QCD issues in photon-photon total cross-section

Giulia Pancheri - INFN-Frascati

Or why we would need a photon collider

Why total cross-sections

 One needs to know their values for background calculations

But they are also of

Fundamental interest to understand particle structure

3

Total cross-sections are a testing ground of our understanding of QCD beyond perturbative regime

work in collaboration with R.M. Godbole, A. Grau, Y.N. Srivastava

Do all total cross-section look alike?

- Yes
 - They all start falling and then rise with energy

- No
 - They fall with different slopes at low energy
 - They may be rising with different slopes at high energy

Difference at low energy?

- Quantum numbers in the s-channel give rise to different resonances in the very low region
- Quantum numbers in the t-channel bring in different Regge pole exchanges and through FESR different power law decrease with energy

$$\sigma_{total} \approx s^{-\eta}$$
 with $\eta \approx 0.5$

Difference at high energy?

- Not well understood yet
- Pomeron exchange was supposed to give universal behaviour
 - Soft Pomeron

 $\sigma_{total} pprox s^{\epsilon}$

 $with \ \epsilon pprox 0.09 \ \sqrt{\ }$

It violates the Froissart bound

 σ_{tot} ≤ log ² s

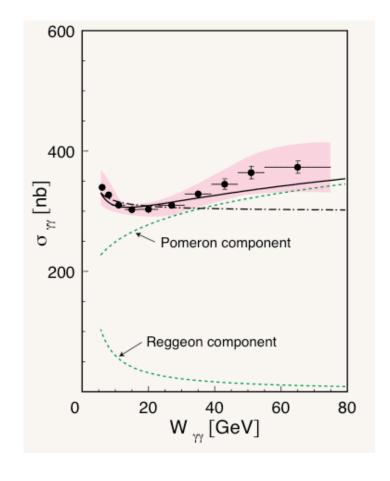
What to do for photons?

The simplest version of the Regge-Pomeron model

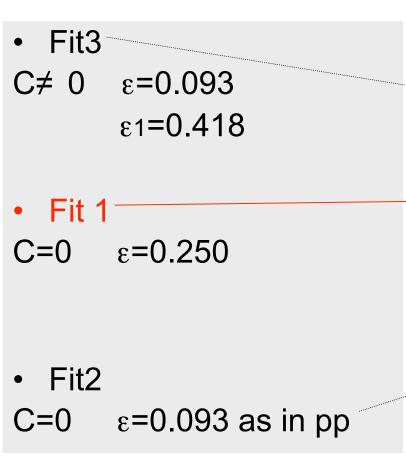
shows that ε is not the same for proton and photon cross-sections

