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Abstract

The present status of CP conserving K — 37 decays is reviewed. Particular
attention is given to the theoretical determinations of the isospin amplitudes and
Dalitz plot distributions in the framework of chiral perturbation theory.

1 Modes, branching ratios and expected fluxes

There are, altogether, five distinct CP conserving K' — 37 modes, which are listed in Tab.
1 together with their branching ratios and the corresponding number of ‘tagged’ events
obtainable at DA®NE, with a luminosity of 5 x 10*2¢m™2s7! in a detector with 47 angular
coverage such as KLOE. If, for some channel, ‘tagging’ is not needed, the corresponding
number of events might be larger. The numbers in Tab. 1 are taken from PDG [1], except
that (i) the branching ratio of K7, — 37° is the most recent determination with the NA31
detector [2], which is three times more precise than previous experiments, and (ii) for the
rare decay Kg — nTn~m°, which has not been directly observed yet, the upper and lower

!Supported by the INFN, by the EC under the HCM contract number CHRX-CT920026 and by the

authors home 1nstitutions
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Integrated Luminosity: 5 x 103%2cm=2s71 x 107s
channel Br 1 yr DAONE
K* — gnEptqT 5.59 + 0.05% 5.0 x 10®
K* — nn070 1.73 £ 0.04% 1.5 x 108
Ky — ata—a° 12.38 £ 0.21% 1.4 x 108
K; — 770 21.6 +0.08% 2.4 x 108
(3.9474502) x 1077
Kg — ntm— a0 (3.4 —6.8) x 10?
(7.8437%53) x 1077

Table 1: Experimental K — w7m branching ratios.

entries are, respectively, the results obtained by the FNAL E621 [3] and the CPLEAR [4]
collaborations, by studying the time-dependence of Kj-Kg interference. The number of
Ks — nt7~ 7% decays expected at DA®NE is the one implied by the isospin analysis of
K* — 37 and K; — 37 experimental data (assuming Al < 3/2), which indicates the
branching ratio (2.4 4 0.7) x 1077 for this channel [5].

2 Kinematics and Dalitz plot

For the transition
K(p) — mi(p1)m2(p2)ms(ps), (1)

one can define the following kinematical invariants:
S = (P - pz)2 = (mK - mr)z - QmKTia (Z = 1727 3) (2)
where T; are the pion kinetic energies in the kaon rest frame: p; + py + p3 = 0 and £y +

FEy + E3 = mg. Since s; + 83 + s3 = 359 with so = (m% + 3m2)/3, there are only two
independent kinematical variables, which can be defined as

(3)

Here, ‘3’ indicates, for a given decay channel, the ‘odd charge” pion. We are neglecting pion
(and kaon) mass differences, except in the @)-values, that significantly depend on them:

3
Q:T1+T2+T3:m1{—zmia (4)
=1

and, with an obvious notation referring to the charges of final pion states:

Qirz = 749 MeV; Qioo=84.1 MeV; Q1) =83.6 MeV; Qoo =92.8 MeV.  (5)
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Figure 1: Dalitz plot for K’ — 3.

In practice, to determine the transition amplitudes from the experimental analysis, in
addition to using correct pion and kaon masses, one must account also for isospin breaking
and QED corrections.

The Dalitz plot for K' — 37 is the equilateral triangle with height @) shown in Fig.
1, where the perpendiculars from internal points (representing the events) to the sides
determine the pion kinetic energies, obviously satisfying the energy conservation Eq. (4).
Conventionally, the vertical perpendicular refers to the ‘odd charge’ pion. The centre of
the diagram, representing the origin of the three axes at 120° along which one plots T}, T
and 75, corresponds to the symmetric point 17 = Ty, = T3 = ()/3. Cartesian coordinates of
a point relative to this origin are easily seen to be proportional to the values of Y and of
X//3, respectively. All points inside the indicated boundary contour (resulting from three-
momentum conservation) are kinematically allowed and represent possible decay events.
The diagram is divided into ‘sextants’, labeled from I to VI, which under permutations of
indistinguishable pions are permuted into each other by reflections in the corresponding
triangle median.

