INFN - Laboratori Nazionali di Frascati, May 1995
From: The Second Da®ne Physics Handbook'
Chapter 9: One Photon Initiated Processes

Eds. L. Maiani, G. Pancheri, N. Paver

Vector Meson Decays in Effective Chiral Lagrangians

A. Bramon

Grup de Fisica Teorica, Universitat Autonoma de Barcelona,
08193 Bellaterra (Barcelona), Spain

A. Grau

Departamento de Fisica Tedrica y del Cosmos,
Universidad de Granada, 18071 Granada, Spain
and

G. Pancheri
INFN, Laboratori Nazionali di Frascati, P.O.Box 13, 1-00044 Frascati

Contents
1 Introduction 479
2 Role played by VM in saturating the counterterms in ChPT 479

3 Different schemes for inclusion of Vector Mesons in effective lagrangians482

4 Anomalous processes like V° — P%% 485
4.1 Calculation of cross-sections for ete™ — Py, Py* at DAONE . . . .. .. 490
5 Non-anomalous processes like V° — P?P% 494
5.1 VMD Contribution . . . . . .. .. . 495
5.2 Adding Chiral Loops . . . . . . . .. . 499
6 SU(3)-breaking effects in the non-anomalous sector 506
7 SU(3)-breaking effects in the anomalous (W-Z) sector 511

!Supported by the INFN, by the EC under the HCM contract number CHRX-CT920026 and by the
authors home institutions

477



1 Introduction

We give a brief description of some theoretical models which incorporate vector mesons
in low energy effective lagrangians, namely the massive Yang-Mills approach, the Hidden
Symmetry scheme and the conventional Vector Meson Dominance (VMD) model. We
calculate a number of vector meson decays using the above schemes with and without
implementation of chiral loop contributions. This is done for several processes of the
anomalous and non-anomalous type, like V% — P% and V° — P°P%, with V° = p,w, ¢
and P° = 7% 1, some of which can be measurable at DA®NE . We then turn to describe how
one can introduce SU(3)-breaking in the vector-meson sector of effective chiral lagrangians
incorporating vector-mesons (VM) as (hidden symmetry) gauge fields. We show that it
is possible to consistently describe SU(3) breaking effects in the masses (My), couplings
to the photon field (fy,) and to pseudoscalar pairs (gvpp), pseudoscalar decay-constants
(fp) and charge radii (< r$ >), in terms of just two parameters. A thorough description
of all the above quantities is further improved when working in the context of Chiral
Perturbation Theory (ChPT). We also show how to extend this procedure to the sector
containing the V'V P vertices related to the anomaly. An improved description of V' P~ and
P~~ transitions is obtained.

2 Role played by VM in saturating the counterterms
in ChPT

The inclusion of spin-1 mesons in effective chiral lagrangians has been largely discussed in
the past and, with considerably renewed interest, during the last years. Indeed, traditional
ideas associating spin-1 mesons with gauge bosons of local symmetries have been revisited
and developed further. The so-called “massive Yang-Mills approach” and “hidden symme-
try scheme” recently reviewed by Meissner [1] and Bando et al.[2] are two excellent and
well detailed examples.

Conventional ChPT accounts for electro-weak and strong interactions of pseudoscalar
mesons , P, in a perturbative series expansion in terms of their masses or four-momenta
[3]. At lowest order in this expansion, the chiral lagrangian starts with the term

f?
£ = gTr(DMED“ET) (1)
where the pion decay constant f = 132MeV = f, (= fk, at this lowest-order level) and
Y = &€ = exp(20P/ f) with the matrix P given by

™ N8 m + an
— 4+ B4 K
V2 V6 V3 .
P = T _7T__|_£_|_£ K© 2
V2 6 3 ) 2
K- K SRS

V(RVE]
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where, for later convenience, the singlet term 7; has been added to the conventional octet
part (see Ametller’s contribution to this Handbook). Electromagnetic interactions are
contained in the covariant derivative

DY = 8,5 +ieA,[Q, 3] (3)

where A, is the photon field (the extension to weak interactions being trivial) and @ is
the quark-charge matrix @ = diag(2/3,—1/3,—1/3). The mass degeneracy is broken via
the additional mass term

o1

i ZTT(xET + Xy (4)

with x containing the quark-mass matrix M = diag(m,, mq, ms) and transforming as a
(3,3%) 4 (3, 3) representation of SU(3)r, x SU(3)r. At this lowest order, ChPT essentially
coincides with Current Algebra.

The next order piece in the chiral expansion (fourth order) contains one-loop corrections
with vertices from (1) to (4) and a series of ten counterterms required to cancel loop
divergencies [3]. Some of them, e.g.,

LY = —ieLyF,,Tr(Q D*S D'ST + Q D*st DY) (5)
are chiral-SU(3) symmetric, wheareas others, e.g.,
£ = LsTr (D,ED st (xSt + 5x 1)) (6)

break the symmetry as £2) in eq.(4). At this one-loop level, one obtains [3]

Ix 5 1 3 8 9
f7r =14- 4 — §,LLK - Z'un + F(ml{ —my) Ls(p) (7)
m% m2
where loop effects appear through the so-called chiral-logs pp = T6m2f? In——. Similarly,

the pseudoscalar electromagnetic charge-radii are found to be [3]

-1 m? m3 24
<T72r+ > = 167T2f2 (3—|—2 lnlu——l—l f ) FLQ( )
—1 m? m%\ 24
2 —
<ox = g (34 2] - S
1 m2
— < T?{O > = < T72r+ > =< T%q. > = W In mI; (8)

where, again, the divergencies accompaning the chiral-logs are absorbed in one of the
counterterms (or low-energy constants), Lg, appearing in £

The large number of low-energy constants one has to fix along the lines just discussed
considerably reduces the predictive power of ChPT. For this reason, the attractive pos-
sibility that the values for those constants could be fixed assuming that they somehow
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parametrize the effects of the (so far ignored) exchange of the known meson resonances
has been proposed [4] and successfully verified in many cases (see Chapter 3 in this Hand-
book for details). In most of them, particularly in processes involving the Wess-Zumino
anomalous action, vector-mesons turn out to play the dominant role [5]. Their couplings
to pseudoscalar plus photon states, as extracted from the experiments, saturate an impor-
tant part of the above counterterms. Accurate effective lagrangians incorporating addi-
tional properties of vector mesons and further details on their dynamics could therefore
be extremely useful not only as a self-contained effective theory but also as an auxiliary
lagrangian fixing the counterterms in the ChPT context.

In order to illustrate the role played by vector mesons in saturating the counterterms, we
consider the case [6] of the transition form factors controlling pseudoscalar radiative decays,
ie. P — ~4v*, where P=n"1n,n". The lowest order contribution to the corresponding
amplitude F comes from the Wess-Zumino term Ly z at order p* and is ¢* independent
(¢* being the mass of the off-shell photon). With the on-shell normalization

3

T(PO = vy) = —L|F? 9
(P = 79) = %) ()
the lowest order amplitude reduces to (see section 3 for details)

20
F = FCPT = 70‘\7; F (10)

where C, = 1,C,, = 1//3 = C,,/(2v/2) and all the decay constants fp are the same at
this order. Loop corrections modify the above result and introduce SU(3) breaking terms
in the values for fp. As in the non-anomalous case, cancellation of the loop divergences
takes place through appropriate counterterms and the remaining finite contribution leads
to

FESFT —5 FOPT(qt) = FESTT (14 roby ) (1)

with r. = 1,r, = (2fi + f3)/(2f1 + 2fs),ry = (fi —4fs)/(f1 — 8fs) (we have taken
sinfl = —1/3 for the n-n’ mixing) and

1

by = ————
LSYPEND

1+ In(mgm,/u?)] (12)

Fixing the scale y at an average vector meson mass, i.e. u> = (9m>+m?+2m?)/12, the loop
contribution gives by, = 0.32 GeV =2, a value too small to reproduce the experimental data
for the slope, as one can see in the pion case, where one has[7] b, = (1.79 4 0.14) GeV =%

Let us now consider the direct contribution from the vector mesons to this process. It
can be obtained from VMD as a sum over all the poles, i.e.