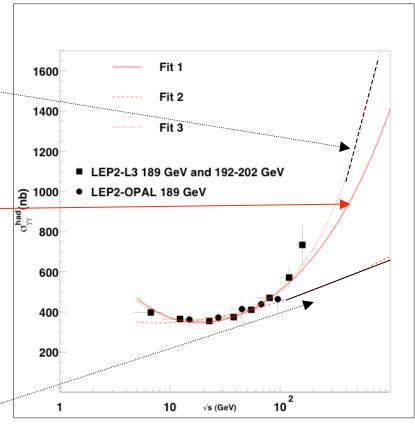
8

• from L3 fits



$σ=Bs^{-η} + As^ε + Cs^ε$

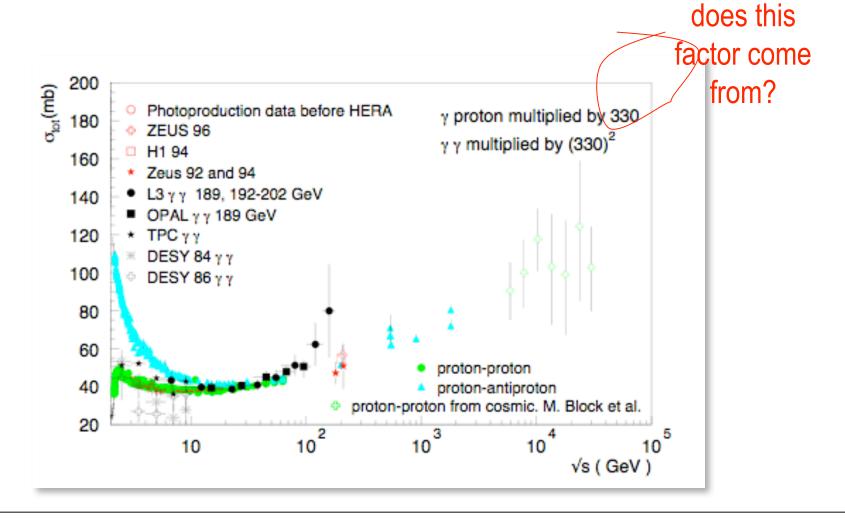




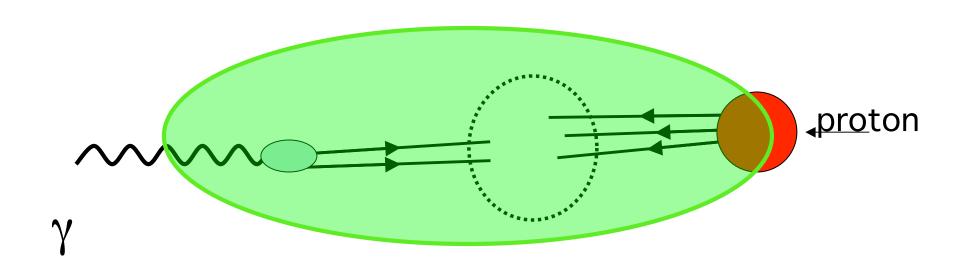
A.de Roeck, R. Godbole, A. Grau, G.Pancheri, JHEP 2003

Clearly to understand total cross sections we need models which work for protons and photons as well

Do all total cross-section look alike? Where



The proportionality factor: from protons to photons -from pp to pγ to γγ-



The normalization factor

$$R_{\gamma} pprox lpha_{QED} \; \left(rac{N_{fermion \; lines}^{photon}}{N_{fermion \; lines}^{hadron}}
ight)^2 pprox rac{1}{300} \quad (1)$$

$$P_{had} = P_{VMD} = \sum_{V=\rho,\omega,\phi} \frac{4\pi\alpha}{f_V^2} = \frac{1}{250}$$
 (2)

where the sum extends to all vector mesons, not just the ρ . If only ρ , then

$$R_{\gamma} \approx P_{had}$$
 (3)

Factors used in factorization models

 R_{γ} is just a multiplicative factor

P_{had} is a phenomenological input describing the hadronic content of the photon in eikonal models

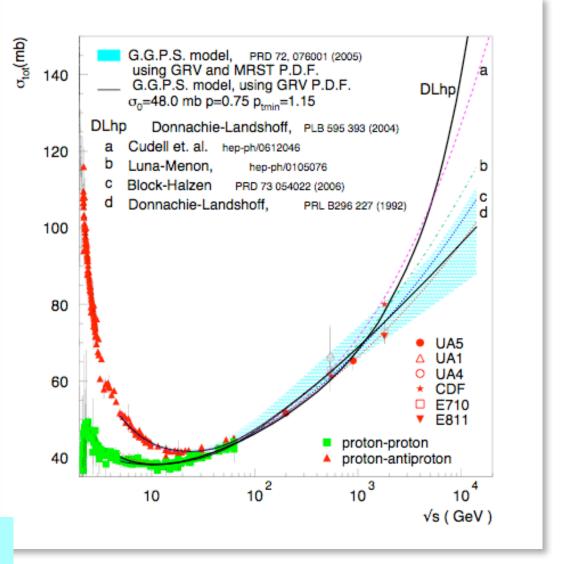
R.Fletcher, T.Gaisser. F.Halzen, 1993

Models for protons

- Regge Pomeron exchange, power law type terms, Donnachie-Landshoff
- Logarithmic fits and power law Cudell et al.
- Eikonalization and b-distribution
 - Block and Halzen
 - Luna-Menon
 - Bloch-Nordsieck Model

