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Abstract

We estimate the experimental accuracies to which the K4 parameters will be
measured at DA®NE. We consider the accuracies obtainable using asymmetries, and
the maximum likelihood method. We find the current determinations of the relevant
parameters will be improved by a factor of five to ten after a year of running at the
anticipated luminosity of DA®NE.

1 Estimating experimental uncertainties: Generali-
ties

In this contribution to the DA®NE physics handbook, we estimate the accuracies achiev-
able at DA®NE in measuring the theoretical parameters describing the decay K+ —
mtr~etv.. We refer the reader to the contribution of Bijnens, Ecker, and Gasser [1] for a
detailed discussion of the theory of this decay, and the definitions of the notation we use.
We should note that we refer to this decay as K.4; we consider only this particular decay
and not the channels with neutral pions or kaons.
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We will consider two of the possible ways of extracting the parameters of a theory from
a set of data. The first one is the classic technique of asymmetries. K.4 decays have a
partial decay rate d°T" of the form

d°T = GH|Vis [*N (57, 50) J5(5r, 51, 0, 01, ¢)dsdsy d(cos 0 )d(cos 0;)d b, (1)

where s,, s;, 0., 0;, and ¢ are the set of kinematic variables necessary to describe K4,
defined in Ref. [1]. The quantity .J5s can be written as an expansion in simple functions
of ¢ and 6; multiplying nine intensities [;, which can in turn be written in terms of the
three remaining kinematical variables, and three form factors, F'; G, and H, which are
also dependent on these three kinematical variables. The explicit dependences may be
found in Ref. [1]. As can be seen in the contribution of Colangelo, Knecht and Stern, [2]
the tangent of the phase shift, tan(dyp — d1), can be neatly extracted from the ratio of the
intensity functions, I;/21y, or, equivalently, f7/2f4, where by the tilde we denote intensities
integrated over s, and s; as well as over #,. All of the [NZ', in turn, can be written as
asymmetrieS' in particular we have

w/2 p5m/2 w/2 3m/2 ™ 5m/2 ™ 3m/2
S = ( / / / / / / + / / )sin 0,40, / Jsdspdsdo,
3r/2 7/ w2 J3n/2 /2 Jn/2

(2)
" T 27
I; = </ —/ )d¢/J5ds7rdsldcos 0.d cos ;. (3)
0 T

The asymmetry presents a transparent, elegant and quick (computationally) way to deter-

and

mine a parameter.

The second, and main, method we consider is that of the maximum likelihood, which
we shall refer to as the MLM. [3] Let & be the vector of phase space variables specifying an
event in an experiment, and f(Z; p) be the probability distribution function predicted by
a theory. p'is the set of parameters in the theory, to be determined experimentally. The
probability of observing an event at Z in the interval d"z is f(Z;p)d"x. The function f is
normalized to 1 over the whole Z interval in which ¥ is physical. In particular, if cuts are
imposed on the phase space, f must be normalized over the reduced phase space; we must
also be certain that the normalization is maintained even when the parameters are varied
from their central value.

The likelihood, or joint probability distribution, of an experiment yielding N events,
each specified by a set of phase space variables 7, is then defined as

£ =T1 /(7). (4)

The best estimate for p'is then simply the value p which maximizes £ (or equivalently, of
W =log L, which is easier to compute). It can be shown that the error matrix, in general
non-diagonal for correlated parameters, is

(pi —P:)(pj — P;) N/[ (afa;ﬁ)af(wﬁ)) ] : (5)

ap]
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Here the [ |7' denote matrix inversion. This integral is, in general, not possible to com-
pute analytically, but is easily evaluated numerically. If we start with a non-normalized
probability function P, then the following equation is useful:

19f of 1 da Jda 1 OPJP

———d"r = ———— /— —d"z, (6)
[ 9p: Op; a* dp; Op; a’P dp; Op;

where a = [Pd"z.