2
FVMD(QQ) _ E 91;:7 mzmiqu FVMD(O) _ FggPT (13)
% v
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where the sum includes the contribution from the light vector mesons with SU(3) symmetric
couplings to the photon, fy, and to the meson-photon pair, gyp,. In the good SU(3)
limit the contribution from vector mesons is the same for all the pseudoscalars, so that,
expanding in powers of ¢*/m3,, one can write

F(q?) = FOMPTHVMD(g2) o pEAPT (1 4 (rpby, + by )] (14)

with by = 1/p? = 1.46 GeV ™2 The entire ¢* dependence is parametrized in the low
energy region through a single slope parameter bp = 1/A% and the values thus obtained for
Ap, summing together chiral loops and vector meson contributions, can be compared with
experimental results with a very good agreement (see sect. 8.1 in this Handbook). Noticing
that the vector meson contribution is quite larger (by almost a factor 5) than the one from
the loops, it is clear that vector mesons are essential in reaching satisfactory agreement. It is
also evident that there is essentially no space left for additional counterterm contributions,
i.e. that vector mesons dominate or “saturate” the counterterms. Other examples of how
vector mesons saturate the counterterms in the chiral lagrangian have been discussed in
Chapters 3 and 8, as well as in ref. [8].

3 Different schemes for inclusion of Vector Mesons in
effective lagrangians

In the previous section, we have discussed the implicit role played by vector mesons in
chiral lagrangians, through saturation of the counterterm contributions. Beyond the very
low energy region, where a lowest-order power expansion in p?/u? is sufficient, one may
try to extend the validity of chiral lagrangians through the explicit introduction of vector
meson fields. Two main lines have been developed, the massive Yang Mills (YM) approach
proposed by Meissner [1] among other authors, and the Hidden Symmetry (HS) scheme
proposed by Bando et al. [2]. In the former, spin-1 fields are introduced in the ungauged
lagrangian through the usual covariant derivatives. Restricting, for simplicity of exposition,
to the sole SU(2) fields, i.e. pions and p mesons, one starts with the usual lowest order

lagrangian
f? +
£=tr (9.z0"x1) (15)
and then makes the substitution
X = DX =05+ iglpu, Y] (16)

where ¥ = exp(2:1l/f) now contains only the pion field 1I and p, is the p meson field.
This results in the lowest order lagrangian

2
YM _ f_ 1y _
oM =t (D.sD#et) = 1
— ig\/§,02 <7T+8“7T_ — ﬂ‘@‘%ﬁ) ll — ? (27TO7T0 + 4W+ﬁ_)] (17)
—|—292p2,ooﬂ7r+7r_ + ...
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where, for the sake of the present argument, we have shown only some terms involving
interactions between neutral p mesons and pions. The gauge coupling constant g is deter-
mined by neutral p decay, ['(p° — 7t77) = ¢°p) /(3nM?) = 151.2 £1.2 MeV, to have the
value ¢ = 4.2 £ 0.1 . In the massive Yang Mills scheme, photonic interactions are then
introduced through conventional Vector Meson Dominance, i.e. through the lagrangian

= —V2ef?gA" (18)

which mediates all transitions between photons and matter fields. Applying this rule to the
decay p — ete”, one obtains the relation M} = 2¢°f* and I'(p — ete™) = 20’7 M, /34>
. The experimental values I'(p° — 777~) = 151 MeV and I'(p — ete™) = 6.74 KeV are
then fitted with ¢ = 4.0 + 0.2. The dots in eq.(17) refer to further quadratic interactions
between p and an even number of pion fields, but no mass terms for the vector mesons.
This is to be contrasted with what happens in the lagrangian proposed by Bando et al.[2],
in which the vector mesons enter explicitly as gauge fields of a “hidden” local symmetry
of the chiral lagrangian, whereas the electro-weak gauge bosons are explicitly introduced
through the usual covariant derivatives. A Higgs-like mechanism then generates the vector
meson masses.

To wit, in the “hidden symmetry approach” of Bando et al.[2] the most general la-
grangian containing pseudoscalar, vector and (external) electroweak gauge fields with the
smallest number of derivatives, is given at the lowest order, by the linear combination
L4+ aLly, a being an arbitrary parameter, of the two SU(3) symmetric lagrangians

2
L= fT

r(Duts €]~ Dutn-€h)

f%WDgfﬁme@) (19)

Ly =

The matrices £, and &r contain the pseudoscalars fields, P, and the unphysical (or com-
pensator) scalar fields, o, that will be absorbed to give a mass to the vector mesons

{r,r = exp(io/f)-exp(FiP/f) (20)
The full covariant derivative is
D érry = (0, —19Vy) Enry + ie€nmyA, - Q (21)

where only the photon field, A,, (but not its weak partners, as before) has been explicitly
shown, and P and V now stand for the SU(3) octet and nonet matrices

0

— 4+ — T K P w e
\/5 V6 . :7§'+ 7 p* K
P = T _ m + M KO V = _ po w 40

2 V6 P -—=+t—% K
K- RO 21 K*= \/I5 oV ¢
- —= < L *
NG
(22)
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The lagrangian L£4 4+ aLy can be reduced to the chiral lagrangian (1) for any value of
the parameter a [2]. In fact, working in the unitary gauge ( fj{ =¢ép =& =exp(iP/f))
to eliminate the unphysical scalar fields and substituting the solution of the equation of
motion for V,, the Ly part vanishes and L4 becomes identical to the non linear chiral
lagrangian (1).

The “hidden symmetry” lagrangian £4+aLy (19) can be easily seen to contain, among
other things, a vector meson mass term, the pseudoscalar weak decay constants, the vector-
photon conversion factor and the couplings of both vectors and photons to pseudoscalar
pairs. The latter can be eliminated fixing @ = 2, thus incorporating conventional vector-
dominance in the electromagnetic form-factors of pseudoscalars. Returning, as before, to
the simpler SU(2) case, for Ly one has

. 2
L5 = S (gp— 2 A+ 5 (0,6 +€10,6) + )

= %Mztr(pﬂp“) — \/ﬁengpzA“ + ﬂigpﬁ (7T+@“7T_ — 7f8“7r+) + ... (23)
In the above equation, the constant a has been fixed to the value a = 2 in order to
recover the relation between M, and the p couplings, previously discussed. This lagrangian
obviously reproduces all the lowest order results, as the previous one does, however it does
not contain couplings between two or more p- mesons and an even number of pion fields.

It is not yet clear if these two lagrangians are fully equivalent or not. At first sight,
processes involving one p meson and four or more pion fields could be used to discriminate
between the two [9], since these processes could proceed through multiple p -pion interac-
tions in the YM scheme, while not so in the HS approach. However, it has been pointed
out that axial vector terms, not yet introduced in the above lagrangians, would probably
play a role. This might render experimental discrimination rather difficult [10].

To the two schemes just discussed, one must also add the simplest and oldest of them
all, i.e. conventional Vector Meson Dominance [11], in which all photon-pseudoscalar
interactions proceed through vector meson fields with the same interaction lagrangian Ly,
seen before and the vector meson fields are introduced through the covariant derivatives
in the free pion lagrangian £ = %tr(@uﬂaﬂl—[). The lagrangian thus obtained

2

LMD = igtr (p, (1T = 9TIL)) = Tr([p,., 1)) (24)

contains the same p — 77 vertices as the previous two, but there are of course no multipion
interactions, which in conventional VMD are basically frozen into the role played by the
vector mesons.

After this brief introduction, we shall now discuss some vector meson decay processes
which can be measured at DA®NE . and in which the validity of the theoretical scenarios
we have illustrated can be tested.
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4 Anomalous processes like V! — Py

In this section, we present in detail the treatment of vector meson contributions to some
anomalous processes of interest and show that in the anomalous sector, within the res-
onance saturation hypothesis, one can get unambiguous predictions for the renormalized
parameters of the low energy effective Lagrangian. We shall start with the general dis-
cussion of the amplitude for 7% — v+, indicate its extension to the virtual photon case
7% — 44* in more detail than in the first section, discuss modifications due to counterterms
and their saturation with vector mesons , and then illustrate the introduction in the chiral
lagrangian of vector meson fields as from the Hidden Symmetry approach. The resulting
lagrangian contains three parameters which we show to be related to the usual chiral per-
turbative counterterms. Examining processes like w — 7% with the photon on or off the
masss shell, we are able to indicate a range of variability for these parameters and will then
proceed to calculate the cross-section for the three processes ete™ — 7%y, ny, 7utp~.