GGPS

A. Achilli, R.M. Godbole, A. Grau, G.P., Y.N. Srivastava Phys. Lett. 2008

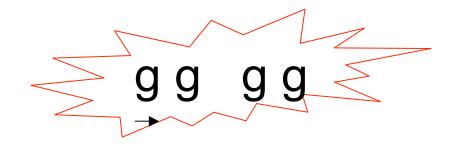


The Bloch-Nordsieck model for σ_{total}

- 1. QCD mini-jets to drive the rise
- resummation of soft gluon emission down to Zero momentum to soften the rise
- eikonal representation for the total crosssection to incorporate the mini-jet crosssection, using an impact parameter distribution obtained as the Fourier transform of resummed soft gluon transverse momentum distribution.

The hard scattering part

qq,qg and mostly



Minijet cross-section depends upon

- parton densities
 - GRV, MRST, CTEQ for protons
 - GRS, CJK for photons
- p_t cutoff p_{tmin}=1~ 2 GeV

In all mini-jet models densities make all the difference between photon and proton processes

Proton-proton and proton-antiproton

Most commonly used densities

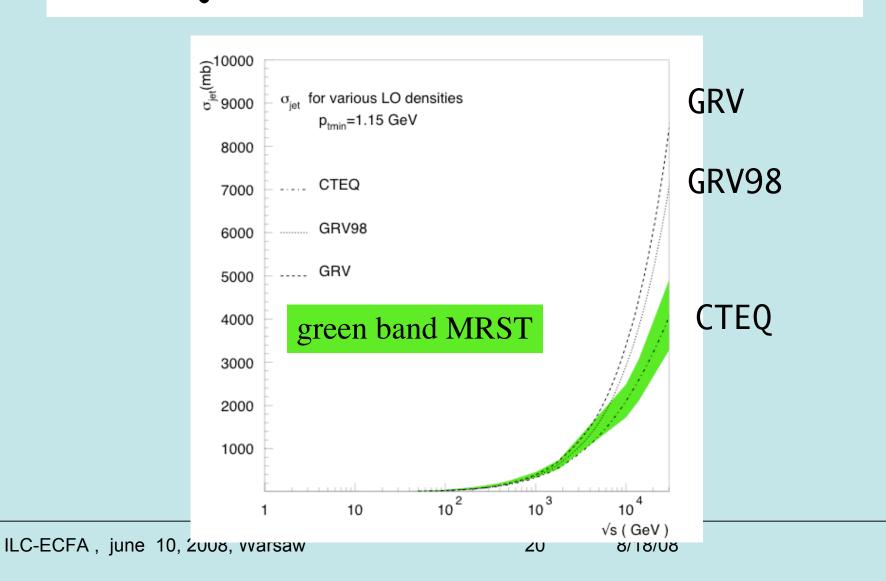
- GRV
- CTEQ
- MRST

γ–proton and γγ

Most commonly used densities

- GRV
- GRS
- Cornet Jankowsky Krawczyk Lorca

σ_{jet} for p_{tmin} =1.15 GeV



About the Froissart bound and QCD minijets

For all densities we find

$$\sigma_{jet}^{PDF}(s,p_{tmin})pprox s^{\epsilon}$$

with

 $\epsilon \approx$ 0.4 for GRV and GRV98 \rightarrow more singular

 $\epsilon \approx$ 0.3 for CTEQ and MRST \rightarrow less singular

QCD Mini-jets violate the Froissart bound

- Consequence of infinite range of QCD
- One needs to introduce a finite distance of the interaction

The eikonal does it through the hadron finite size

Finite size of hadrons

 The finite size can be introduced through the Form Factor

$$A(b)$$
~ $e^{-b constant}$ as $b ~ very large$:

not enough to tame the rise because the growth of σ_{iet} PDF is too strong!! G.P. et al. PRD 2005

or

We shall use an energy and PDF dependent soft gluon emission down into the infrared