To evaluate phase space integrals, it is often useful to define Dalitz variables by express-
ing kinetic energies in terms of polar coordinates r and ¢, with the origin at the symmetric

Ty = % <1 + rcos <§7T F qﬁ)) )
Ty = %(1 + rcos ).

In Eq. (6): —m < ¢ < mand 0 < r < r(¢), with r(¢) the boundary curve in the Dalitz

point [6]:
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channel | Kt —w atnt7® | Kt - 7t7%Y | K = ntn— 7Y K; — m%7%70

[ (10%s71) 4.52 £+ 0.04 1.40 £ 0.032 2.39+0.04 4.19 +£0.16
g(107") | —2.154 +0.035 5.94 +0.19 6.70 £0.14 —
h(1072) 1.24+0.8 3.5+1.5 7.9+0.7 —0.33 £0.11 +0.07
k(1072) —1.01 +£0.34 — 0.98 £0.18 —

Table 2: Experimental values of widths and Dalitz plot slopes for K — 37 [1].

plot, implicitly defined, for equal pion masses, by the equation
1—(1+a)r?—ar’cos3p =0, (7)

with o = (2Q/mx) (2 — (Q/mx)) %, In the approximation of neglecting o, which actually
is of the order of 0.1, the limiting curve in the plot would become a circle. Moreover, the
variables X and Y defined in (3) are expressed in terms of polar coordinates as

gmh Qr cos ¢, X = %m—QTSIHQDv (8)

so that the plot in terms of Y and X/v/3 is quite similar to Fig. 1 (except from the
maximum radius of the contour of the allowed region, which in this case is obviously

different).

The decay rates are expressed in terms of polar variables as

Y =

(K — 37) = Q //rdrdq)m &), (9)
( me

where the integration is over the full Dalitz plot. Such integration, as well as integrations
over the Dalitz plot with cuts, becomes particularly simple in the limit o = 0 in (7), which
in many cases represents a good approximation. Explicit calculations of a set of relevant
Dalitz plot integrals, also with cuts, can be found in the Appendix of Ref. [7].

Since the maximum allowed pion kinetic energies are rather small (7 0, 2~ 50 MeV),
it is natural to expand Dalitz plot distributions in powers of ¥ and X:

JA(K = 3m)[2 oc 1+ gV + 5 X + hY? + kX7, (10)

where, actually, CP conservation implies j = 0. The experimental data do not require
higher powers than included in (10), and the determinations of I', g, h and k for the
different K — 37 modes are listed in Tab. 2. As one can see, present accuracies are at %
level or better (depending on the different decay channels) for the widths I' and the linear
slopes g, but are somewhat worse (in general much larger than 10%) for the quadratic
slopes h and k.
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3 K — 3m isospin amplitudes

Consistent with Eq. (10), also the K' — 37 transition amplitudes are expanded in power
series of the variables X and Y around the centre of the Dalitz plot X =Y =0, assuming
the absence of nearby poles, up to quadratic terms. Limiting to Al = 1/2 and Al =
3/2 transitions, as also consistent with experimental data, there are three possible three-
pion final states with definite isospin: |(37)=1, symm. >; |(37)1=1, mized symm. > ; and
|(37)7=2 >. Due to the Bose symmetry of the three-pion final state, the transition (of
the Ks) to the [ = 0 state, although possible in principle, is strongly suppressed by a
high angular momentum centrifugal barrier, and we ignore it. Neglecting isospin breaking
effects, the general Bose-symmetric and CP conserving expansion can be written in terms
of five independent weak amplitudes as [8, 9]:

Ayl = AKT = atate™) = 2A4.(s1, 82, 83) + Be(s1, 82, 53) + Ba(s1, 52, 83)
A00+ = A([X — 7T0’7TO’7T+) Ac(Sl,SQ,Sg) — Bc(Sl,SQ,Sg) + BQ(Sl,SQ,Sg)
Ai_o = A(Kp—ntrm 7T0) = A,(s1, 82, 83) — Bn(s1, 82, 83)
AoLoo = A(Kp — 7T07T07T0) = 3A,(s1, 2, 83)
2
Ai_o = A(Ks —»atn 7% = 3 [Ba(ss3, S2,81) — Ba(s1, 83, 82)] . (11)

In Eq. (11), A., are completely symmetric under permutations of the indices 1, 2 and 3.
Conversely, B, , 2 are symmetric only under the exchange 1 ¢+ 2, and under permutations
of indices obey the relation

Bj(s1,82,83) + Bj(s3, 82, 51) + Bj(s1,383,52) = 0. (12)

Finally, the amplitude for Kg — 777~ 7" is antisymmetric under the exchange 1 ¢« 2.

From the isospin point of view, the amplitudes A., and B., contribute to Al =1/2 and
ATl = 3/2 transitions to the [ =1 final state, while By is the pure Al = 3/2 transition to
I = 2. Also, one should notice that there are two kinds of amplitudes to final I = 1, which
reflect the different pion exchange symmetry properties of the corresponding three-pion
states, i.e., the fully symmetric A’s and the B’s with mixed symmetry.

Taking the symmetry properties into account, A’s and B’s can be expanded up to
quadratic terms in X and Y as follows:

Aj=aj+¢ (Y2 + X2/3) (13
By = b)Y +d; (Y? - X*/3).

In the absence of final state strong interactions, the CP conserving amplitudes in (11)
and (13) could be taken as real. As required by unitarity, strong interaction rescattering of
final state pions produce imaginary parts, which can be taken into account by introducing
more phenomenological parameters (in addition to a;, b;, ¢; and d;) in Eq. (13). Due to
the smallness of the available K — 37 phase space, these effects are expected to be small
and, to avoid too many free parameters, in current fits to the data such strong phases have
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been assumed to be negligible (within an uncertainty of 15°). This assumption is consistent
with the available experimental information, and also with theoretical expectations [5, 10].

Nevertheless, as being sensitive to the properties of low-energy meson dynamics, rescat-
tering effects are theoretically quite interesting and could eventually be in the reach of
next-generation, high precision experiments on K — 3m. Consequently, their measure-
ment would provide alternative, and stringent, tests of the relevant theoretical description.
Specifically, of the pion-pion interaction if one neglects irreducible 37 rescattering diagrams
that should be phase space-suppressed (barring anomalously large 37 vertices). Such tests
would involve the really low-energy range, where the framework of chiral perturbation the-
ory (xPT) can be most reliably applied. Another, and very important, point of interest is
the fact that these imaginary parts crucially enter the determination of direct CP-violating
asymmetries in K — 37 decays, and consequently are relevant to searches for this, still
unclear, phenomenon in a channel alternative to K' — 2z [11].

Phenomenologically, momentum dependence of rescattering should be taken into ac-
count for a consistent low-energy expansion of the amplitudes. This is desirable also in
view of the momentum expansions predicted by chiral perturbation theory, which will be
described in the sequel. For the parametrization of such effects, there is the complica-
tion that the two final I = 1 three-pion states are coupled by (isospin conserving) strong
interactions, so that they can mix. This situation can be dealt with, rather generally,
by a coupled-channel formalism that introduces, in the [ = 1 sector, a two-dimensional,
momentum-dependent rescattering matrix £ common to both charged and neutral kaon
decays, connecting symmetric and nonsymmetric amplitudes [12]. Since R = [ corresponds
to the limiting case of no final state interaction, R can be expanded as R = [ + ¢R, where
the elements of the (real) matrix R are functions of X and Y. Such functions can be
expanded around the centre of the Dalitz plot, similar to Eq. (13), and are expected to
be small over the whole allowed kinematical region. Moreover, in general the R-matrix
elements are not all independent, but are related by unitarity constraints following from
probability conservation.