We focus our attention to the next-to-leading effective chiral Lagrangian describing the
interaction of photons with pseudoscalars. Explicitly, the relevant part of the lowest-order
anomalous Lagrangian is

2
Lwz = =iz 00,A,A, tr[(Q* + %QEQET)%EW - Q%+ %QE*QE)
m
) OpEtY] — —— B A 1r[Q(8, 50,5105 55 — 9,510,89,518)] + ...

1672
(25)

where the dots refer to non-photonic terms, irrelevant for our present purposes, and the
whole nonet of pseudoscalar mesons (with the phenomenologically preferred n-n’ mixing
angle fp ~ —arcsin 1/3 ~ —19.5° ) now appears in Ly z through the matrix ¥ defined in
the first section.

;From the first term in (25) one immediately deduces the amplitude for the 7° — vy
decay to order p?, i.e.

/2
A(m® = yy) = i%e““aﬁeﬂl@c’akg ) (26)

which successfully predicts I'(7® — vv) = a*m?2, /(327 %) = 7.6 eV for f = 132 MeV.
Similarly, one obtains a good description of 1, " — v+ decays as shown in ref.[12] for the
above value of 0p.

While this amplitude is finite, this result no longer holds when dealing with off-mass-
O = yeteT, n — qutp”
decay amplitudes. In these cases, diagrams like the ones in Fig.(1) give a contribution

shell photon(s), as in the yy* — 7% n production or in the m

whose divergence is cancelled by a corresponding counterterm in the relevant order six
lagrangian, i.e. [12]

L0 = ic“mﬁFagaAFAu{Bltr(QQETauZ - QQZQMET)
+Bytr(Q31Q8,% — Q¥Qa,uh)} (27)
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Figure 1: Loop diagrams contributing to P — ~y4* processes at order p°

where By and By are constants to be determined. Calling C; and C” the finite part of loop
and counterterm corrections, the resulting amplitude is now written as [12]

Ay = P) = iR s ehe 4 Ok KT, (28)

T
where, Cr = 1, C,, = 1/3/3, C,, = 2/2/V/3 and, neglecting the small effects originated
by the n; singlet part in the physical n wave function,

1
AS72 [2
with F(m?, k*?) defined as

4

1
g D B )+ Fd)| 29

T K

Cilp, k*?) =

\/_ _I_ /:L. _ 2m2 B k*?

Flm?, k) = m” (1__) \/__|_\/;1;T SR

F(m? k**) = 1 - — i arctg,/ —2m?, r <4 (30)

2k*2
F(m? k*?) = — 3 r < 1.

The finite parts of the loop and counterterm corrections depend on the renormalization

mass scale g. This will be fixed around the p- and w-meson masses, pu? ~ m2 = (m +

m?)/2 ~ 0.60 GeV?, which are the relevant ones in our case. Then eq.(29) for k*2 <L m? g
reduces to

* 1 ILL4 * * : - -
Cy(p, k*?) ~ yreys (@m — 2) E*? = k** /A7, with Aj2 ~0.28 GeV™2.  (31)
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As for the counterterm contribution, from eq.(27) one immediately has

C7(p) = (B + By) (32)

The numerical value of (32) can be fixed from experiments on 7° — yete™ decays [13]

or (better) from a recent experiment on y*y — 7 production through one (essentially)
real photon and a virtual one [7]. The measured k**-dependence of the amplitude can be

linearly parametrized in terms of a slope parameter b0, i.e.

% a\/§ vor * 7% *
A(fyfy — 7T0) = z—fﬁ“ ﬁﬁukyﬁakﬁ {1 + brok 2} (33)

T
Using also (31) and (32) one has [7]

1 4

bro(eap) = (1.79 4 0.14) GeV™2 = — — —(B, + By) (34)
A 3o

By comparig this experimental result with the contribution from the loops (28), the coun-
terterms contribution turns out to be dominant and given by

o

B+ By = —(1.13 £ 0.11)= GeV~2 = —(0.68 + 0.07) (35)
m

mm?
Similarly, a single measurement using n — pp~v leads to b,(exp) = (1.9 £ 0.4) GeV ™2,
thus confirming eqs.(34) and (35) (see Ametller’s contribution to this Handbook).

The experimental results just described, and their parameterization in terms of By +
B3, can now be used to test the saturation hypothesis of the counterterms by resonance
exchange. Let us introduce in this context the whole nonet of vector mesons, V', as gauge
bosons of the HS-model of Bando and collaborators [14, 2]. At order p°, the relevant
lagrangian (which can be found in ref. [12]) can be written as a linear combination of three
independent terms with coefficients ay, aq,as. As it turns out, only terms proportional to
the constants ay and as are relevant to the processes we are interested here, while all three
enter into the study of a process like w — 3, discussed in refs.[15, 16]. Including also the
first term from Ly z (25), the pieces of the whole Lagrangian relevant to Pyvy, V Py and
V'V P vertices are written as

3 2
/:'P’Y’Y = <m + 8@3) %eﬂyaﬁaMAuaaAﬁ tT(Q2P)

2
Lvp, = (a5 — zag)%ewﬁaﬂm 1r(Q(8.Vs P + P8, V3)) (36)

2

Lyvp = —4412976‘“““5 tr(0,V,0,VsP),

Vector meson mass terms and standard V5 couplings appear in the lagrangian
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1
Ly = fAr(g*V, V" —2egQA V" +...) = §m%/tr(VMV“) + Ly, (37)

with the constants g and f satisfying the relations g = m,,/v2f ~ 4.15 and the lagrangian

0
Ly, = —emi, AH ('D—“ + Lu + ﬁ) generalizing eq.(18) with

fp fw f(b

fomato= =21 = v (39)
The above contributions to the lagrangian are such that only the first term in Lp., i.e.
the first term in Ly z, contributes to the P~ amplitude for real photons. Indeed once
the Vv transition (37) is used in eq.(36) there is a cancellation of all a3 3 dependent terms
and one recovers the results of eq.(26). The ay3 dependence appears when dealing with
vertices such as wr%y, pny or 7%9~*, ny~*, where the virtual photon introduces also a k**-
dependence through the vector meson form-factor m?

2 .
of k**/m? , and retaining up to the second term, we can now compare the vector meson
b

contributions from the above lagrangian (given in terms of ay3) with the By, coefficients
in £) eq.(27) . As shown in [12], one easily obtains

(m2,,— k**). Expanding in powers

o

2
pw

| Bl + B2 |VM: 27'('2 | a9 + 2@3 | (39)
The actual numerical values for the above constants can be deduced from the experimental
data relative to a V P~y process like the decay w — 7°y. The measured width T'(w —
%) = (720 £ 50) keV ~ 9 I'(p — 77) [13] leads to

! !

— = (0.73 + 0.02) —

p,w Trmp7w

2% | ay + 2as | - (40)
in good agreement with (35), thus confirming the resonance saturation hypothesis for the
counterterms, By + By >~ (B1 4+ B2)vum.

Let us now discuss the relationship between the above lagrangians eqs.( 36-37) and the
vector meson dominance model, in which no direct coupling between pseudoscalar mesons
and photons appears. This result is easily obtained with the following choice of parameters
ay and as

ay = 2a3 = —3/167? (41)

which eliminates all direct Pyy and V Py vertices in the Lagrangian (36). The relative
decay vertices are then exclusively generated by the Lyyp term and V~ conversion(s)
from Ly. as in conventional VMD, indicating the consistency of the latter with the model
of Bando et al.[14, 2] for the above choice of the parameters a; and a3. However, the
agreement between eq.(35) and eqs.(39)and (40), which confirms the saturation hypothesis
for the Bando model, does not fix the individual values of a; and as, but only the sum
|az + 2a3|. The choice

ay + 2a3 = —3/87?%, (42)
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can then be adopted to include both the VMD conventional model, for which eq.(41) is
satisfied, as well as deviations from this model through ay # 2as, while still satisfying
eq.(40).

The possibility of deviations from VMD has been discussed in the related context of
v* — PPP transitions[15]. Other informations can be extracted from experimental data
on the decays w — 7%9* — 7%ut ™ [17] where the k**-dependence has been parametrized
in terms of the usual e.m. transition form-factor F, = A%/(A? — k**) (see Ll.Ametller
in this Handbook). The data can be fitted with A.,, = 0.65 £ 0.03 GeV and seem to
indicate a deviation from the usual vector meson dominance, for which one would have
chosen Ayyp = m,,, = 0.768 GeV. Such discrepancy can easily be explained in terms of
the Lagrangians (36) and (37), which imply a form-factor given by

2&2 k‘*2

(CLQ —|— 2@3) m—%

1+ (43)

Comparing eq.(43) with 1+ k*Z/Azl,p + ..., we see that experimental data imply ay > 2a3
and, up to this order, a good choice seems to be a; = 4.6 a3. This is however not a
completely unambiguous choice. If one is willing to extend this formalism to higher k*2,
the data [17] tend to prefer values of ay somewhat larger than 5as, as one can see from
Fig.(2), where we plot the fits for the k**-dependence of the form factor in w — 7%* for
the experimental case and two different choices of the parameters.

