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The physical problem - I

◮ Due to asymptotic freedom in non-Abelian gauge theories [Gross and Wilczek,
1973; Politzer, 1973] , hadronic matter is expected to undergo a change of state to
a deconfined phase at sufficiently high temperatures or densities [Cabibbo and
Parisi, 1975; Collins and Perry, 1974] .

◮ Extensive experimental investigation through heavy ion collisions since the
Eighties: first at AGS (BNL) and SPS (CERN), then at RHIC (BNL)

◮ Present experimental evidence from SPS and RHIC: a ‘A new state of matter’ has
been created [Heinz and Jacob, 2000, Arsene et al., 2004; Back et al., 2004;
Adcox et al., 2004; Adams et al., 2005]
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The physical problem - II

◮ The plasma behaves as an almost ideal fluid [Kolb and Heinz, 2003] (‘The most
perfect liquid observed in Nature’)
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The physical problem - II

◮ The plasma behaves as an almost ideal fluid [Kolb and Heinz, 2003] (‘The most
perfect liquid observed in Nature’)

◮ Forthcoming experiments at LHC (CERN) and FAIR (GSI) to provide a more
detailed picture

◮ However, the theoretical understanding of the QCD plasma [Rischke, 2003] is still
far from complete . . .



Theoretical approaches - I

◮ Relativistic fluidodynamics is a successful phenomenological
description [Romatschke, 2009] , but is not derived from QCD first principles

◮ The perturbative approach in thermal gauge theory has a non-trivial mathematical
structure, involving odd powers of the coupling [Kapusta, 1979] , as well as
contributions from diagrams involving arbitrarily large numbers of loops [Linde,
1980; Gross, Pisarski and Yaffe, 1980] . . .

◮ . . . and shows poor convergence at the temperatures probed in
experiments [Kajantie, Laine, Rummukainen and Schr öder, 2002]

◮ Dimensional reduction [Ginsparg, 1980; Appelquist and Pisarski, 1981] to
EQCD and MQCD [Braaten and Nieto, 1995] , hard-thermal loop
resummations [Blaizot and Iancu, 2002] , and other effective theory
approaches [Kraemmer and Rebhan, 2004]



Theoretical approaches - II

◮ Analytical progress in strongly interacting gauge theories: the AdS/CFT
conjecture [Maldacena, 1997] and related theories as possible models for the
non-perturbative features of QCD, including spectral [Erdmenger, Evans, Kirsch
and Threlfall, 2007] and thermal properties [Gubser and Karch, 2009]

◮ In the large-N limit, the Maldacena conjecture relates a strongly interacting gauge
theory to the classical limit of a gravity model



Theoretical approaches - III

◮ Numerical approach: Computer simulations of QCD regularized on a lattice allow
first-principle, non-perturbative studies of the finite-temperature plasma

◮ The lattice determination of equilibrium thermodynamic properties in SU(3) gauge
theory is regarded as a solved problem [Boyd et al., 1996]

◮ In recent years, finite-temperature lattice QCD has steadily progressed towards
parameters corresponding to the physical point [Karsch et al., 2000; Ali Khan et
al., 2001; Aoki et al., 2005; Bernard et al., 2006; Cheng et al., 2007; Bazavov
et al., 2009]—see also [DeTar and Heller, 2009] for a review of recent results



Goals of this work

◮ High-precision determination of the equilibrium thermodynamic properties in
SU(N ≥ 3) Yang-Mills theories

◮ Comparison with holographic predictions
◮ Entropy deficit: comparison with a supergravity model in a strongly interacting,

nearly conformal regime
◮ Investigation of possible non-perturbative contributions to the trace anomaly
◮ Extrapolation to the large-N limit

Related works: [Bringoltz and Teper, 2005] and [Datta and Gupta, 2010]
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The old perspective: QCD at large N

◮ QCD has no obvious dimensionless expansion parameter (the coupling is used to
set the scale)

◮ ’t Hooft proposed to use 1/N (N being the number of colors) as an expansion
parameter [’t Hooft, 1974]

◮ Generically, a large-N limit can be interpreted as a ‘classical limit’; identification of
coherent states and construction of a classical Hamiltonian [Yaffe, 1982]

◮ The large-N limit of QCD, at fixed ’t Hooft coupling λ = g2N and fixed number of
flavors Nf , is a simpler theory . . .

◮ . . . in which certain non-trivial non-perturbative features of QCD can be easily
explained in terms of combinatorics [Witten, 1979; Manohar, 1998] , . . .

