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1 Introduction

The measurement of the 77 phase shifts near threshold is a key issue of low energy hadronic
physics. First, these phases enter the phenomenological analysis of many different low en-
ergy scattering processes, weak decays and, in particular, CP-violating K-decays. A model
independent determination of w7 phases would considerably improve our understanding
of the corresponding hadronic matrix elements. Furthermore, Chiral Perturbation Theory
(CHPT) [1], the systematic low energy expansion of QCD amplitudes, provides a link be-
tween the low energy mm scattering data and the non perturbative chiral structure of the
QCD ground state: The standard CHPT has a clean prediction for these quantities [2, 3],
and would not be able to explain a large discrepancy with experimental data. On the other
hand, the proposed generalization [4] of the usual low energy expansion, called generalized
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CHPT [5], expects a somewhat stronger I=0 S-wave w7 interaction [6]. Within the latter
scheme, a discrepancy between the standard CHPT and experiment would be interpreted
as a manifestation of unusually low values of the quark-antiquark condensate (gg) and of
the ratio of strange to non strange current quark masses.

It is known since a long time that the main source of model independent experimental
information on low energy mm phases comes from K4 decays. In these decays, a complete
w7 phase-shift analysis could be performed in principle, assuming nothing more than uni-
tarity or the Watson final state interaction theorem. However, such a complete procedure
would require a detailed amplitude analysis of K4 to be performed with respect to all five
kinematical variables. To avoid this task, which is rather problematic in practice, Pais
and Treiman have proposed [7] to measure w7 phases in a much simpler way which, in
addition to the Watson theorem, assumes that higher partial waves beyond the P-wave
are small. A variant of the Pais-Treiman method has already been used (together with
additional assumptions) in a 1977 high statistics experiment by Rosselet et al. [§8], but
the data obtained still show very large error bars. KLOE at DA®NE, should certainly
be able to reduce the errors sizeably [9], and will hopefully allow to decide between the
theoretical alternatives mentioned above. In view of this improvement on the experimental
side, it is worth to check what kind of uncertainties affect the Pais-Treiman method from
the theoretical point of view. We find that these uncertainties are very small, below 1 %

[10].

2 Evaluation of the corrections

We discuss the decay

K*(p) — 7% (p1) 7~ (p2) ¥ (pr) ve(py) (2.1)

and its charge conjugate mode. For a review of the kinematics of this process, for definitions
of the corresponding form factors F', G, H and of their partial wave expansions, we refer
the reader to the contribution by J. Bijnens, G. Colangelo, G. Ecker and J. Gasser in this
Handbook. Here, we follow the same notation and conventions.

The method suggested by Pais and Treiman to measure the mm phase shifts in K 4
decays is very simple and clean. It is based on the observation that the dependence of the
differential decay rate on two of the five variables can be worked out analytically under
very few general assumptions. In case one neglects all the waves higher than S and P, the
form factors 14 and I7 show a very simple dependence on the phases dp and ;. [The same
dependence appears in [5 and [g which, however, contain the anomalous form factor H,
and are kinematically much more suppressed.] Their integral over cos @, is then:

- 1
I, = / dcosO,1, = %Xaﬂ(sﬂsl)lﬂfogl cos(dg — d1)
~1
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1
/ dcos O, I, = gXO'W(SWSZ)l/Qngl sin(dg — 61) (2.3)
~1

where fo(sr, s1) and g1(sr, ;) are the lowest partial waves of the form factors F and G,
respectively. By measuring the ratio j7/2j4 one has then direct access to tan(dy — 7). To
experimentally select I7 and I one could use different methods (fit the distribution in cos 6,
and ¢, measure asymmetries, measure moments ... ). Choosing for example to measure
the appropriate moments, one would have, all in all, to integrate the distribution over four
of the five variables with the weights sin ¢, then cos ¢ cos 6;, and then take the ratio. The
measurement of tan(dy — ;) would be as simple as that.