While this method is more complicated and time-consuming computationally, it has
the decided advantage that it yields the absolute best possible determination of any given
set of parameters. In today’s age of fast computers, it is thus the method of choice. It
also allows one to determine any parameters chosen, while the asymmetry is only good
for certain parameters. Finally, the experimental uncertainties in the parameters can be
determined reasonably easily, without need for an actual simulation of the determination
of the parameters themselves using this method.

It is simple to see that the MLM should give a better determination of the parameters
than an asymmetry: while the asymmetry only uses the information of whether an event
is in one or another half of phase space, the MLM benefits from the information of the
precise position of the event. For example, consider a process specified by the probability
distribution

f(;a) = (14 acosh)/2. (7)
The parameter a can be determined by the ratio (N; — N3)/(Ny + N;3) = a/2 where N,

is the number of events with § between 0 and 7/2, and N, is the number of events with

0 between 7/2 and 7. For a small compared to 1, the error on a in this determination is

thus 2/v/ N where N is the total number of events. For the MLM, the integral in eq. 5 is
1 z? 1

li —dx = -
a0 4 2(1 4 ax) *73 (8)

and the error on a in this determination is thus {/3/N. While this improvement may
not seem very impressive, larger improvements may be expected as the parametrization
becomes more complicated. Using the MLLM directly on the parameter that interests us,
we are sure to use all possible information, and to take into account the effect of all possible
cancelling uncertainties. We observe an improvement as above, of about fifteen percent, in
the relative error Al; / I when we go from the asymmetry method to the MLM. However,
the relative error on § = dg — d; when ¢ is determined directly via the MLM is two-thirds
of its error when determined indirectly by the ratio f7/2f4, if these I; are determined using
the MLM, and their errors are then combined as uncorrelated. This appears to be due to
the information lost in integrating the [NZ over S, S;, and 6; before using the MLM.
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2 Estimating experimental uncertainties in K 4

For our first estimates, we consider only the first order terms in a partial wave expansion
of the form factors F', G and H, i.e., we take

F = f,eib G = g H = he®, (9)

This is consistent with the parametrization used by Pais and Treiman, [4] and Rosselet et
al. [5] They consider higher order terms, but the coefficients of these terms are found to be
consistent with zero by the experiment of Rosselet el al., [5] so we do not consider further
terms in our initial estimates.

All the ¢ and 6; dependence in the problem is contained in the expression of J;5 as a
function of these variables and the [;; for this reason these two variables are referred to as
“trivial.” @, appears only in the equations for the /; in terms of F, GG, and H (and the
phase space expansion, should we consider higher order terms). This leaves then f;, g and
h with a possible dependence on s, and s;. The mm phase shifts dy and §; (which at this
order appear only in the combination § = dy — d;) depend only on s,. For the moment we
parametrize f,, g and h by an expression of the form

Y(sx,81) = yo(1 4+ Ag?) (10)

where ¢*> = (s, —4m2)/4m?2, and y stands for f, g, or h. We take the slope X to be the
same for f;, g and h, and no slope in s; at this stage, again consistent with Ref. [5]. For the
dependence of § on s, we will consider average values in a set of 5 bins in s,, and consider
parametrizations of 4 in a later section.

One last important detail remains to be mentioned. The MLM (or asymmetries, for that
matter) says nothing about an overall factor in the intensity, as we require the probability
density to be normalized to one. Thus we divide out fso (fo for short) from the amplitude,
as it is the parameter with the most effect on the integrated intensity. Wherever gy and
ho appear, they are divided by fy, so we replace them by new parameters g) = go/fo and
hy = ho/ fo (A and § are unaffected). We then apply the MLM to the set of parameters 4,

96, hy and A, and obtain the correlation matrix

65 0.8 —0.7 —0.1
1|08 28 —06 —08

(dpdp)ii =5 | o7 06 187 04 | (1
0.1 —0.8 04 38

The diagonal entries of this matrix are variances of the four parameters, where N is the
number of events. The off-diagonal elements represent correlations between the parameters;
in this case they are small, but they can be significant, depending on the parametrization
used. We do not report the full correlation matrix for each parametrization in this paper,
but they are available from our programs if needed for further calculations. They can not
be neglected in general if one wants to calculate functions of the parameters we use, and
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Table 1: Central values and estimated errors for fo, go, ho and A