◮ . . . which is characterized by planar diagrams’ dominance . . .
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Maldacena, Ooguri and Oz, 1999; Mateos, 2007]
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The AdS/CFT correspondence

◮ Maldacena conjectured that the large-N limit of the maximally supersymmetric
N = 4 supersymmetric YM (SYM) theory in four dimensions is dual to type IIB
string theory in a AdS5 × S5 space [Maldacena, 1997]

ds2 =
r2

R2

“

−dt2 + dx2
”

+
R2

r2
dr2 + R2dΩ2

5

◮ The conjecture arises from the observation that the low-energy dynamics of open
strings ending on a stack of N D3 branes in AdS5 × S5 can be described in terms
of N = 4 SYM

◮ Geometric interpretation: There exists a correspondence of symmetries in the two
theories

◮ A highly non-trivial correspondence, linking the strongly coupled regime of field
theory to the weak-coupling limit of a gravity model

◮ Identification of the generating functional of connected Green’s functions in the
gauge theory with the minimum of the supergravity action with given boundary
conditions: correlation functions of gauge theory operators from perturbative
calculations in the gravity theory [Gubser, Klebanov and Polyakov, 1998]

◮ A stringy realization of the holographic principle: the description of dynamics
within a volume of space is “encoded on the boundary” [’t Hooft, 1993;
Susskind, 1995] —see also [Bousso, 2002] for a review

◮ The large-N limit of the N = 4 SYM theory exhibits a phase transition which can
be related to the thermodynamics of AdS black holes [Witten, 1998]
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Non-perturbative predictions for QCD-like theories from
holographic models

◮ ‘Top-down’ approach: break some symmetries of the N = 4 theory explicitly, add
fundamental matter fields to the gauge theory by including new branes in the
string theory [Bertolini, Di Vecchia, Frau, Lerda, and Marotta, 2001; Gra ña and
Polchinski, 2001; Karch and Katz, 2002] to get a non-trivial hadron sector with
‘mesons’ and χSB [Erdmenger, Evans, Kirsch and Threlfall, 2007]

◮ Description of hydrodynamic and thermodynamic properties for a strongly
interacting system, like the QCD plasma, from gauge/gravity duality—see [Son
and Starinets, 2007; Mateos, 2007; Gubser and Karch, 2009] and references
therein

◮ ‘Bottom-up’ approach: construct a 5D gravitational background reproducing the
main features of QCD [Polchinski and Strassler, 2001; Erlich, Katz, Son and
Stephanov, 2005; Da Rold and Pomarol, 2005; Karch, Katz, Son and
Stephanov, 2006]

◮ Hard-wall versus soft-wall AdS/QCD, and related thermodynamic
features [Herzog, 2007]



Improved holographic QCD model – I

◮ Kiritsis and collaborators [Gürsoy, Kiritsis, Mazzanti and Nitti, 2008] proposed
an AdS/QCD model based on a 5D Einstein-dilaton gravity theory, with the fifth
direction dual to the energy scale of the SU(N) gauge theory

◮ Field content on the gravity side: metric (dual to the SU(N) energy-momentum
tensor), the dilaton (dual to the trace of F 2) and the axion (dual to the trace of FF̃ )

◮ Gravity action:

SIHQCD = −M3
PN2

Z

d5x
√

g
»

R − 4

3
(∂Φ)2 + V (λ)

–

+ 2M3
PN2

Z

∂M
d4x

√
h K

◮ Φ is the dilaton field, λ = exp(Φ) is identified with the running ’t Hooft coupling of
the dual SU(N) YM theory

◮ The effective five-dimensional Newton constant G5 = 1/
`

16πM3
PN2

´

becomes
small in the large-N limit



Improved holographic QCD model – II

◮ Dilaton potential V (λ) defined by requiring asymptotic freedom with a
logarithmically running coupling in the UV and linear confinement in the IR of the
gauge theory; a possible Ansatz is:

V (λ) =
12

ℓ2

»

1 + V0λ + V1λ4/3
q

log
`

1 + V2λ4/3 + V3λ2
´

–

,

where ℓ is the AdS scale (overall normalization), and two free parameters are fixed
by imposing that the dual model reproduces the first two coefficients of the SU(N)
β-function

◮ Gauge/gravity duality expected to hold in the large-N limit only, because
calculations in the gravity model neglect string interactions which can become
important above a cut-off scale MPN2/3 ≃ 2.5 GeV in SU(3)

◮ First-order transition from a thermal-graviton- to a black-hole-dominated regime in
the 5D gravity theory dual to the SU(N) deconfinement transition

◮ The model successfully reproduces the main non-perturbative spectral and
thermodynamical features of the SU(3) YM theory

◮ Can also be used to derive predictions for observables such as the plasma bulk
viscosity, drag force and jet quenching parameter [Gürsoy, Kiritsis,
Michalogiorgakis and Nitti, 2009]
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Lattice QCD: The basics
◮ Discretize a finite hypervolume in Euclidean spacetime by a regular grid with finite

spacing a

a

◮ Transcribe gauge and fermion d.o.f. to lattice elements, build lattice observables
◮ Lattice gauge action [Wilson, 1974] :

S = β
X

2

„

1 − 1

N
Re Tr U2

«

, with: β =
2N

g2
0

◮ A gauge-invariant, non-perturbative regularization
◮ Amenable to numerical simulation: Sample configuration space according to a

statistical weight proportional to exp(−S)
◮ Physical results recovered by extrapolation to the continuum limit a → 0
◮ During the last decade, lattice QCD has entered an era of precision calculations,
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Thermodynamics on the lattice

◮ Thermal averages from simulations on a lattice with compactified Euclidean time
direction, with T = 1/(aNτ )