Soft gluon emission from scattering particles softens the rise and gives b-distribution

$$A_{BN}(b,s) = N \int d^2K_{\perp} \ e^{-iK_{\perp} \cdot b} \frac{d^2P(K_{\perp})}{d^2K_{\perp}}$$
 $\frac{d^2P(K_{\perp})}{d^2K_{\perp}} = \frac{1}{(2\pi)^2} \int d^2\vec{b} \ e^{iK_{\perp} \cdot b - h(b,q_{max})}$ $h(\vec{b},q_{max}) = \int_0^{q_{max}} d^3\bar{n}(k) [1 - e^{-ik_t \cdot b}]$ $pprox \int_0^{q_{max}} \frac{\alpha_s(k_t^2)}{8\pi} \frac{dk_t}{k_t} \log \frac{2q_{max}}{k_t} [1 - e^{-ik_t \cdot b}]$

Soft gluon emission factor

$$\int_0^{q_{max}} rac{lpha_s(k_t^2)}{8\pi} rac{dk_t}{k_t} \log rac{2q_{max}}{k_t} [1-e^{-ik_t \cdot b}]$$
 $lacksquare$

q_{max} is the maximum transverse momentum allowed by kinematics to single soft gluon emission in a given hard collision, averaged over the parton densities.

M. Greco and P. Chiappetta

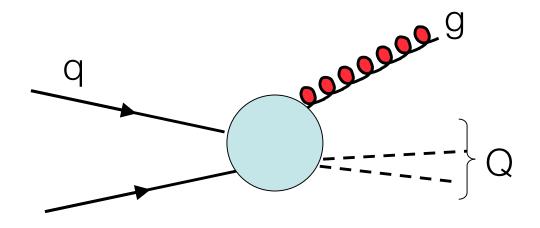
Kinematical constraints on single gluon emission