We see that we can adopt

ay = 6az = —9/3272, ay +2a3 = —3/8x? (44)

as a compromise which represents an interesting alternative to the VMD values (41).

Apart from giving a reasonable description of the w — 7%u* ™ data, the values (44)
are also in the preferred region in order to account for the data on the w — a7~ 7P,
This has been discussed in detail in refs.[15, 16], and the result can be summarized in
Fig.(3), where values of the parameters a; and ay consistent with experimental data are
plotted. The branching ratios for w — 7t7~ 7% and w — 7% fix a region in the ay,as, az
parameter space, represented by the ellipse. The point B on the ellipse corresponds to
the value in eq.(44) extracted from the process w — 7%utu~. Notice that these values of
the parameters a;, which imply a deviation from pure VMD, find a partial confirmation in
recent analyses of the w — 7%+ u~ form-factor in the lattice [18].

To summarize, we have discussed the relationship between conventional VMD, coun-
terterm contributions in chiral perturbation theory and a possible model for introduction
of vector mesons in the chiral lagrangian to saturate the counterterms. To clarify some of
the issues involved, such as the presence of a possible clear deviation from VMD, we now
proceed to calculate the production cross-sections for the reactions ete™ — 7%, ny and
ete™ — w%*]~ which can be measured at DA®NE and might improve the whole situation

and contribute to fix the value of the ChPT counterterms or the a; 3 parameters.
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Figure 2: Fits to the £**-dependence of the form-factor in w — 7%v*. The data (not shown)
are compatible with the solid and dashed lines but not with VMD .

4.1 Calculation of cross-sections for ee™ — Py, Py* at DAPNE

The ete™ — 7% cross section at lowest order is obtained from Ly 7 in eq.(25) and turns
out to be

o

O ynos(5) = W(l —mzo/s)’, (45)
where s is the square of the total CM energy and o*/(1272f*) = 0.0734 nb. This lowest
order cross section is shown (dotted line) in Fig.(4).

Next order corrections in ChPT include the effects of loops and counterterms as in
eq.(28). For the latter, the resonance saturation assumption implies C"(y ~ m,,) =
1/m? ,, thus increasing the lowest order amplitude up to a 60% at E = /s = 0.6 GeV as
also shown (dashed line) in Fig.(4). The associated loop corrections are given by Ci(u, s)
in eq.(29). These loop corrections are considerably smaller than those coming from the
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from the data for ete™ — 37 cross-section near the w peak. The choices A and C are
discussed in [15].

corresponding counterterms (around a 15% in the amplitude) and slightly increase the
te™ — w0 cross-section, as shown (dot-dashed line) in Fig.(4). This curve represents the
full ChPT prediction at next-to-leading order for ete™ — 7%y and is expected to reproduce
future data in the low energy region.

€

Around the resonance masses the cross-section is quite different as indicated by the
value at the w-peak [20] o.+.- n0,(s = m2) = 152 £+ 13 nb, shown with error bars in
Fig.(4). Attempts to improve the situation in ChPT would imply the evaluation of higher
order loop corrections and the corresponding counterterms. In general and for values
of u ~ m,,, next order loop corrections in ChPT are found to be around 10-20% of the
preceding order amplitude, smaller than those coming from other uncertainties in our model
and the values of its parameters. By contrast, corrections coming from counterterms have
been shown to be larger than the ones from the loops and the evaluation of higher-order
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Figure 4: Cross-section for eTe™ — 7%y as a function of the total CM energy : lowest order
result (dots), including counter-term contributions at the next order (dashes), full ChPT
prediction (with loop and counterterm corrections) at next-to leading order (dot-dashes)
and the “all-order” result (full line).

ones, under our assumption of resonance saturation, is trivial. As before, the introduction
of the whole vector-meson form-factor m? /(m?2 , — s) (instead of its truncated series
1+ s/m? ) represents an “all-order” estimate of our resonance dominated counterterms.
Taking into account the physical finite widths of the p and w mesons, this amounts to write

o’ 1 1
Oetempuwsnoy(8) = W(l —mo/s)® | Cilpp = mpu,s) + §Pp(5) + §Pw(5) 2
Py(s) = mi/(my —s—ivsly), V=p"w (46)

to first order in the loop corrections. The corresponding prediction is also shown (solid
line) in Fig.(4). The agreement at the w-peak (161 nb vs 152413 nb from experiment [20])
is essentially a consequence of having used ay + 2a3 = —3/87%, and 'y .y = 8.43 £ 0.10
MeV and BR(w — %) = (8.540.5)% [13], quite close to 8.4+0.1 MeV and (8.884+0.62)%
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as measured in [20] from the ete™ — w — 7% cross-section at the w peak. Near this peak
the w-contribution is obviously dominant, but at lower energies, loop effects, counterterms
and the p resonance curve represent a substantial fraction of the total cross-section.

The ete™ — ny cross-section can be analyzed along the same lines. Eq.(46) becomes

8a® m2\3 9 1 1
Ot e pw by (8) = WO - f) |Ci(p, 8) + gpp(s) + gpw(s) - 1P¢(5)|2

(47)

and the various contributions arising from this expression have been plotted in Fig.(5),
with the same notation employed for Fig.(4). The interference effects among the various
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Figure 5: Cross-section for ete™ — 17 as a function of the CM energy, distinguishing differ-
ent contributions near and around the omega peak from lowest order(dots), counterterms

(dashes) and chiral loops (dotdashes).

terms are now important even on the w-peak. Experimental data for ete™ — 5y in this
energy region are known [20] but affected by large error bars.
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Turning now to the ete™ — 7% transition, i.e., allowing for the final state photon to
be also off-mass-shell (k** > 0) as in e*e™ — 7%+~ one gets

3 1/]{:*2 2 3/2 o /k*Q 2 3/2
JE+@_—>PM—>W°7*(57 k*Q) = — (1 B (mﬂ . ) ) <1 - M)

1272 f2

S S
[<1 N 2a, k2 2) P,(s) 4 P,(s) N <1 _ 2aq ) E*? 2
ay + 2as mgw — k* 2 as + 2as mgw — k*
2
+Ciljty ) + Cilp, K7 (48)

Eq.(48) leads to the ete™ — 7%+ u~ cross-section plotted in Fig.(6) for ay+2a3 = —3 /8>
and ay = 6as, 2a3 and 0 (dashed, solid and dotted lines). One obtains an w-peak cross-
section O+ .- _sn0,4+,-(s = m?2) = 0.182, 0.147 and 0.090 nb, respectively. The correspond-
ing experimental value 0.164 + 0.040 nb [20, 17] favours the first two possibilities but new
experiments could contribute to clarify the situation discriminating among the different ra-
tios az/asz. This is not the case for the ete™ — mleTe™ cross-section (also shown in Fig.(6))
where the predictions for different values of ay/as are quite similar due to the dominance
of small k** values which reduces the sensitivity on ay/as as seen in eq.(48). Moreover, for
this particular process and well below the resonance region one could expect non-negligible
contributions coming from the scattering channel ete™ — ete y*y* — eTe n® with two
spacelike photons [19].

In summary, ete™ — 7%, ny and ete™ — 7% T~ cross-sections at low energy seem
particularly interesting to test the saturation of the ChPT counterterms by resonances,
which in this case are expected to be the well-known p® and w vector-mesons.

5 Non-anomalous processes like V! — PPy

In this section, we study the general process V® — P°P°%y both within the framework of
pure VMD as well as including chiral loop contributions. It is important to have as precise
as possible an estimate for these proceses, because they contribute to the background to
physics reactions like ¢ — fo/agy or to CP violation measurements, as it is the case for
¢ — KOK%.

We start with the amplitude for the general process within the framework of Vector
Meson Dominance (VMD). We find some discrepancies in the literature and update the
results.