Contrary to the I = 1 case, for the decays to the I = 2 three-pion state, which is unique
and cannot mix with the others via strong interactions, there is just one amplitude with
definite symmetry properties, and final state interactions are simply taken into account by
a phase function that is unique for all decay modes, similar to the case of K — 27 where
I =0 and [ = 2 final states do not mix.

For simplicity, one can limit to include rescattering effects only in the constant and
linear slopes in Eq. (13), as it seems justified by the smallness of experimental quadratic
slopes. In that case, using Eq. (13), the expansion of Eq. (11) around X =Y = 0 takes
on the form:?

Apro = 2a.(1+iag +1iagY/2) + [be (1 +i80) + b2 (1 +1id0)] YV

1+ 2, (Y2 4 X2/3) + (d. + dy) (Y2 _ X2/3)
a. (1 + iozo — ZO(gY) — [bc (1 + 2/80) — bg (1 + Z(So)] Y

AOO—}—

2A general presentation, and a discussion in the framework of YPT, can be found in Ref. [12].
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+ e (Y24 X2/3) = (do — dy) (YV* — X?/3)
a, (1 +iag —iagY)—b, (1 +1i6)Y
+ e (Y24 X?/3) —d, (Y2 - X?/3)
Ay = 3a,(1+i00) + 3¢, (V2 + X?/3)
ATy = —(2/3)by (1 +i80) X + (4/3)d2 X Y. (14)

L
AL,

The amplitudes for the decays of the K~ are determined by taking complex-conjugates
of the coefficients a,...,d with unchanged strong interaction imaginary parts. CP con-
servation implies that these coefficients should be real and consequently, in this case, the
amplitudes for K+ and K~ decays must be the same. In the presence of CP violation, the
coefficients a, ..., d are in general complex, so that amplitudes for charge-conjugate pro-
cesses can be different. Furthermore, in this situation the Ks — 77~ 7% amplitude could
get additional, imaginary constant and linear (in Y') terms, while an imaginary amplitude
linear in X could appear in K, — ntn~7° [13].

A representation alternative to (14), which has been adopted in fits to experimental
data [5, 10], is the expansion in terms of amplitudes with definite isospin selection rules.
With A7 < 3/2, neglecting strong interaction imaginary parts, such an expansion can be
written as

App- = (2o —os) + {(51 — Bs/2) + \/5’73} Y
+2(G+ ) (V24 X2/3) — (6 + & — &) (VP - X2/3)
Ao = —(on—as/2) + {(/31 —B3/2) — \/g’YS} Y
— (GHG) (Y +X3) — (Gt &+ &) (Y- X2/3)
ALy = (a4 o3) = (Bi+85)Y
+(G—2G) (Y2 4+ XP/3) + (6 —26) (V2 — X?/3)
—3 (o1 +0s) =3 (G — 2G) (V2 + X?/3)
Ale = (2/V3)nX - (4/3)&XY. (15)

In Eq. (15), the subscripts 1 and 3 refer to Al = 1/2 and Al = 3/2, respectively. The
relation between the amplitudes in Eq. (14) and those in Eq. (15) is easily found to be:?

c:D>
|
S)

I

a.= —aj + az/2 a, = o) + as

be = =01 + B3/2 b, = B1+ B3

Cc = _Cl - §3 Cp = C1 - 2C3 (16)
de =&+ &3 dn = =& + 283

by = —\/§’73 dy = —fé

In conclusion, the complex of K’ — 37 modes is described by the set of ten independent
(real) isospin amplitudes in Eq. (15), which are collected in Tab. 3 for convenience, or

3Notice that different isospin phase conventions are adopted in Refs. [5] and [12].
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alternatively by the ten amplitudes in Eq. (14). There are, in addition, the imaginary parts
from final state strong interactions, parametrized in leading order by four real constants,
as in Eq. (14).