$$q(p_1) + q(p_2) \longrightarrow g + Q$$

$$Q^2 = s_{jet-jet}$$

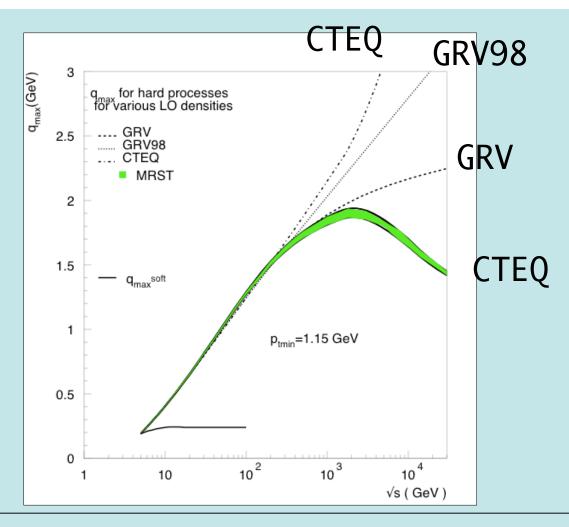
$$s = (p_1 + p_2)^2$$

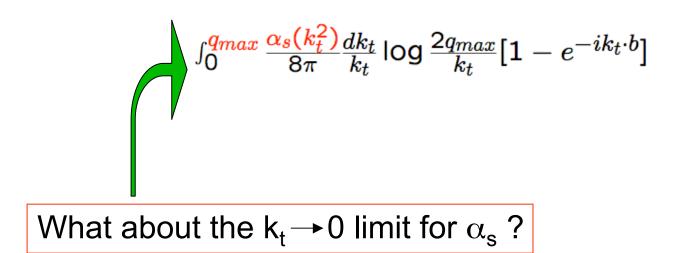
Chiappetta & Greco 1982



$$q_{max} = \frac{\sqrt{s}}{2} (1 - \frac{Q^2}{\hat{s}})$$

q_{max} for ptmin=1.15 geV





Modeling the infrared behaviour

- frozen
- Our choice : singular but integrable, phenomenological choice

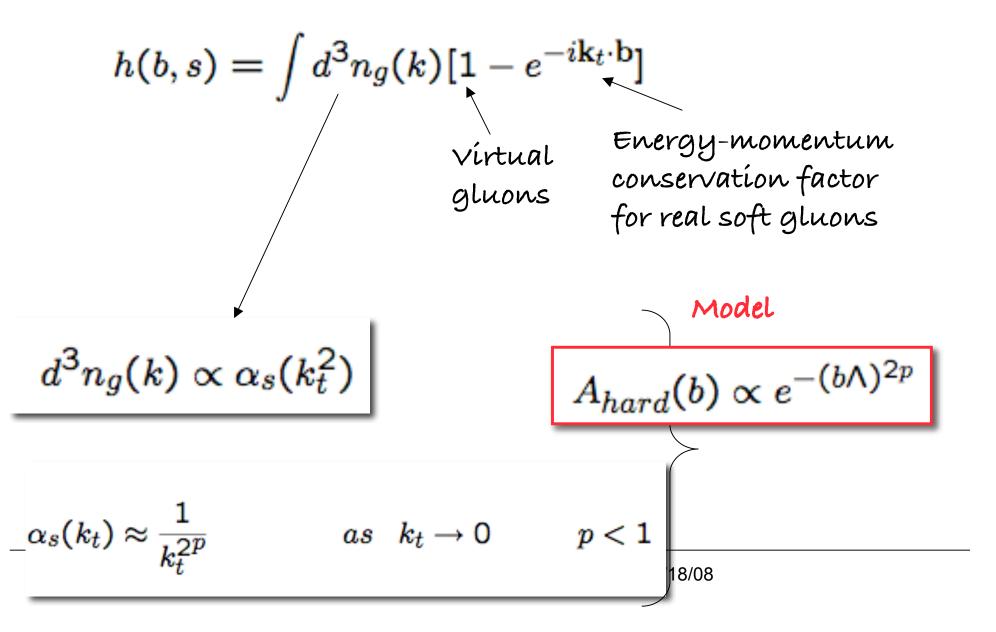
Our model in the infrared

Singular but integrable

$$\alpha_s(k_t^2) = \frac{12\pi}{33 - 2N_f \log[1 + p(\frac{k_t^2}{\Lambda^2})^p]}$$

Singularity regulated by p < 1

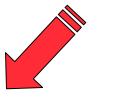
Soft gluon resummation effects

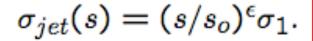


At very large energies:

$$\bar{\sigma}_T(s) \approx 2\pi \int_0^\infty (db^2)[1 - e^{-n_{hard}(b,s)/2}],$$

$$n_{hard}(b,s) = \sigma_{jet}(s)A_{hard}(b,s)$$





$$A_{hard}(b,s) \propto e^{-h(b,s)}$$

where

$$h(b,s) = \int d^3n_g(k)[1-e^{-i\mathbf{k}_t\cdot\mathbf{b}}]$$

ILC-ECFA, june 10, 2008, Warsaw

From power law to log behaviour

$$A_{hard}(b) \propto e^{-(bq)^{2p}}$$
 $C(s) = A_o(s/s_o)^{\epsilon} \sigma_1$

$$\bar{\sigma}_T(s) = 2\pi \int_o^\infty db^2 [1 - e^{-C(s)e^{-(bq)^{2p}}}]$$

$$q^2ar{\sigma}_T(s)] o (2\pi)[lnC(s)]^{1/p}$$
 Main result $\sigma_T(s)pprox - [\ln s^\epsilon]^{1/p}pprox [\epsilon \ln s]^{(1/p)}$