Subsequently, we look into the possibility that chiral loops may be relevant to the
calculation of these processes, even at some relatively high energies, like around the ¢-mass
region. This attempt to extend ChPT to radiative vector-meson decays, V° — P%P%y,
indicates that the effects of (chiral) loops may be important, at least in some cases [21].
Unambiguous predictions are then given for ¢ — w°7%, 7%~, p — 7°7% and other
processes of interest. The relation of ChPT amplitudes to the VMD ones is discussed in
terms of the (VM-)resonance saturation of counterterms in the chiral lagrangian.
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Figure 6: Cross-section for ete™ — 7% T~ and 7%%e™ for the quoted values of ay and
as. VMD (solid line) requires a; = 2a3. The dashed line corresponds to the alternative
model with a; = 6as.

5.1 VMD Contribution

In conventional VMD models, the amplitude for the process V° — P°P%y is obtained by
calculating the Feynman diagrams shown in Fig.(7). All the couplings of our amplitudes
can be deduced from the two previously presented lagrangians, eqs. (36,71), with ay =
—3/1672. In addition to the V4 couplings (38), which satisfactorily describe the set of data
for V. — P, for processes like ¢ — P7%y, where P = 7% or 5, one needs to introduce a
small contamination ¢ of non-strange quarks in the ¢ meson. The relative amount can be
deduced from the experimental [13] decay width I'(¢ — 7%y)=5.840.6 KeV, which can be
reproduced by VMD with

¢ =0.059 £ 0.004, (49)

where the sign comes from observed w — ¢ interference effects in ete™ — 7 T7~7% [13].
With our lagrangians and the quoted values for the coupling constants, let us now
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Figure 7: Feynman diagrams for the process V® — P° Py from Vector Meson contributions

turn to predict the intermediate vector-meson contributions to V° — P°P%y. ;From the
kinematical point of view these processes involve the two following amplitudes

{a}=(e"-€) (¢"-q) = (" q) (- q")

~¢) (¢"-P) (¢- P) = (- P) (¢- P) (¢" - q)
P)(Q* P)+(c-q7) (- P) (¢~ P)

where ¢(€*) are the polarizations of the final photon (initial vector meson), and ¢ (¢* =
g+ p+p') are the corresponding four-momenta; P = p 4+ ¢, P’ = p’ 4+ g are those for
the virtual (intermediate) vector mesons (V' and V') of the direct and crossed terms (see

Fig.(7)). The total VMD amplitude is then found to be

0 00 0 0 po_y (€ P*{a} 4+ {b(P)} P*{a} + {b(F")}
A(V® — P°P°y)=C(V'P°P 7)9\/5{ ~ P My + M‘Z,,—PQ—Z'MV/FV/}

(51)
where G' = 3v/2¢%/(4n%f) is the p’wr® coupling constant and V° is the decaying vector
meson. The intermediate ones, V and V', can be either the w or the p-mesons, with
V =V"in n%° ! and V # V' in nry- decays for ¢ — K°K%y one obviously has V = K*°
and V/ = K*°. The coefficient C is the same for both terms (using SU(3)-symmetric
couplings) and changes from process to process according to well-known quark-model or

. (50)
Heq) (e
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nonet-symmetry rules:

0,00 3\/§

3 3 ,
1= C(p°n°n%) = 3C(wr’n"y) = 75 ¢ (") = ﬁc (wr'ny) = - 5¢ (PR K )
(52)
and
¢ = 3C(¢n'n") = @C(Wom) (53)

for the ¢-decays where the Zweig-rule is operative.
;From the above amplitudes, the partial widths are obtained performing a numerical
integration of

D(V = PP'y) = (;) m/dlﬂ /dEpZm V s PPy (54)

pol

where the factor (1/2) has to be included only for 7%7° decays.

Our results using the full VMD amplitudes (51) and the three-body phase space for-
mulae (54) are shown in the two last columns of Table 1. For comparison we also include
(first column) the upper limit for the three experimentally studied decay rates [13, 20] and
the predictions of other authors [22, 23, 24] who have worked in our same context. Our
results are not incompatible with those by Singer [25], who first noticed the simple relation
IV = 7tr=y) = 2I'(V? — 7%2%) for the VMD part of the rate. This relation allows
for a comparison of our results with those by Renard [23], quoted (in parenthesis) in the
second column of Table 1. The accompanying values are the original ones [23] corrected
by the present-day data for I'(w — 7%y) and ¢, and turn out to be in excellent agreement
with our predictions. The agreement with ref.[24] is somewhat less satisfactory. Finally,
we disagree in the complete list of numerical predictions quoted in ref.[22] even if the initial
expressions for the lagrangians are the same, since that our coupling constant g has been
defined as 1/2 of that in ref.[22].

Notice that the branching ratios (BR) appearing in the last column of Table 1, do
not always coincide with the simple product of branching ratios for the individual vector
dominated diagrams of Fig.(7). This point has been discussed in detail in ref.[26]

Concentrating on ¢-decays one first observes that our vector-meson dominated mecha-
nism predicts a completely negligible I'(¢ — K°K°), contrasting with the four orders of
magnitude larger prediction from ref.[22]. We have carefully analyzed our calculation and,
for this channel containing exclusively soft photons (£ < 25 MeV), an analytic expression
for the amplitude in this low-E limit has been obtained. One has

eGG?
3g( M} m]

K

A(p— K°K%) ~ Mg Tge) [(P-p/ — mio){a} +

(55)
- (p—p)[(e-p) (qg-p)— (e p) (CJ'P)]]
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Table 1: Global contribution of intermediate vector mesons to decay rates (in eV) and

branching ratios (last column) for different V° — P°P%y transitions as predicted by several
authors. Experimental upper limits are also quoted.

Decay rates EXP [13, 20] Ref. [23] | Ref. [24] | Ref. [22] This calculation

(in eV) I B.R.
[(p — 7%7%) — (2.5)1.6 - 10° — 43-10° || 1.6-10° | 1.1-107°
L(p — 7%n7) — — — 593 0.061 4-10710
[(w — 7%7%) <3.4-10° (350) 227 — 690 235 2.8-107°
[(w — 7n7) — — — 53 1.39 1.6-1077
(¢ — 7%7%) < 4.4-10° (250) 54 45 153 51 1.2-107°
(¢ — 7%n7) <11-10° — 35 228 23.9 5.4-107°
I'(¢p — K°K%) — — — 0.18 1.2-107° | 2.7-10712

where p, p’ are the pseudoscalar four-momenta, and
ooy €G! (p-p — mio)
2NAl = KK = 5 . — e + METE. )

2p-9) (" q)* = (p-p' +mio) 4(q-p) (q-p)

accidentally containing the small numerical factor (p-p' —mp) = (M7 —4m3,)/2 [13]. In
other words, the ¢ — K°K%y decay is predicted to be exceptionally suppressed not only by
the obviously scarce available phase-space but also due to an almost complete destructive
interference in the amplitude, as explicitly shown in Fig.(8). (Reversing the sign of the
interference term would enlarge the width by 2 orders of magnitude).

Our mechanism also predicts sizable contributions to ¢ — 7% % and nr%y decays.
The corresponding photonic spectra are shown in Figs.(9) and (10), where the interference
effects have again been separated.

These interference effects contribute to enhance the peak at high E in the ¢ — 7°%7%
spectrum. Roughly one-half of this decay contains a photon with an energy F in the
narrow range 400 MeV < E < 470 MeV. Alternative mechanisms, such as ¢ — fo, agy
are expected to produce exclusively lower energy photons, thus minimizing the interfer-
O7%y. We also notice
that our predictions for this (and ¢ — 7%y) decay include events with the 7% and ny

invariant mass on the p-peak. As discussed in [26] for the case of ¢ — nt7x~ 7% our

ences and allowing for separated analyses, particularly in ¢ — 7

calculation implicitly contains simpler estimates in terms of two-body branching ratios.
The latter imply [13] BR(¢ — n°7%) = :BR(¢ — pm)BR(p — 7y) ~ 34 x 107 and
BR(¢ — 7%ny)=3BR(¢ — pm)BR(p — n7y) ~ 16.4 x 107%, only in marginal agreement
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Figure 8: Photonic spectrum generated by intermediate vector-mesons in ¢ — KK
(solid line). Dashed and dotted lines correspond to twice the contribution of a single
diagram and their interference, respectively.

with our tabulated results because important interference and off-mass-shell effects have
been neglected. We believe that our calculation should be prefered to these simpler esti-
mate. However, these rough estimates are useful and allow for a numerical check of our
predictions. Indeed, by artificially reducing the p-width in our complete (three-body) cal-
culation one recovers the expected agreement with the above simpler (two-body) estimates
discussed at the end of section 3 of [26].