constant | linear | quadratic
Al = 1/2 aq B £, G
Al = 3/2 as /837 73 537 fév §3

Table 3: Independent isospin amplitudes for K — mww

4 Experimental determinations

Since both kaons and pions are spinless, all observables (and therefore the information on
the decay dynamics) are embodied in the Dalitz plot distributions (10), i.e., in the decay
rates and in the linear and quadratic slopes for the different channels. From these, one has
to separately determine the coefficients of the amplitude expansions in Eq. (15), in order
to compare them with theoretical predictions. In principle, in the CP conserving case,
there are fifteen experimentally measurable numbers from Dalitz plots (four for each of the
modes K+ — atrtr=, Kt — 777%% and K, — 7ntn~ 7% two for the mode K7 — 37°
and one for Ks — 717~ 7%), from which to determine the isospin amplitudes. In particular,
once measured, the branching ratio Br(Ks — wt7~ %) directly determines the absolute
value of the AT = 3/2 amplitude v5 (up to &,).

In Tabs. 4 and 5 (located for convenience in Sec. 5.1) we report the results of the
joint fit of K' — 27 and K — 37 isospin amplitudes to the available experimental data,
performed in Ref. [5],* updating the analysis of Ref. [10].

Tab. 4 indicates the present level of accuracy on the amplitudes in Eq. (15): in general,
Al = 3/2 amplitudes are not so well-determined, compared to the dominant Al = 1/2
ones. Specifically, for stringent tests of the chiral Lagrangian description of K’ — 37, the
linear coefficient (35 is not determined as accurately as one would wish, and the knowledge
of quadratic coefficients, representing genuine predictions from the next-to-leading order
in the chiral expansion, is generally poor.

5 Theoretical predictions

Due to the low kinetic energy available to final state pions, K" — 37 seems the ideal process
where to apply the notion of the Goldstone-boson nature of pseudoscalar mesons, and the
related low-energy expansions of transition amplitudes, that are obtained from the chiral
Lagrangian realization of the nonleptonic AS = 1 weak interaction. Such a Lagrangian,

4Actually, the fit of [5] is prior to the recent determinations of the quadratic slope h for Kj — 37°
[14], which is uncorrelated from constant and linear slopes, and of (K — 37%) [2]. These experimental
results could significantly improve the fit.
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Al =1/2

aq B G &
91.714+0.32 | —25.68 +0.27 | —0.47 4+ 0.15 | —1.51 +£0.30
Al =3/2
a3 B3 V3 (3 {3 {3
7364047 | —2.43+0.41 | 2.26+0.23 | —0.21 +£0.08 | —0.124+0.17 | —0.21 4+ 0.51

Table 4: Determinations of K — 37 isospin amplitudes, in units 107%.

written in terms of Goldstone boson-pseudoscalar meson fields 7, K and 7, has the same
transformation properties under unitary symmetry as the four-quark Lagrangian originally
derived in the framework of the short distance operator product expansion, and automat-
ically accounts for general properties of non-perturbative strong interactions governed by
long-distance QCD. By the feature of the Goldstone boson interaction, of vanishing in
the zero four-momentum limit, this formalism leads to amplitudes expansions in powers
of pseudoscalar meson masses and energies which, in particular, naturally incorporate the
current algebra soft-pion theorems. These theorems are rigorously valid in the chiral sym-
metry limit and, in the specific case of kaon nonleptonic decays, relate K’ — 37 to K’ — 27
amplitudes making use solely of the chiral SU(3);, x SU(3)g transformation properties (as
a right-handed singlet) of the nonleptonic weak hamiltonian [15]. They can be written
symbolically, with F, = 93.3 MeV the pion decay constant, as:

= () ()13 ),

lim (7 (p1)m(p2)7(ps)| L3 | K) F.