Comparison with proton data

R.Godbole,

A. Grau

R. Hedge

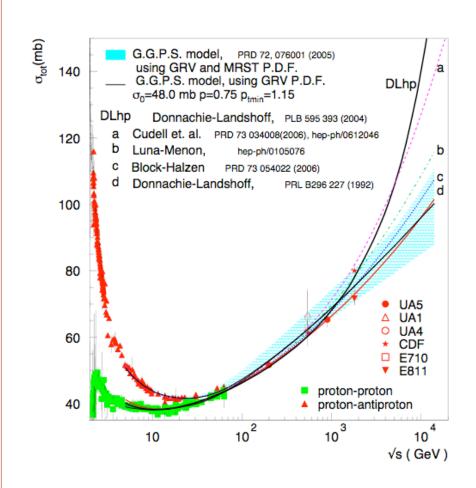
G. Pancheri

Y. Srivastava

Les Houches 2005

Pramana **67** (2006)

GGPS PRD 2005



For all pdf's

- For different PDF, with soft gluon emission to give an energy dependent size and QCD hard gluon minijets to drive the rise
- All the Bloch-Nordsieck type curves

$$\sigma_{\text{tot}}^{\text{pp/p}\bar{p}} = a_0 + a_1 s^b + a_2 \ln(s) + a_3 \ln^2(s).$$

even though
$$\sigma_{jet} \uparrow s^{\epsilon}$$

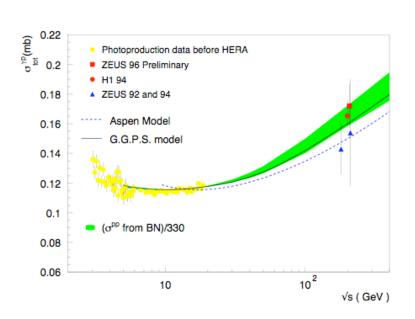
Protons and photons

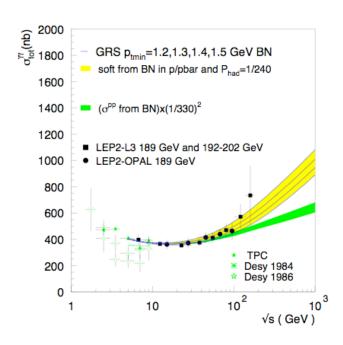
Once you have a model for protons

How to you extend it to photons?

- factorization
 - just a multiplicative factor
 - Regge and Pomeron vertices
- Fully apply the model to photon structure

Brute force factorization





- Multiplication factor (1/330) or (1/330)²
- O.k. for γ p
- Not so good for γγ: could be off by a factor 2

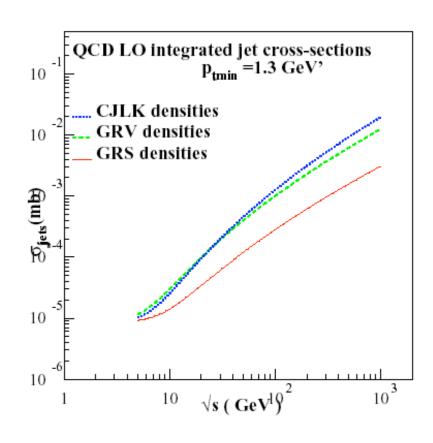
We can apply the Eikonal mini-jet Model cum Soft Gluon resummation to γγ