5.2 Adding Chiral Loops

Let us now turn to the discussion of chiral loop contributions to the above processes.
As mentioned, although strong, electromagnetic and weak interactions of pseudoscalar
mesons P at low energies are known to be well described by effective chiral lagrangians,
implementing the strict ChPT lagrangian with the effects of meson-resonances leads to a
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Figure 9: Photonic spectrum in ¢ — 7%7% with conventions as in Fig.(8).

more complete and realistic scheme with a largely increased predictive power. In particular,
it can incorporate and improve most of the VMD results so far discussed.

For concreteness, let us consider ¢ — 7w%7%y decay for which a rather low branching ra-
tio should be expected (see Table 1). There is a two-fold reason for that: neutral particles
cannot radiate copiously (bremsstrahlung) photons and, moreover, the Zweig rule sup-
press ¢-decays into pions. In the ChPT context this double suppression is at once avoided
through the contributions of charged-kaon loops. If so, the smallness of the ¢ — 7°7%
branching ratio will no longer hold and the analysis of this and related decays could ev-
identiate the effects of the (otherwise elusive) chiral loops. Notice, however, that we are
pushing ChPT somewhat outside its original context which did not allow for the inclusion
of ¢ and other resonances. Our purpose is to compute some consequences of this extended
version of ChPT to allow for future comparison with experimental data.

Using the SU(3)-extended terms of the lagrangians (17),(18) or (23)

'CVPP = ig tr(VH P 6“P — Vﬂ 8“P P) (57)
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Ly, = —2eg[* A" tr(QV,) (58)

with /2¢f = My, the V-meson mass, or ¢ ~ 4.2, we now calculate the ChPT-amplitudes
for the decay processes V? — P°P%y. There is no tree-level contribution and at the one-
loop level one requires computing the set of diagrams shown in Fig. (11). This leads to the
amplitudes listed in sec.5 of ref.[26] and thus to the numerical contributions to the decay
processes reported in Table 2.

Since VMD amplitudes can be interpreted as saturating the ChPT counterterms, the
above mentioned contributions have to be added to obtain the whole ChPT amplitude.
The relative weight of the two contributions so far discussed —the finite chiral loops versus
the VMD amplitudes (51)- depends crucially on the decay mode. Let us first discuss
p® — 7%7% whose VMD contribution is given by eqs.(51) and (50) with the w mass and
width in both propagators. One easily obtains[21]

[(p° — 7°7%)vup = 1.62 x 10°eV (59)
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Table 2: Contribution of Chiral loops and intermediate vector mesons to decay rates (in
eV) and branching ratios (last column) for different V° — P°P%y transitions .

Decay rates Ch-loops VMD Total B.R.
(in eV)
[(p = n%7%) | 1.42 x 10° | 1.62 x 10° | 3.88 x 10° || 26 x 10~°
T(p — 7n7) 0.006 0.061 ~VMD VMD
[(w — 7%7%) 1.8 235 ~VMD VMD
I'w — 7%9) 0.013 1.39 ~ VMD VMD
(¢ — 7%7%) 224 51 269 61 x 107°
['(¢p — 7%n7) 131 23.9 157.5 36 x 1076
I'(¢p — K°K%) 0.033 1.2 x 1075 | ~ Ch- loops || 7.6 x 107

which is of the same order of magnitude as the pion-loop contribution [26], i.e.
D(p® — 7°7%), = 1.42 x 10%eV. (60)

The global p® — 7%7% decay width is therefore given by the sum of the two amplitudes
leading separately to eqs.(60) and (59). One obtains

I'(p° — 7%7%) = 3.88 x 10%eV
BR(p® — 7°7%) = 26 x 107° (61)

and the photonic spectrum shown (solid line) in Fig.(12) clearly peaked at higher ener-
gies F.. The separated contributions from pion-loops and from VMD, as well as their
interference, are also shown in Fig.(12) (dashed, dotdashed and dotted lines, respectively).

The situation changes quite clearly when turning to the other decay modes like p,
w — 1y and w — 7°7%y. We find that the kaon-loop contributions are one or two orders
of magnitude smaller [26],

(p° = 7%y = 0.006 eV
Nw— 7ny)r = 0.013 eV, T(w— 7°7%)x = 1.8 eV. (62)

The physical reason for this suppression is that the usually dominant pion-loops are isospin-
forbidden in these decays. More accurate estimates and the shape of the photonic spectra
seem unnecessary due to the smallness of the corresponding branching ratios (only the
third one, BR(w — 7°7%) ~ 28 x 107°, could reasonably allow for detection) and also
to the fact that these decay modes are dominated by the well-understood (see [21]) but
less-interesting VMD contribution.

By contrast the latter VMD-contribution is expected to be much smaller in ¢ — 7%y
and 7°7% decays due to the Zweig rule, as shown in Table 1, well below the kaon-loop
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Figure 12: Photonic spectrum in p° — 7% (solid line). Dashed line corresponds to the
contribution of pion-loops, dotdashed line is the VMD contribution, and dotted line is their
interference.

contributions, I'(¢ — 7°7y)x = 131 €V and I'(¢p — 7%7%)x = 224 €V. Proceeding as
before and adding the corresponding amplitudes with the appropriate phases leads to

I'(¢— 7'ny) = 1575 eV I'(¢ — n°7%) = 269 eV
BR(¢ — 7%7) = 36 x107°  BR(¢ — 7°7%) =61 x 107° (63)

and the photonic spectra shown in Fig.(13) and (14).

The Zweig allowed kaon-loops are seen to dominate both spectra and decay rates
of the above ¢-decays and the predicted branching ratios are large enough to allow for
detection and analyses in future ¢-factories. For completeness we have also computed
I'(¢p — K°K%) ~ I'(¢p — K°K°)g ~ 0.033 eV, with BR(¢ — K°K°y) ~ 7.6 x 1072,
again dominated by kaon-loops (due to the smallness of the VMD contribution discussed
in detail before and in ref. [21]). Notice that our computation does not include scalar
meson contributions, wich are expected to be of the same order of magnitude [27, 28, 29].
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Figure 13: Photonic spectrum in ¢ — 7%y (solid line). Dashed line corresponds to the
contribution of kaon loops, dotdashed line is the VMD contribution, and dotted line is
their interference.

Our results represent therefore a well defined background to these latter, more interesting
contributions.

In summary, the well understood contributions of intermediate vector mesons in V? —
PYP% decays have been discussed. Vector Meson Dominance alone predicts BR(¢ —
77%) =12 x 107% and BR(¢ — 7%y) = 5.4 x 107%, and a characteristic photonic spec-
trum (peaked at higher energies) in the first decay. Similarly, an exceptionally small con-
tribution is predicted (and its physical origin understood) for the branching ratio BR(¢ —
K°K%y), namely, ~ 2.7 x 107'2. Other VMD predictions are BR(w — m%7%) ~ 28 x 107°
and BR(p® — 7%7%) ~ 11 x 107°.

On the other hand, we find that some vector meson decays into two neutral pseu-
doscalars and a photon could receive important contributions from chiral loops if ChPT is
extended in the plausible and well defined way proposed here. Some consequences of this
extension —the relevance of pion-loops in p — 7%7% and the dominance of kaon-loops in
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Figure 14: Photonic spectrum in ¢ — 7%7% with conventions as in Fig.(13).

¢ — 70y, m°m%— have been unambigously predicted thus allowing for future comparison
with data. If the latter turn out to confirm our predictions the domain of applicability of
ChPT and their relevance would be considerably increased.

6 SU(3)-breaking effects in the non-anomalous sector

Our purpose in this section and the one to follow consists in attempting to go one step
beyond the successful description of the low-energy interactions of the pseudoscalar-meson
octet. This is done by refining the predictions of the above schemes through the introduc-
tion of a well-known effect in hadron physics, namely, SU(3)-breaking in the vector-meson
sector, a refinement that forthcoming data will certainly require.

