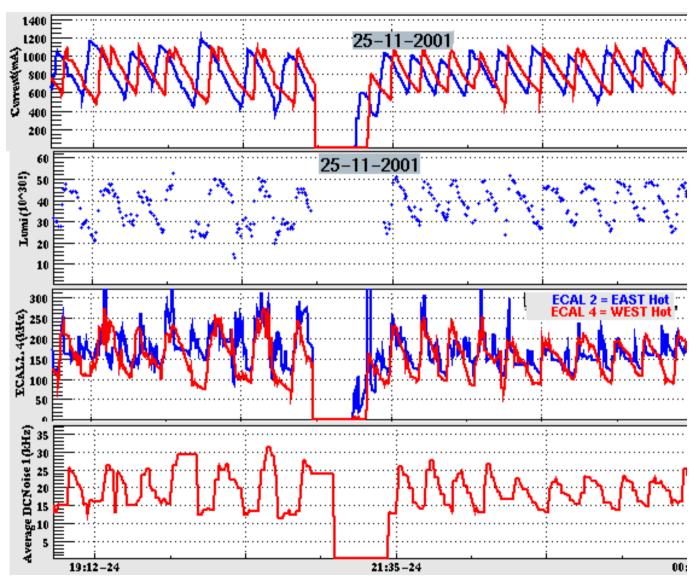
Need eg, $e^+e^- \rightarrow \phi \rightarrow K^+K^-$. One K tags the other. Charge exchange in any material gives K^0 (or $\overline{K^0}$).

If c = d = 0, then

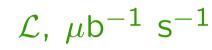
$$\mathcal{A}_{\ell}^{S} - \mathcal{A}_{\ell}^{L} = 4\Re\delta$$


A limit from the above improves the determination of $\left(M(K^0) - M(\overline{K^0})\right)/M$

Need $n \times 10^{10}$ K's, thousands of pb⁻¹


DA **D** NE 2001

I ma



DA **D** NE 2002

I ma

Bckgnd kHz

DC Hits, kHz

ϕ -decays

	Mode	BR, %
	K^+K^-	49.2
	$K^0 \overline{K^0}$	33.8
	$\pi^+\pi^-\pi^0$	15.5
	$\eta\gamma$	1.3
	$\pi^0\gamma$	0.1
	other	<0.1

 $\gammaeta c au_L=$ 3.4 m Drives detector size $\gammaeta c au_S=$ 5.6 mm

Drives IP surroundings

$$f_1 \bullet \begin{array}{c} t_1 & \phi & t_2 \\ \bullet & K_S, \ K_L & K_L, \ K_S \end{array} \bullet f_2$$

 $I(f_1, f_2, t_1, t_2) = |\langle f_1 | K_S \rangle|^2 |\langle f_2 | K_S \rangle|^2 e^{-\Gamma_S t/2} \times [|\eta_1|^2 e^{\Gamma_S \Delta t/2} + |\eta_2|^2 e^{-\Gamma_S \Delta t/2} - 2|\eta_1||\eta_2|\cos(\Delta m t + \phi_1 - \phi_2)]$

$$I(f_1, f_2; \Delta t) = \frac{1}{2\Gamma} |\langle f_1 | K_S \rangle \langle f_2 | K_S \rangle|^2 \times [|\eta_1|^2 e^{-\Gamma_L \Delta t} + |\eta_2|^2 e^{-\Gamma_S \Delta t} - 2|\eta_1| |\eta_2| e^{-\Gamma \Delta t/2} \cos(\Delta m \Delta t + \phi_1 - \phi_2)]$$

Measure ΔM , Γ , η_i – including phases.

$$\eta_i = \frac{A(K_L \rightarrow i)}{A(K_S \rightarrow i)}, \text{ arg}(\eta) = \phi$$

Interference examples

Frascati, 19 October 2002 Paolo Franzini - future.. 23

 $_{
m is}^{
m this}$