

Measurements of nucleon form factors in the time-like region with DA Φ NE at 2 GeV

Alessandra Filippi, INFN Torino

- Open problems in e⁺e⁻ annihilation around
 - $\sqrt{s} = 2$ GeV (close to NN threshold)
 - Measurements of nucleon time-like form factors
 - Existence of anomalous structures in multihadronic production

- Study of feasibility with FINUDA
 - $e^+e^- \rightarrow \overline{NN}$ annihilation and form factors evaluations
 - Apparatus' changes
 - Expected topologies and detection efficiencies

- G_E vs G_M can be discriminated via the angular distributions
 - $s >> M_N^2$: only $G_M(s)$ counts
 - $s \approx 4 \text{ M}_{N}^{2}$ (threshold): $G_{E}(s) \approx G_{M}(s) \Rightarrow$ isotropic distribution

FENICE data: the differential cross sections

- General cross sections features:
 - $\sigma \approx \beta$
 - $\sigma \approx |\mathbf{G}|^2$
 - Only $|G|^2$ can be measured, not G
 - $\Delta |\mathbf{G}| / |\mathbf{G}| = \frac{1}{2} \Delta \sigma / \sigma$
- Neutron: dominance of the (1+cos²θ) term
 - $|G_{\rm E}| < 0.1 |G_{\rm M}| @ 90\% \text{ C.L.}$
- Proton: isotropic distribut'n
 - $\bullet ||G_{\mathsf{E}}| \approx ||G_{\mathsf{M}}||$

FENICE data: the proton magnetic form factor

FENICE data: the neutron magnetic form factor

 Assuming G_E = 0 |G_M| can be obtained as a function of s

- Peculiar behaviours:
 - $\label{eq:G_M} \blacksquare \ |G_{M}^{(n)}| \approx 1.5 \ |G_{M}^{(p)}|$
 - |G_M⁽ⁿ⁾ time-like| > |G_M⁽ⁿ⁾ space-like|
 - Indications for an anomalous behaviour close to threshold (where must be G_M≈ G_E)

According to all theoretical predictions: G(p) > G(n)

Open problems left by FENICE

- Why $G^{(n)} > G^{(p)}$?
- $G_{E}^{(n)} << G_{M}^{(n)}$
- Why |G_M⁽ⁿ⁾ time-like| > |G_M⁽ⁿ⁾ space-like| ?
- Form factors in the unphysical region (dispersion relations)?
- Only modules can be measured

- Is there a structure close to NN threshold?
- No infos on other baryons FF

Another anomaly at 1.9 GeV: observation in diffractive photoproduction and $e^+e^-\rightarrow 6\pi$

m = (1.911±0.004±0.001) GeV Γ = (29 ± 11 ± 4) MeV J^{PC} = 1⁻⁻, I^G = 1⁺ Evidence for a narrow state at 1.9 GeV found by E687 in the diffractive photoproduction of 6π final state, interfering destructively with the continuum background

 $\sqrt{s} = 1900 \text{ MeV}, B = 0.5 \text{ T}$

 $\sqrt{s} = 1880 \text{ MeV}, B = 0. \text{ T}$

Tentative events yields/day, $e^+e^- \rightarrow \overline{n}n$

$\begin{array}{ll} \textbf{L} &\approx 5{\times}10^{31}~cm^{-2}~s^{-1}\\ \textbf{L}_{day} &\approx 4~pb^{-1}\text{;}~\sigma_{Ann} \approx 1~nb\\ \textbf{B} = \textbf{0.5}~\textbf{T} \end{array}$

Chamber transparency: 85%

√s (MeV)	3	L _{day} (pb-1)	# events	# events w. n coincidence
1880	.34	4	1156	173
1900	.10	4	340	51
1920	.08	4	272	41
1940	.07	4	238	36

 $\sqrt{s} = 1900 \text{ MeV}, \text{ B} = 0.5 \text{ T}$

$\label{eq:L} \begin{array}{l} \thickapprox 5\times 10^{31} \ cm^{-2} \ s^{-1} \\ L_{day} \approx 4 \ pb^{-1} \ ; \ \sigma_{Ann} \approx 1 \ nb \\ B = 0.5 \ T \end{array}$

√s (MeV)	3	L _{day} (pb-1)	# events
1880	.50	4	1700
1900	.48	4	1632
1920	.43	4	1462
1940	.40	4	1360

Advantages and drawbacks with FINUDA

- Total cross sections can be measured with "decent" efficiency
- Some problems for the differential cross sections due to the apparatus' limited acceptance
 - Some more thoughts about a better angular coverage needed

- Further studies: possibility to measure the proton polarization
 - Tool to get the relative phase and infer something more about G_M and G_E , that in the time-like region are complex

Conclusions

- The cross section measurements for both e⁺e⁻→nn and e⁺e⁻→pp seems to be feasible
 - maximum efficiency: 30% close to threshold
 - Most important problem: reduced FINUDA angular acceptance!!
 - γγ background rejection enough strong if event recognition requires
 - A more-than-two-prong annihilation star
 - A signal on TOFone by a neutron within a definite time gate
 - $e^+e^- \rightarrow 3\pi^+3\pi^-$ cross-section feasible with an about 20% efficiency
 - Reduced efficiency due to apparatus' angular covering
 - Momenta reconstruction can help to identify events with 5 prongs only