With the “hidden symmetry” lagrangian discussed in sect. 2, one can attempt the
description of the following sets of data (that we take from [13] neglecting error bars):
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e the vector meson mass spectrum

M2, ME., M2 =0.60, 0.80, 1.04 GeV'?; (64)

pyw?
e the weak decay constants

fr =132 MeV, fx =160 MeV; (65)

M3
ef—v (see eq.(38)), extracted
v

e the p —v,w — v and ¢ — v conversion factors, fy, =

from T'(V — ete™)

Jovs Jums Jon = (36, 11, =26 ) x 1077 GeV? (66)

e the vector meson decay constants ¢,rr = V2 ¢, gr*ir = V3 9/V2 goxx = V2 g
obtained from I'(V — PP)

Gore = 6.1, grrxr = 9.5, gyxx = 6.5 (67)

iFrom [30] we take the following experimental values for the electromagnetic (e.m.) charge
radii

<riy > = 0.4440.03 fm?
<rjsy > = 0314005 fm?
— < 7Tho > = 0.054 £0.026 fm’ (68)

and the combined result, free from most systematic errors (see Dally et al. and Amendolia
et al. in ref.[30])
<rly > — <riy >=0.13+£0.04 fm® (69)

The most immediate possibility to account for the above sets of data consists in using
the “hidden symmetry lagrangian” (19) as a self contained effective theory in the good
SU(3) limit. In this case, the SU(3)-breaking effects shown by some of the above data
remain unexplained but two successful relations can be obtained for the non-strange sector.
The lagrangian (19) predicts M? , = 2¢* f* in the 0.50 — 0.60 G'eV'* range when the values
(65) for f are used together with the range of values for g obtained from fy. (66) and
gvpp(67). This agrees with the value coming from the direct measurement of the p,w
mass (64). Moreover, it also agrees with that coming from the pion charge radius, leading
in our approach to ZWP2 =6/ < r2 >= 0.51 GeV?. Alternatively, in a ChPT context,
one can use lagrangian (19) to saturate the finite part of the required counterterms and
then include the chiral-logs from the loop corrections. One obtains [31] ( apart from the
successful relation M? = 2¢°f?, as before ) a vanishing value for the SU(3)-breaking
low-energy counterterm Ls, eq.(6), and Ly = f*/4M?, eq. (5). With this latter value in
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(8) and evaluating the chiral-log correction at the conventional value p = M,, one predicts
<ri>=0.46 fm? in very good agreement with the experimental data (68).

Including SU(3)-breaking effects, one can further improve this situation [31]. Since the
pseudoscalar sector is known to break the symmetry as in eq.(4), i.e., proportionally to
Tr(fRMfz + fLMfL), we incorporate SU(3) symmetry breaking, as already attempted in
ref.[2], via a similar hermitian combination (chflT% + fRefz) in both £4 and Ly terms, i.e.,

La+ ALy = _ngr { (Duér - € — Dt -€h)" [1 4 (€penth + &m&)}} (70)
and
Ly + ALy = ‘Sf Ty { (Dubr - €+ Dutr- €)1+ (€xeveh + &wfz)}} (71)

The matrix eqvy is taken to be eqvy = diag(0,0,cqvy), where cyy are the SU(3) -
breaking real parameters to be determined. Notice that the SU(3)-breaking terms, AL v,
are hermitian, thus differing from those in ref.[2]. Fixing the unitary gauge fz =¢ép=¢=
exp(iP/f), (6 = 0), and expanding in terms of the pseudoscalar fields, one observes that
the kinetic terms in £4 have to be renormalized. This is simply achieved rescaling the
pseudoscalar fields [2]

Vi+ea K= K, /1+2c4/3n—7 (72)

where an 1-n" mixing angle of -19.5° has been used for the n case.

The physical content of this new, SU(3)-broken “hidden symmetry” lagrangian (70)
and (71) can now be easily worked out. jFrom a (Ly + ALy ), we obtain the conventional
SU(3)-splitting for the vector meson masses (a = 2).

M? = M2 =2¢"f Mie =M (1+cv),  M;= M1+ 2cy) (73)
For the V- couplings, the corresponding part of the lagrangian is explicitly given by:
Lvy = —egf*A, Tr[{Q,V"} (1 +2ev)]
eM? w* V2
= — 22 A, |p" + = — (1 + 2ev) o ¢" 74

The new terms in the lagrangian (70,71) also induce an SU(3) symmetry breaking in the
gvpp coupling constants. One obtains

Jorr = \/5 g

1
KK = GJuKK — % 1+ ca
1 + 26V
e o= V2
JoKK V2 97 T ea

B V3 (1 +ey)
IK*Kn = ﬁg ﬁ (75)
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where the c4-dependence comes from the symmetry breaking in the £4 + AL 4 lagrangian
due to the renormalization of the pseudoscalar fields (see eq.(72)). This redefinition of the
pseudoscalar fields also implies symmetry breaking of their decay constants, namely,

fk=vV1+ea fr, fo=y1+2ea/3 Ix (76)

One can now attempt a description of the whole set of data (64-68) in terms of, solely,
the SU(3)-broken lagrangian (70) and (71). This fixes the values of the two new free
parameters to ¢y = 0.30 and ¢4 = 0.45. The fit is quite satisfactory for the four sets of
data quoted in eqs.(64) to (67). For the pseudoscalar charge radii, one gets from eqs.(74,
75, 76)

<ri > = i
T M2
9 <ri > 1 M?,
. = —= = —[24(1+4+2 ’
< Tg+ > (I tcr) 3 + (1 + 2ev) M2
— 0 = ——— —[1—-(1+2 ’ 7
< Tk > (1 I CA) 3 ( + CV) qus ( )
and the above values of ¢y and ¢4 imply
<72y >=0.39 fm?, <71 >=0.26 fm? — < 13 >=0.01 fm? (78)

somewhat below (one or two ¢’s) the experimental data (68).

As previously discussed, a more sophisticated possibility is to use our SU(3)-broken
lagrangian (70,71) in conjunction with ChPT. This can only modify the predictions for fp
and < r% > related to processes without vector-mesons in the external legs. The chiral-logs
in eq.(7), evaluated at the conventional value u = M,, account now for some 35% of the
observed difference between fx and f,, thus requiring a smaller contribution from the Ls
counterterm and, hence, a smaller value for ¢4. Accordingly, the best global fit is now
achieved by the slightly modified values

cy = 0.28 ca = 0.36 (79)

which preserve the goodness of the preceding fit for My, fv.,, gvpp and fp, while improving
the agreement in the < r} > sector. Indeed, on the one hand, the chiral-logs in eq.(8)
enhance the previous predictions for < r2; ., > leading to

<riy >=046fm?, < riy >=0.32fm? (80)

in better agreement with the data (68). On the other hand, making more explicit SU(3)
breaking effects, one also obtains

1 m2. 2 1 (1 + 2¢v)
e Mk T2V 0.043 fm?
<rhe> = feap M e [ "
1 m. 6 2 2 (1 + QCV)
) 9 K ?
- ,, 1 o = 4 = —0.14
<Ti+ > < T+ > 167T2f2 n m?r T Mp2 14 ¢y [MZ - Mz fm

(81)
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Table 3: (all data are in fm?)

exp.[30] ChPT[3] | SU(3)broken | SU(3)broken
HS HS + Ch.loops
<rip > 0.44 + 0.03 0.44 0.39 0.46
< iy > 0.31 + 0.05 0.40 0.26 0.32
— <rio > 0.054 + 0.026 | 0.036 0.01 0.043
<% > <2, > | 013 + 004 | 0.036 0.13 0.14

which considerably improve the one-loop ChPT results [3] quoted in the last line of eq.(8),
namely — < ri, >=<r2; > — <riy >=0.036 fm?, significantly below the datum (69).
The reason for this improvement stems from the fact that saturating the ChPT countert-
erms with our SU(3)-broken lagrangian one goes beyond the fourth order counterterms in
ChPT, such as the SU(3)-symmetric counterterm Lo, and introduces corrections from its
SU(3)-breaking analogues belonging to sixth order counterterm(s) in £®). This is explic-
itly seen in eqs.(81), which reduce to the conventional ChPT result (8) only in the good
SU(3) limit ¢4 = ¢y = 0 and 2\42 = ZW2 We summarize the above in Table 3, where we
indicate the results obtained for the Charged radii in the three models so far dlscussed ie.
chiral perturbation theory (ChPT) and SU(3) broken “Hidden Symmetry” (HS) scheme

with and without chiral loops.

One can easily extend the above results for the e.m. charge radii of pseudoscalars to
include their weak analogue in K3 decays. Sirlin’s theorem [32], valid up to first order in
SU(3)-breaking, and requiring

<Thep > — < Tho >= % <riy > +% < 7Ry > (82)
provides the clue. The data (68) and the experimental value [13] < % >= 0.36 + 0.02 fm?
are fully compatible with Sirlin’s theorem (82) thus reinforcing the significance of our
discussion on charge radii (recall that only one experiment has measured that for the neutral
kaon). On the other hand, the predictions of our first-order SU(3)-breaking lagrangian
verify (as they must) the theorem, thus checking our calculations and providing their
authomatic extension to the K7 case. From the expression

1 + Ccy 6
V 1 ‘I‘ CA MIQ{*
where the contribution from chiral loops is the one to be found in ref. [3], we obtain the

very acceptable value < r%._ >= 0.33 fm?. The above equation can be compared with the
chiral perturbation theory result [3]

<7} >= + chiral loop contributions (83)

< ri_ >= chiral loop contributions + —Lg( ) (84)

f2

509



which gives < % >=0.38 fm?.