It is the main purpose of this note to estimate corrections to the Pais-Treiman formula:

I

= tan(dp — 1) . (2.4)

I:\'J
N

coming from the neglected higher partial waves. For that purpose we shall use the form
factors predicted by CHPT at the one loop level.

We start by applying the chiral power counting to the partial waves of the form factors.
In general, for any partial wave we may write an expansion in the following way:

X =

()
\/_F X0+ xP e x X =19, (2.5)
where the upper index stands for powers of energies or meson masses. From published

calculations of F' and G to one-loop [11, 12] we may easily get that only three partial
waves start at order O(FE?), while all the others start at order O(FE?):

fo = fF — {1+ [P+ 0(EY}

_ Mk [oPL ) 0
ho= ﬂ;W{T—I_fl +O0(E )},
g = \/A{; {1+ +0(5M} ;
o= {7 o)} iz
o = Jx {¢ +o(Eh} k=2 (2.6)

V2F,

Using this chiral power counting is very easy to give a ” corrected” Pais-Treiman formula,
which is accurate up to and including order O(E?):

L tan(@— 6 {1+ A® L O(EY)} | (2.7)

4
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in ¢ cos ¢ s
A _ sindo o ) .
(sin(50 —81)  cos(dg — 6y) kzl 02k+192%+1
sin cos 0, o, PL & @)
- A
+ (sin(50 — 51) COS (SO — 51 ) Z 12kY92k
sin 6y cos 0; @)
A 2.
(Sin(5o — &) + cos(8p — 51)> ; aihi (2.8)
where -
Ajp = —/ d cos 0, P(cos ew)Plgl)(COS 0,) (2.9)
mJ-1

and where all the phases of waves higher than the P have been put to zero (this is again
consistent at the order at which we are working). The ratios of sines and cosines start at
order O(E®), and will have also contributions of higher order, that we neglect at this level
of accuracy. We may thus use the leading order CHPT expressions:

1

_ 2 2 4
S = T (25, — M2+ 5eM?2) + O(E*) (2.10)

1 4
0 = %6. FQO'WSW—I—O(E) ) (2.11)

The standard CHPT predicts € = 0, whereas in generalized CHPT ¢ is an arbitrary pa-
rameter, 0 < ¢ < 1, related to the quark mass ratio r = mg/m [4]. Eq. (2.8) then
becomes

S — 4M7% > (2)
Al = (537r + M2 + 156M2> Z Ao2k4192k41

4s,. + 5M3 + 156M3 JﬂPL Z A (2)
By + M2+ 15eM2 )~ X 1T

(637r 3M2+156M2) 0

A . 2.12
Bsy + M2 + 15e M2 > Aunfy! (212)

Before evaluating numerically the correction we would like to stress that the low energy
expansion has been performed only inside the braces of eq. (2.7).

The explicit calculation shows that both in standard and in generalized CHPT A®) is
numerically very small over the whole phase space. It barely reaches 0.5 %. The dependence
on s; is rather weak, and there is no difficulty in repeating the same analysis for the ratio
of I; and 2I, not treated as functions of s; but averaged over it (as suggested by Pais and
Treiman). At this order in the low energy expansion the correction turns out to be just
(A where with the symbol () we mean the following average:

max

1 51
A = Smaz / dSlXZ SIA S 213
(A) [T dsx s i V5iA(s1) (2.13)
1
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Figure 1: (A®), as a function of s,. The plot refers to the standard CHPT case: it is
calculated using eq. (2.12) with € = 0 and the F and G form factors given by [11, 12],
with the central values Ly = 1.35 x 1073, L3 = —3.5 x 1072 of [13]. The same curve can
be obtained using eq. (2.19) with € = 0, and (2.17).