p3—0

(17)

where p.c. and p.v. mean parity-conserving and parity-violating components, and similar
relations hold for the other pions becoming soft and for the different decay channels.
Actually, soft-pion points are somewhat far from the kinematically allowed region of the
Dalitz plot, where mesons have small, but finite, four-momenta. Thus, in addition to
providing a general, and convenient, computational tool to evaluate the relevant hadronic
matrix elements of Ly directly in terms of Feynman diagrams with pion, kaon and eta
fields, one advantage of the effective chiral Lagrangian approach is that it gives a consistent,
unambiguous prescription to extrapolate soft-pion theorem predictions into the physical
region.

Actually, such a Lagrangian depends on a number of phenomenological coupling con-
stants (increasing with the desired order in the momentum expansion), whose values cannot
be predicted theoretically from the symmetry but, instead, must be inferred from experi-
ment. To account for both the leading O(p*) and the next-to-leading O(p*) corrections in
the xYPT expansion, a considerable number of such constants are needed. Fortunately, this
number is limited enough for the scheme to remain predictive, and to be severely tested
by accurate experimental data on K — 27 and K — 37. In the next section, we briefly
review the application of YPT to K — 3.
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5.1 Chiral perturbation theory

For convenience, we recall the Standard Model non-leptonic weak effective Lagrangian in
terms of quark fields [16]:

Gr
\/_

where C;(p) are numerical coefficients depending on heavy masses and calculable in per-
turbative QCD, and Q;(u) are local four-quark operators with AS =1 and Al =1/2, 3/2
[17]. Both C; and @; depend on a renormalization scale p, but their product must be
p-independent to ensure independence of physical amplitudes from this scale.

To make theoretical predictions, and thus compare the quark-level transition Lagrangian
(18) with experimental data, one must estimate matrix elements of the four-quark oper-
ators between initial |K) and final (27| and (37| hadronic states. These matrix elements
crucially depend on the nonperturbative structure of low-energy QCD, so that calcula-
tions relying on different hadronization schemes should be model dependent. The chiral
Lagrangian technique provides a general framework for such matrix elements, and is essen-
tially based on the transformation properties of the operators in Eq. (18) under separate
SU(3) rotations of left-handed and of right-handed fields, i.e. the chiral SU(3)z, x SU(3)r

symmetry transformations (gr,, gr).

,Cw(AS = 1) udV* EC —|— h. c., (18)

At the scale p < m., the basis of operators can be chosen as (qr,r = 5 (1 — 75) ¢):

Q1 = Aspydrugytun, Qg =4spyupury’dy, Qs =4s5pydr Y q@py'ar,

q=u,d,s
Qs = 4spv.dr Y. arY'qr, Qs = —8 > s1qrrdr,
g=u,d,s g=u,d,s
Qr = 65,7.dr Y. edry'qr, Qs =—12 Y. e,51qrqdr, (19)
q=u,d,s g=u,d,s

where color indices are implicitly contracted within each quark-bilinear factor. The ‘V — A’
operators (J; and Q)2 have selection rule Al = 1/2, 3/2 and behave as (81, 1r) + (271, 1r);
the penguin operators @3, @5 and Q¢ are purely Al = 1/2, and transform as (8, 1gr); the
electroweak penguin operators ()7 and Qs transform as (8,8g), and have both Al =1/2
and Al = 3/2 components. Electropenguin operators are suppressed by a small coefficient
of order aggp, so they must be considered only in the CP violating case [11].