7 SU(3)-breaking effects in the anomalous (W-Z) sec-
tor

We shall now extend the above treatment to processes related to the anomaly or Wess-
Zumino lagrangian. Notice that introducing our value ¢4 = 0.36, eq.(79), in eq.(76) for f,,
leads to I'(n — vv) = 0.53 KeV quite in line with the datum [13] I'(n — vv) = 0.46 +0.05
KeV. This encourages to try a full treatment, similar to the one discussed so far, to the
anomalous sector. Our purpose is to calculate the effects of SU(3) symmetry breaking in
radiative decays of vector mesons, we have then to consider the part of the Lagrangian
related to the W7 anomaly and we can expect, in analogy with what was done so far, that
these effects will require the introduction of one more parameter in the discussion, which
will be called ey (see later). It will then be necessary to reconsider all the successfull
numerical tests obtained so far and try to perform a single global fit to both the anomalous
and non-anomalous sector with the three SU(3) breaking parameters c4, cv, cwz. We shall
first proceed by obtaining relations between the relevant couplings in the anomalous sector
and try to determine the parameters, independently of what was done before.

We start with vector—vector—pseudoscalar meson (VVP) interactions as contained in
the SU(3)-symmetric VV P lagrangian introduced in ref. [2]. Inserting as before the
additional, symmetry breaking term (SLGSE + ERefz) in an appropriate way to get an
hermitian Lagrangian, the total broken Lagrangian can now be written as

'CVVP + A'CVVP = G—\/;EWIPUTT [&LVU (1 + 26wz) apVgP] (85)
where ez = diag(0,0,cwyz), cwyz is the breaking parameter in the anomalous sector, and
Gp = 3\/592/47T2fp is the strong VVP coupling constant, where the cs-dependent fp
factor (see eq.(76)) already includes the part of the effects of SU(3) breaking coming from
the renormalization of the pseudoscalars fields in the £,4 lagrangian.

With this conventions, G, = 3v/2¢%/4n? f is the p°wn® coupling constant (see section 4)
which contains no SU(3)-breaking and whose value can be obtained from the experimental
radiative decay width [13] I'(w — 7%) = 0.72 & 0.05 MeV. G, can also be obtained
extracting a value for ¢ = 4.1 £ 0.2 from p — 77 and p,w — eTe™ decay data [13]. Using
fr = 132 MeV, we then obtain I'(w — 7%) = 0.74 MeV in good agreement with the
experimental result. In our normalization, the radiative decay widths for vector mesons
are given by

1 ME — M3
IV = Py) =za gip, ¢ v 7P

gvvip gvi
3 9 Gy = QMV gvpy = Z == (86)

2
V! M‘//

where the relevant coupling constants take into account that these decays proceed via
intermediate vector mesons V’. Thanks to this, one immediately recovers the successful
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relation (10), FEAPT = g = /2 a/7 [, coming from the WZ anomaly and satisfied by
the experimental 7 — v+ decay rate.

The coupling constants gy., are easily obtained from the lagrangian in eq.(74) defined
in the previous section. One then obtains

9oy =3 Guny = MpQ,w/\/ﬁg 9oy = _MpQ,w(l + 2¢v)/3g (87)

which are the SU(3) broken modifications of the usual Vv couplings with all equal masses
(38). It is interesting to see how one can achieve both consistency with the unbroken case
successful relations as well as with the experimental value of the V-masses, if one choose a
value for the parameter ¢y such that

MZ(1 4 2¢cy) = M} (88)

This is achieved by choosing ¢y = 0.36, not far from the range of values for which a good
fit to a large number of other low energy constant was obtained in the previous section.
With this choice, we then have g4, = —M} /3¢ and using eqs.(86), (87) and the broken
VVP Lagrangian (85) to extract the gyyv:p couplings, we obtain the following expressions
for the coupling constants gy p,

G 1
guﬂrow \/5 gpowow = ggwwow

_ V2 Ee e _ V2 /s
Jomy = 3\/§fn(1 V2 )G Gy = \/gfngwrov

2 fx €
= — 142wz + —= | Guro 70y = € Gumo
Gy 3\/§fn ( Wz \/5)9 ~ G0y G0y
2 fr 1 fx

grwgoy, = —z—(1+ cwz)gurosy Irrtkty = 5 (1 = 2w 7)Gunoy (89)
3 Ik 3 K

The parameter € is the one introduced in section 4, eq.(49), to account for the small
contamination of non-strange (strange) quarks in the ¢ (w) meson. Notice that, because
of eq.(88), the parameter ¢y disappears from the above relations, which now contain only
c4 and ¢y z. The value of the anomalous breaking parameter ¢z can be directly obtained
from the ratio between the experimental decay widths [13] K** — K%y and K*f — K%+,
The ratio depends only from ¢z and leads immediately to ¢z = —0.10 £ 0.03, whereas
for ¢4 we can use eq.(76) and the experimental results

I 1994002, 111064008 (90)

ks f’ﬂ'

which lead to the value ¢4 = 0.45 as obtained in the previous section.
At this point, the set of SU(3) breaking parameters cy,ca,cwz can be put to a test
by calculating the V radiative decay widths following eq.(86) with the coupling constants
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Table 4:

Decay I'(keV) I'(keV) I'(keV)
V — Py exrp. cy =044 +£004 |cq4=0.36 cy =0.28
(ref.[13]) | ewz = —0.1 £0.03 ewz = —0.05
w — iy 716 + 43 740 + 70 740
p— Ty 76 + 10 67 + 6 67
© = 1y 1t 2 52 £ 0.6 5.4
p—ny 58 + 11 47 + 6 49
b — ny 56.7 £ 2.8 53 + 8 55
¢ — iy 58 £ 0.6 57 £ 0.7 5.7
K*0 — K% | 117 £ 10 101 + 14 107
K** - K*y| 50 £ 5 44 + 6 47

given by eq.(89). Our results, obtained using ¢ = 4.1 £ 0.2 and ¢ = 0.058 + 0.004, as
well as ¢4 = 0.44 £ 0.04 and ¢z = —0.10 £ 0.03 for the symmetry breaking parameters,
are shown in Table 4. For comparison we also include the corresponding experimental
decay widths as taken from ref.[13] (in the p — mv case we have averaged for neutral and
charged decays). The description of all these data turns out to be quite satisfactory, with
SU(3)-breaking effects playing a central role in some cases. As already noted by Hajuj
[33], a non-vanishing value for ¢4 (thus achieving f. < f, < fk) is essential to reduce
the predicted ¢ — 1y and K*® — K%y decay rates to their experimental values. Our
value ez = —0.10 + 0.03 is also crucial to improve the results of ref.[33] (particularly, for
the K* radiative decays) where such a source of SU(3)-breaking has been neglected. As
mentioned, the other SU(3)-breaking parameter ¢y is fixed here so as to satisfy the relation
M(,’% = (1 + QCV)M/?

To enlarge our discussion, we have also tried to fit the radiative decays with a different
set of parameters. The choice, which is shown in Table 4 was based on the use of the
set ¢y = 0.28 and ¢4 = 0.36, which was considered optimal in the previous section, when
chiral loop contributions were added to the vector meson terms. Notice that because the
use of eq.(88) would introduce an error in eqs.(89) for this value of ¢y, we refrain from
using it in the whole set of those equations, which now come to depends explicitly upon
the parameter cy. On its turn, this means that the whole numerical dependence of those
equations upon the parameters ¢4 and ¢z changes and we obtain a different set of optimal
values, which are in line with the results of refs. [33] and [2], and shown in last column of
Table 4. Again the agreement is quite good and the decision of how to optimize the use of
our lagrangians remains open waiting for improved data and analysis.

In summary, well-known SU(3)-breaking effects have been shown to be easily introduced

in effective lagrangians incorporating vector-mesons. In particular, the VVP interactions,
related to radiative vector-meson decays — for which accurate new data are expected — and
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to the anomalous m, n — v~ decays, are accurately described, improving the results of
previous related work [33].
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