Jo 9o ho A

Central values 5.59 | 4.77 | —2.68 | 0.08
Errors (N = 30000) | 0.029 | 0.059 | 0.44 | 0.011
Errors (N = 300000) | 0.009 | 0.019 | 0.14 | 0.004
Errors (Rosselet) 0.14 | 0.27 | 0.68 | 0.02

propagate the errors correctly. In the end of this paper, we consider the determination of
some highly correlated parameters.
We then extract the error on fy from the equation

k., = Cfgfpd%, (12)

where P is the unnormalized probability function inputted to the MLM calculation, and
C represents all the constant factors (masses, two’s, 7’s) needed to complete the equation.
The relative error AI'/T' is given by ~ 1/v/N in an experiment like KLOE [6] where the
statistical error will be dominant. The relative error on the integral (a) is given by the
matrix product

1 da da

Combining this error in quadrature with the statistical error on I', we obtain the error we
quote for fo; combining the error on fy in quadrature with the errors on ¢ and hf, we

obtain the errors we quote for gy and hg.

In Table 1 we display the results of this calculation. The central values (our input) are
those found by the previous experiment. [5] We have used the program VEGAS [7] to do the
necessary integrals in five-dimensional phase space. The normalization of the probability
distribution is ensured automatically by the program, and the necessary derivatives also
computed numerically. Estimated errors are shown for N = 30000 events, the statistics
of the previous experiment) and N = 300000 events, the anticipated statistics [1] in one
“year”= 107 seconds of running with £ = 5 x 103? cm? s~1. All errors in this paper, unless
otherwise noted, are statistical errors and can be simply scaled by 1/v/N for different
numbers of events. As a general rule, also, the fractional error on fy is roughly independent
of its central value, while the absolute errors of the other parameters remain constant. The
last line of Table 1 shows the errors on these parameters found by Rosselet et al.. We do
not quote the error on § because an error on § averaged over the whole of phase space is
not very meaningful. The errors shown are independent of the central value of § used.

At this point, before going on to further discuss errors in KLOE, it is necessary to say
some words about why our estimated errors at “Rosselet statistics” are so different from
those that Rosselet quotes. The errors given above are purely statistical, but apply to a
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Table 2: Estimated errors in five bins of 6000 events each.

N (GeV) [ 0.279 — 0.3 | 0.3 —0.316 | 0.316 — 0.334 | 0.334 — 0.357 | 0.357 — 0.494
f 0.037 0.039 0.041 0.043 0.047
g 0.195 0.142 0.124 0.116 0.112
h 1.46 1.04 0.93 0.90 1.00
) 0.062 0.041 0.034 0.029 0.025
0 (Rosselet) 0.13 0.07 0.05 0.04 0.04

“perfect” detector, i.e., one which covers the whole of phase space with unity efficiency
everywhere. This is close to true for KLOE; we will attempt to illustrate this later in
this paper, and will describe a more rigorous demonstration in a future paper. However,
Rosselet’s detector was far from “perfect.” In the error we have quoted for fy, the errors
from I'k,, and the normalization @ contribute about equally; the first is about 0.6% and
the second about 0.9%. Rosselet, however, quotes a relative error Al'g_, /T'k,, of 4.5%,
which completely accounts for their large error on fy. Their fixed target experiment had a
10% overall efficiency for K4, and a highly variable efficiency as well, varying, for example,
smoothly from > 95% in a very small portion of phase space with large s; and small s, to
near zero at large s, and small s;. KLOE is in contrast a hermetic detector, operating at a

et

e~ collider running at the ¢ resonance, producing self-tagging low momentum K* pairs.
It will have a uniform near-100% efficiency over all of phase space, minus a few percent of
phase space that will be cleanly cut and discarded. [8]