The plot of (A®?) as a function of s, is shown in fig. 1.
Since the corrections are so small, we would like to understand whether this is just a
typical size of higher waves, or an effect depending on some miraculous cancellation.
Since F' and (G are dimensionless functions of s,, s; and v, and depend on cos#, only
through v, their higher waves projections are suppressed by powers of the kinematical

factor:

o X o PrPt
where p, and p; stand for the momenta of individual pions and of the dilepton, respectively,
in the dipion center of mass frame. The bound in (2.14) holds over the whole phase space.

(2)

The dominant contribution to the sum A®?) eq. (2.12), comes from the D-waves g,

and f2(2). The latter contains contributions both from the F' and G form factors:

<0.15 (2.14)

O'WPL (2)
X 92 Y

1P = P 42 (2.15)
where fc(lZ) stands for the D-wave of F' alone. Making explicit the factors (2.14), we may
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define:

2
X\ —(2)
f(2) = ( ) fd 3
d M[i’
@ _— 95X 3
2 MIQ{

—(2 ~ ) .
where fd( ) and 92(2) are expected to be smooth functions of s, and of s;. Since D-waves

are a loop effect, we may guess that JAC;(Q) and g;'? will be of the order M} /(1672 F2?). An
explicit calculation shows that this is indeed the case and, for a possible later use, we may
even write the following simplified expressions for them: Standard CHPT gives

_ M2
AR K_(_0.28) [1+0.12( il —q2)] ,

1672 F2 AM?
Mz s
»? = K _(_0.62)|1+0.08 | —— — ¢ 2.17
where
q* = (sp —4M2)/4M? . (2.18)

~—(2
The above evaluation of fd( ) is parameter free. On the other hand, a substancial part of
the contribution to ZE(Q) comes from the low energy constant L3+4L;, whose determination
brings in some uncertainty [13]: The corresponding error in (1.15) is however smaller than

50%. Finally, A® can be expressed in terms of the smooth functions E(Z) and g

28, — M? + 5eM? .4 ? ~—(2)
Bsx 4+ M2+ 15eM2 ) \ MZ ) 7
Sy 4+ 3M? +5eM? \ ¢2(PL)__

™ ks 7r( 5 )92(2) _I_ . (219)
5Sr + M2+ 15 M2 M

A®) —

DN W oo W

where the ellipsis stands for [ > 2 waves. This expression gives clearly account of the
size of the corrections. The second term is dominant with respect to the first one, and its
typical scale is 2(PL)/(167? F?), which, after averaging over s, is at most 1.6% over the
whole phase space. The remaining coefficients reduce this number by a factor 4. Moreover,

we have calculated the dependence of E(Z) and 3, on m,/m, in generalized CHPT?. We
have found that E(Q) is affected by no more than 10%, whereas the form factor ZE(Z) may
be modified by at most a factor one half, further reducing (A(®).

Higher orders will certainly modify the above numbers, but not the orders of magni-
tude, which are essentially given by the kinematics. In a sense, the limited effect of the

8The generalized CHPT one loop K4 form factors will be given elsewhere [14]
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uncertainties in the values of the low energy constants [; may be considered as an indica-
tion in this direction. Furthermore, since the generalized CHPT differs from the standard
CHPT by a different ordering in the perturbative expansion (that is, at every finite order
it includes terms which in the standard scheme are relegated to higher orders), the weak

dependence of E(Q) and of §;® on ms/m is a further indication that it is very unlikely
that higher orders would overwhelm the strong kinematical suppression of higher waves.

Our conclusion is then that the Pais-Treiman formula (2.4) is free of corrections up to
the percent level, over the whole accessible range of energy. The reason for the smallness
of the corrections comes from the kinematical suppression of higher partial waves, which
can thus safely be neglected.

Experimentally, the measurement of tan(dy — ;) will also be affected by statistical
and/or systematic errors. The former are discussed in [9]. On the other hand, detector-
dependent problems could force experimentalists to adapt the Pais-Treiman method to
their own peculiar situation (see for example Ref. [8]).
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