◮ Pressure p(T ) via the ‘integral method’ [Engels et al., 1990]:

p = T
∂

∂V
logZ ≃ T

V
logZ =

1

a4N3
s Nτ

Z β

β0

dβ′
∂ logZ

∂β′

=
6

a4

Z β

β0

dβ′ (〈U2〉T − 〈U2〉0)



Thermodynamics on the lattice

◮ Other thermodynamic observables obtained from indirect measurements
◮ Trace of the stress tensor ∆ = ǫ − 3p:

∆ = T 5 ∂

∂T

p

T 4
=

6

a4

∂β

∂ log a
(〈U2〉0 − 〈U2〉T )

◮ Energy density:

ǫ =
T 2

V

∂

∂T
log Z = ∆ + 3p

◮ Entropy density:

s =
S

V
=

ǫ − f

T
=

∆ + 4p

T



Simulation details

◮ Lattice sizes N3
s × Nτ , with Ns = 20 or 16, and Nτ = 5

◮ Simulation algorithm: heat-bath [Kennedy and Pendleton, 1985] for SU(2)
subgroups [Cabibbo and Marinari, 1982] and full-SU(N) overrelaxation [Kiskis,
Narayanan and Neuberger, 2003; Dürr, 2004; de Forcrand and Jahn, 2005]

◮ Cross-check with T = 0 simulations run using the Chroma suite [Edwards and
Joó, 2004]

◮ Physical scale for SU(3) set using r0 [Necco and Sommer, 2001]
◮ Physical scale for SU(N > 3) set using known values for the string tension σ

[Lucini, Teper and Wenger, 2004; Lucini and Teper, 2001] in combination with
the 3-loop lattice β-function [All és, Feo and Panagopoulos, 1997; Allton, Teper
and Trivini, 2008] in the mean-field improved lattice scheme [Parisi, 1980;
Lepage and Mackenzie, 1993]



Measurements of the plaquette
◮ High precision determination of (〈U2〉T − 〈U2〉0) required
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Measurements of the plaquette
◮ High precision determination of (〈U2〉T − 〈U2〉0) required
◮ Data reveal a strong first order bulk transition for SU(N ≥ 4)
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Improved holographic QCD model vs. lattice data
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Improved holographic QCD model vs. lattice data
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AdS/CFT vs. lattice data in a ‘quasi-conformal’ regime

For T ≃ 3Tc , the lattice results reveal that the deconfined plasma, while still strongly
interacting and far from the Stefan-Boltzmann limit, approaches a scale-invariant
regime . . .
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AdS/CFT vs. lattice data in a ‘quasi-conformal’ regime

. . . in which the entropy density is comparable with the supergravity prediction for
N = 4 SYM [Gubser, Klebanov and Tseytlin, 1998]
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Note that a comparison of N = 4 SYM and full-QCD lattice results for the drag force on
heavy quarks also yields λ ≃ 5.5 [Gubser, 2006]



T 2 contributions to the trace anomaly?

The trace anomaly reveals a characteristic T 2-behavior, possibly of non-perturbative
origin [Megı́as, Ruiz Arriola and Salcedo, 2003; Pisarski, 2006; A ndreev, 2007]
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Extrapolation to N → ∞

Based on the parametrization [Bazavov et al., 2009]:

∆

T 4
=

π2

45
(N2 − 1) ·

 

1 −


1 + exp
»

(T/Tc) − f1
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!
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Conclusions

◮ Equilibrium thermodynamic observables in SU(N) YM theories at temperatures
0.8Tc ≤ T ≤ 3.4Tc show a mild dependence on N

◮ Successful comparison with the IHQCD model
◮ Quasi-conformal regime of YM and N = 4 SYM predictions—Can lattice data

help to pin down realistic parameters for AdS/CFT models of the sQGP?
[Noronha, Gyulassy and Torrieri, 2009]

◮ ∆ seems to have a T 2 dependence also at large N
◮ Extrapolation to the N → ∞ limit



Projects for the future



Projects for the future - I
(in case ‘plan A’ fails . . . )

◮ SU(N) screening masses and spatial string tensions, comparisons with
AdS/CFT [Bak, Karch and Yaffe, 2007] and with IHQCD [Alanen, Kajantie and
Suur-Uski, 2009]

◮ TrF 2 correlators and dilaton potential [Noronha, 2009]
◮ Observables related to thermodynamic fluctuations: specific heat, speed of sound

et c. [Gavai, Gupta and Mukherjee, 2005] —relevant for the elliptic flow
[Ollitrault, 1992; Teaney, Lauret and Shuryak, 2001]

◮ Renormalized Polyakov loops in various representations [Damgaard, 1987;
Damgaard and Hasenbusch, 1994; Dumitru, Hatta, Lenaghan, Or ginos and
Pisarski, 2004; Gupta, Hübner and Kaczmarek, 2008]

◮ Transport coefficients [Meyer, 2007]



Projects for the future - II
(in case ‘plan A’ fails . . . )

◮ High-precision thermodynamics for SU(N) theories in 3D (work in progress with
Caselle, Castagnini, Feo and Gliozzi; see also [Bialas, Daniel, Morel and
Petersson, 2008] )
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