Accordingly, limiting to the operators Q1, ..., Qs, the lowest order, O(p?*), weak chiral
Lagrangian is the sum of a (81, 1g) operator plus a (277, 1r) one, whose forms are uniquely
dictated by chiral symmetry [18]:

L | snys@rny = 2 Tras Ly L + csti(TrQ L, ) (TrQFLY). (20)

Here, L, = iU'9,U with U = exp (iv2®/Fy), and ® is the pseudoscalar meson SU(3)
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matrix, so that U transforms under (¢, gr) as U — gLUgL [19]:

o

Y
— + —rt —Kt
V2 V6 .
1 T n
d=— NI = - ——+-—= -K° 21
\/§ =1,---,8 \/§ \/6 ( )
. - 2
K —K ——

The matrices Q; and the coefficients tf,lc that appear in (20) can be found, e.g., in [20, 5].
The octet and 27-plet coupling constants ¢; and ¢3, the only two parameters needed at
order p* in yPT, cannot be estimated theoretically, but must be phenomenologically fitted
from experimental data.

K — 27 and K — 37 amplitudes at order p* are obtained from the ‘tree’ diagrams in
Fig. 2, where the needed weak vertices are obtained by expanding the effective Lagrangian
(20) to the right number of pseudoscalar meson fields. As shown in Fig. 2, in the case of
K — 3m also ‘pole diagrams’ appear, which involve the four-meson strong interaction. At
the order p?, this is represented by the chiral Lagrangian [21, 19]

L@ = F%Tr (0.0 U+ 2BM (U + 1)), (22)

where M = diag(m,, mq, ms) is the quark mass matrix, explicitly breaking chiral symme-
try, and B is a constant such that, to leading order, 2BM = diag(m?2, m2,2m3. — m?
the SU(2) limit.

Defining K — 27 amplitudes as Ag = 1a;/3exp (1dp) and A; = —iagjexp (id;), with
the usual isospin decomposition

) in

AKt = ntn%) = (\/g/Z)Ag
A(K® — 7°7%) = \/1/340 + \/2/3A, (23)
A(K® = m¥a™) = —\[1/3A0 +1/1/6 A2,

the diagrams in Fig. 2 directly give for the Al = 1/2 amplitudes:

1 2
ay/2 = —FZFK\/E <m?X — mfr) <02 — 563)

1 mk 2
N T 3 <02 - 563) (24)

o () (- 20)
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Figure 2: Lowest order diagrams (O(p*)) for K — 27 and K — 3m: the weak vertex is
represented by e, the strong one by o.

and for the AT = 3/2 amplitudes:

1 20
512 = g, (e~ m2) (_ V3 CB)
1, /20
:

= —=m
29
F;:’F]{

)
. —
(

a3

—15
3mi — Qmi) (2\/503).

Although, in principle, at this level F, = Fx = Fy, SU(3) breaking is phenomenologically
included by using Fg = 1.22 F;.

As anticipated, Eqs. (24) and (25) manifestly express the current algebra soft-pion
theorems relating K' — 37 amplitudes with vanishing pion four-momentum to K — 27
ones, and also include finite pion mass corrections extrapolating those relations back into
the physical region.

Indeed, the values of the coupling constants ¢z and ¢3 can be obtained by fitting (24)
and (25) to the experimental K — 27 amplitudes. The results, displaying the AT = 1/2
enhancement in K' — 27, are shown in the third column of Tab. 5.

The so determined constants ¢; and ¢3 can be used in Eqs. (24) and (25) to predict
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exp. fit xPT O(p?) xPT O(p*) [5] Units

ajj; | 0.4699 &+ 0.0012 | 0.4698 (input) | 0.4698 (input) KeV
a3 | 0.0211 % 0.0001 | 0.0211 (imput) | 0.0211 (input) | KeV
by — &g —61.5+4 0 -29 degrees

ey ) F? 0.95 0.662 £ 0.005 1077

c3) F? —0.009 —0.0083 £+ 0.0002 107

Table 5: Isospin amplitudes and relative phase for K — 27.