The next step in our analysis was to drop the slope parameter A and determine the
errors on the parameters in five bins in s,, chosen so as to have equal numbers of events.
Such an analysis with real data would have the advantages of studying the s, dependence
in a more parametrization independent way. If, however, the s, dependence is correctly
given by eq. 10, this method will not determine A as accurately, so in general both types of
approach are necessary. For our purposes, displaying the error in bins is also important to
illustrate the possible accuracies with which §(s,) may be measured, before we implement
a possible parametrization of 4. In Table 2, we give the estimated errors, taking an average
of yo(1 + Ag?) in each bin as our inputs for y = f, g, and h, with Rosselet values for the
yo and A. The errors on § are essentially independent of the inputs of its central value.
In the last line, for comparison, we display the errors on § as measured by Rosselet et al.
The improvement is not as drastic as that of fy was, but is nonetheless a factor of 1.5 to
2. This should be further multiplied by a factor of v/10 to v/20 per DA®NE running year.
The accuracy on f in bins is even better than we might have expected from the error on
fo multiplied by v/5. This is because the error on X gives most of the contribution to the
error on the normalization a, and thus a significant contribution to the error on fy.

We have examined in some detail the question of what accuracy § can be measured
to. We have first of all determined that while § appears in Iy, I3, Iy, I5, Iz, and g, it
is only the dependence of I; that gives us the above accuracy on 4. This can be seen by

418



replacing 4 in all the I, except I7, by a dummy variable dg, set equal to the central value
of . When we proceed to apply the MLM to the new probability function, we find the
same error on ¢ as before, within a few percent. If, however, we apply the MLM to the
I; as parameters in their own right (we cannot use the I; as parameters, because they are
functions of the phase space variables) and then take the ratio to determine §, we find that
the error on § increases by 50%. (If we use the asymmetry method to determine the I,
the error increases another 15%.) We have not taken care to cancel correlated errors in f4
and Ir, but we have checked that the correlated parts of the errors are small relative to the
uncorrelated parts. So, this 50% increase appears to be mainly due to the information lost
in integrating the I; over three out of five of the phase space variables before applying the
MLM. Equivalently, the better error on § can be attributed to applying a more detailed
parametrization (therefore more information) from the beginning of the calculation.

Nonetheless, it may be interesting to determine the I; and their errors as a parame-
terization independent way to present the data. We have estimated that the combination
Iy — I3/3 can be determined to 0.4% in five bins of 60,000 events each. The other I; can
be determined with absolute errors of one to two times this error.

3 Other experimental uncertainties

So far we have estimated the statistical experimental uncertainties in a perfect detector.
In this section we would like to say a few words about other experimental uncertainties.
Errors (other than those already estimated) in a detector like KLOE, where the efficiency
is essentially 100% outside of a small region of phase space to be removed by cuts, fall
into two categories: those associated with cuts, and those associated with resolution. We
intend to write an event generator, that would allow us to impose a proper cut on true
kinematical variables such as the angles of the particles themselves, or their momenta, but
for the moment are only calculating the MLLM error estimating integral over s;, s,, ), 6,
and ¢. We expect that [8] appropriate cuts will be applied to reject charged particles that
have momenta less than 20 MeV, and those that are within 9° of being parallel to the
beam pipe (because they will not cross enough wires). We expect that both of these cuts
will (from the point of view of our problem) reject events fairly randomly, and thus only
have the effect of reducing the number of events by a couple of percent, having a negligible
effect on our error estimates. Just to check, we have considered cutting s, in the range
4m? to 4m2 + 4% (20MeV)?, and s; in the range 0 to (20 MeV)?. The s, cut has negligible
effect and the s; cut increases our errors by about 10 percent or less. Eventually we would
also like to investigate the effect of inaccurate cuts (for example a cut that is believed to
be at 20 MeV and is really at 15 MeV), which can be an important source of systematic
erTors.