Choose $p_{tmin} = 1 \div 2$ GeV for mini-jets and parton densities

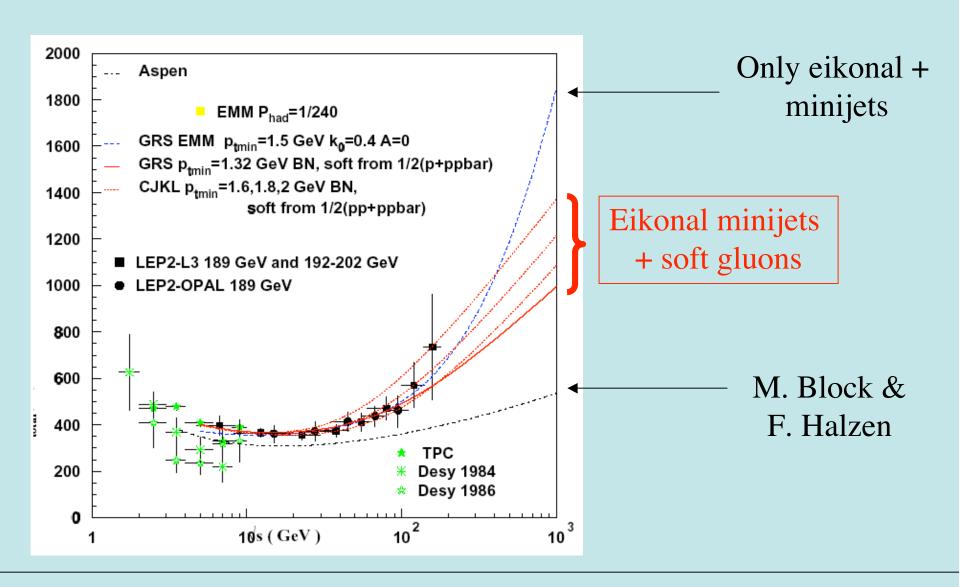
For photons, LEP data suggest

$$p_{tmin} \sim 1.3 \div 1.8 \text{ GeV}$$

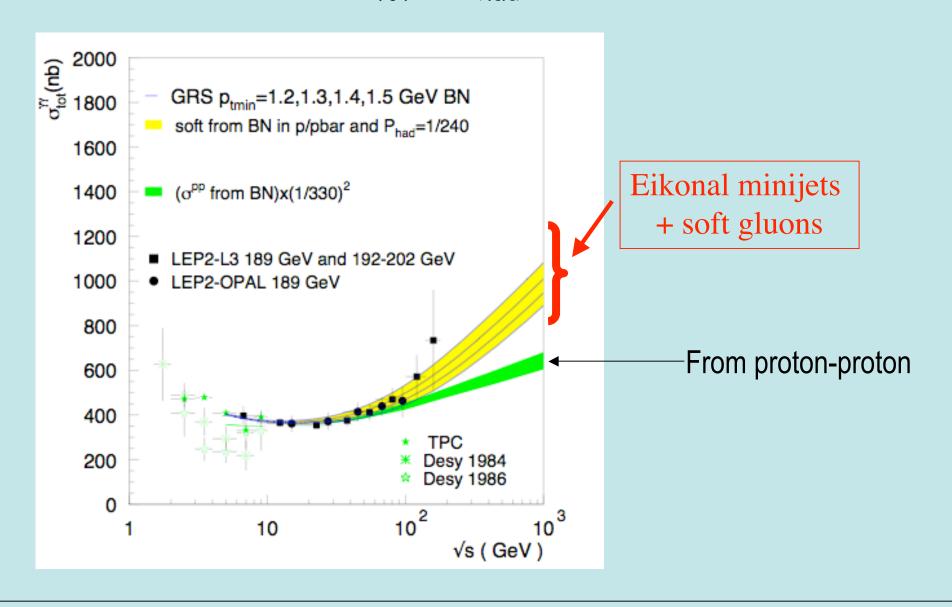
- Gluck Reya Vogt
- Gluck Reya Shielbein
- Cornet Jankowski Lorca Krawczyk



Eikonalize $\sigma_{tot} \approx 2P_{had} \int d^2b \left[1-e^{-n(b,s)/2}\right]$



Eikonalize $\sigma_{tot} \approx 2P_{had} \int d^2b \left[1-e^{-n(b,s)/2}\right]$



Conclusions

- Predictions at ILC vary according to which densities better describe the behaviour at low x
- Total cross-sections measurements in Collider mode would allow clean information on γγ cross-sections, reducing the errors due to modelling of diffractive components
- Even in regular mode, difference in the model predictions are measurable and can give insights into the soft or non perturbative region of QCD.