Smearing, also known as convolution with a resolution function, can be imposed on our
variables with more confidence, being a random effect. We assume a gaussian resolution
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function, i.e., we replace the probability function f(z;p) by a new function g(z; p)

. B r1 " (r —z)2 /202 et - e_I/2/20 4 , ”
glwsp) = | fla p) )70\/% x (14)

o0 oo 21902 _ . 1 r1
- /_m/_mf(x—x’;p)e_z /202 o =v?/2 —QWJdeldy:/o/o f(z — 2';p)dadbd

where y is a dummy variable introduced to make the gaussian integrable, a = e~ (@ +y%)/20
and tan(27b) = z'/y. xo and z; are the lower and upper bounds on z; x; — x¢ is assumed
to be large compared to o. Thus we have

(z;p) // <:L' —0c —210ga sin(2mb); | ) dadb, (15)

showing the equivalence of convolution with a gaussian and integrating after a gaussian
smearing of the independent variable. Note that the quantity /—2loga sin(27b), for a
and b uniformly distributed in the interval 0 to 1, is gaussian distributed with variance 1.

KLOE expects a resolution of about half a percent to one percent in angles and mo-
menta. We make the assumption that smearing by one percent (of 27 or 7 in the case of
our angles) in our five variables is a reasonable and generous approximation to smearing in
the actual kinematic variables. We observe negligible effect on our errors; in fact smearing
of as much as 5% of the maximum of our variables has no effect except in s,, where it
yields a ten percent (fractional!) increase in our errors. This is not surprising. If one
knows one’s resolution function, one can compensate for it, and the accuracy is unaffected,
at least if the scale of the smearing is small compared to the scale of the effect (this scale
in our case is of the order of the whole of phase space). If however there are unknown
parts to the resolution function, i.e., systematic errors, these can result in systematic er-
rors in the result, that the MLM error estimating technique above will never find, simply
because we have no way to input an unknown error. These errors could in principle be
estimated by applying the MLM itself to simulated data, but this is beyond the scope of
our investigation. The accurate estimation of systematic errors is at any rate something
that will have to be done by KLOE. Meanwhile, however, we have made one attempt to
estimate the effect of such systematic errors by returning to the determination of § from
the asymmetry method. Here we can easily calculate what 6 we would “measure” from an
imaginary set of data described by a set of input parameters; normally of course, we get
back the value of § we input. If, however, we replace the probability distribution f(z) by a
convoluted distribution g(z), then, by the shift in the recovered §, we can see what would
be the effect of a resolution function that we did not know about, and therefore did not
compensate for.

We have first verified that gaussian smearing still has no significant effect, which means
that it is not neccessary to know the exact form of the resolution function, as long as it
is symmetric and not too broad in the appropriate scale. We have next examined the
effect of an actual shift in each of our phase space variables. The effect is tiny compared
to the statistical errors for shifts in 6, 0., s; and s,. For a 1% shift in ¢, § goes down
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by 0.01, or about half of the statistical error with 300,000 K.4 events. We remark that a
1% systematic shift in ¢ is already so large as to be inconcievable, as ¢ is a difference of
observable angles.

4 Other parametrizations

In this section we would like to present results for some extensions of the minimal parametriza-
tion we have used so far: (1) we include a p-wave term in F', and simultaneously adopt a
notation consistent with the partial wave expansion of Ref. [1]; (2) we consider an s; depen-
dence in f, g, etc.; (3) we consider two parametrizations of § in terms of s-wave scattering
length af to give a first indication on what errors can be expected on this parameter.

F thus becomes

. . P L
F = fse“SO + fpe“Sl cos b, — Inl 2

cos 0,ge, (16)
where o,, P - L and X are defined in Ref. [1]. Our previous parametrization is thus
equivalent to this one for f, = 0. P - L g/X. For the s; dependence, chiral perturbation
theory to one loop predicts [9] approximately the same slope for s, and s;, or, more

precisely,
T 4 2 —
Y(Sx,S1) & Yo (1 + A (w)) . (17)

2
4m2

To be more model-independent, and to have a separate determination of the s, and s
slopes, we choose the parametrization

Y(Sxy81) = Yo (1 + /\q2) (1 — /\23;/4m72r) . (18)
We then find, for 300000 events,
Afso=10.014 Agy=10.038 Ahy=0.14 Af,x=0.014 (19)

AX=0.004 Al =0.011 (20)

to be compared with table 1. We have displayed the errors for the old parameters as
well as the added ones, as some of them have increased slightly. We have taken central
values Ay = 0.08 and f,0 = 3.3 (which maintains the normalization unchanged); if other
parameters are preferred it should be remembered that the absolute errors of f,o and the
slope remain essentially constant.

For § we have first considered the parametrization used [10] by the previous experiment,
to compare our estimated errors with the ones they determined. They use

77_4 2
sin2§ = 2,/ 2 (ag + qu) , (21)

Sn
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where b = b3 — a1, the difference between the s-wave slope and the p-wave scattering length.
There is moreover a possible relation between b and a

b=0.19 — (ag — 0.15)". (22)

For 30000 events (to compare with Ref. [5]) we find Aa§ = 0.029, to be compared with
0.05 in Ref. [5], if we use both eqgs. 21 and 22. If we use only eq. 21 we find AaJ = 0.06 and
Ab = 0.07, to be compared with 0.11 and 0.16 in Ref. [5]. We have used the central values
ay = 0.28 in the first case, and aj = 0.31, b = 0.11 in the second case, as found in Ref. [5].
So, in one year running at DA®NE at a luminosity of 5 x 10*?cm? s~!, we expect a factor
of five improvement in the error on the w7 scattering length, meaning that DA®NE should

g~

be able to determine if the existing discrepancy between measurements and predictions for
al is statistically significant.

We have also considered a more recent parametrization, due to Schenk. [11] He gives

Sp —4m?2 - 4m? — s!
tan 6/ (s,) = [ “=——=¢" (af +b{¢* + c/q") (7/) (23)

Sr Sp—
where ¢* = (s, — 4m?2)/4m?2 and

~ 4m? 3
bl = bl —al —7— N 6. 24
1 =0 —a ST —dm? + (az) 10 (24)

ks

Here I denotes isospin, [ angular momentum, and d;; is the Kronecker delta. We need
to calculate 6y = 6 and §; = d;; s§ and s} (the values at which the phase shifts should
pass through 90°) are the squares of the o and p meson masses. There are far too many
parameters here to be able to determine them by K.4 measurements alone; to begin with,
we fix the higher order coefficients ¢J and ¢ to zero. The remaining set aJ, a1, b3 and b} is
still too large: if we plot & versus s,, we find that while changing a] from its central value
of 0.037 to a new value of 0.087 changes ¢ essentially uniformly by 15 percent, changing
instead b) from its central value of 0.24 to 0.19 has the same effect, to within about 1
percent. Moreover, with appropriate variations in a) and b}, one can quite well mock up a
variation in aj (or b9, naturally). Thus, one can only hope to determine two independent
parameters without recourse to other experiments or other theoretical constraints.

The MLM quantifies these conclusions. Assuming Schenk’s central values (aj = 0.2,
by = 0.005, and above), aj or b} can be determined to 0.03 (for Rosselet statistics of 30,000
events), or b or aj to 0.04, if only one parameter is considered, and the rest held fixed.
If one determines af and b7 simultaneously, holding the rest of the parameters fixed, the
correlation is 0.71 (defined as the covariance of the two parameters divided by the o’s
for each, 1 for a maximally correlated pair of variables), and the errors are 0.04 and 0.05

respectively. If one determines instead aj and b3 — a} simultaneously, the correlation is

—0.9 and the errors are 0.06 and 0.08; for b; and b3 — a; the correlation is 0.94 and the
errors are 0.09 and 0.11. To determine more than two parameters simultaneously is not
possible.
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5 Conclusion

We have considered asymmetries and the maximum likelihood method, and shown how
the latter is more powerful and yields more precise determinations. We have found that
the current measurements of these parameters will be improved by a factor of five to ten
in one effective year (107 seconds) of running with £ =5 x 10%? ¢cm? s™!; in particular we
expect that the mm scattering length aY should be measureable to an accuracy of about

0.01.

g~
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