Units 1078
O(p?) O(p") 1/N. O(p")
Eqgs. (24)-(25) | Ref. [5] Ref. [25] Ref. [35] | Ref. [36]
oy 74.0 91.8 input 88.8 92
B —16.5 —25.6 input —26.5 —26
G — —0.6 —0.47 £ 0.18 —0.22 —0.2
& — —1.5 —1.58 £0.19 —0.88 —0.8
Qs —4.1 —7.6 input —5.6 -5.9
B3 -1.0 —-2.5 input -1.9 —-1.4
3 1.8 2.5 input 2.5 2.4
(3 — —0.02 | —0.011 £.006 | —0.007 —0.01
&3 — —0.05 | 0.092 £ 0.030 0.018 0.0
& — —0.08 | —0.033 £0.077 | —0.081 —

Table 6: Theoretical predictions for K' — 37 isospin amplitudes.

the K — 3 isospin amplitudes at O(p?).> These predictions are reported in the second
column of Tab. 6. Comparing with the numbers in Tab. 4, one can see that the order p? is
in reasonable agreement with the data, as it underestimates the experimental amplitudes,
on the average, by about 20-35%. This is not surprising, as the expected size of next-to-
leading corrections, of order p*, is m%. /(47 F;)* ~ 0.2, where 47 F, ~ 1 GeV is the scale
of chiral symmetry breaking. We should also remark, from Tab. 4, that the amplitude
a1 is so well measured that it really represents a challenge to the theory. On the other
hand, the discrepancy of the theoretical prediction with the central value of the Al = 3/2
slope (33 seems rather sizable. Consequently, it would be desirable to significantly improve
the experimental accuracy on this parameter. We remark, also, that both the final state
strong interaction phases and the quadratic slopes vanish at this order in xPT, reflecting,
respectively, the ‘tree’ diagram approximation of Fig. 2 where there are no absorptive
parts, and the use of the two-derivative Lagrangian (20) which cannot provide enough
powers in momenta.

The deviations of the O(p?) predictions from the experimental values of constant and

5Tf, conversely, one attempted to infer ¢ and cs from K — 37 data, the determination of ¢y would
remain consistent with that in Tab. 5, whereas that of ¢3 would change considerably [22].
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linear amplitudes, and the evidence for non-vanishing quadratic slopes, call for the in-
troduction of the next-to-leading chiral corrections. The general form of the AS =1
non-leptonic Lagrangian at order p*, ,C(V;l,), was worked out in Ref. [20]. The number of
new independent local operators, allowed by the symmetry to contribute to E(V?,), whose
coupling constants are not determined theoretically, is in general unmanageably large. In
this set, there are four-derivative operators, which contribute X? and Y? terms to K — 37

matrix elements and thus determine the quadratic slopes in Eqs. (14) or (15), such as the
Al = 1/2 operators of the form [23]:

O\ = (\sL,L"L, L"), O = (AeL,L,L"L"), (26)

and others. There are, also, a multitude of operators with higher derivatives of meson
fields, ete..

Four-derivative operators obviously vanish at soft-pion points and thus cannot con-
tribute to K' — 2m, so that no information on them can be derived from the K' — 2«
sector, as it is the case of ¢; and c3 at the leading order p?. On the other hand, apart from
(small) corrections of order m?/m?-, higher order operators contributing to both K — 3x
and K — 27, but not contributing X? and Y? terms, preserve the leading order relations
between K — 3m and K — 2m. Consequently, they can be absorbed in the definition of the
physical K — 27 amplitudes or, equivalently, in a redefinition of the coupling constants ¢,
and cs.

It turns out that for K — 27 and K — 37 decays the situation considerably simpli-
fies, because only seven linear combinations of the possible O(p*) local operators in £(v?/)
are found to be active in these processes [5]. The discussion of the analogous, order p?,
weak Lagrangian for non-leptonic radiative kaon decays, and a presentation of the relevant
phenomenology, can be found in Ref. [24].

Specifically, denoting by A; any of the K’ — 27 and K — 37 amplitudes up to order
p?, we have

A= AP 4 A, (27)

where AEQ) is the leading order, and AZ(»4) is the next-to-leading correction. As pictorially
represented in Fig. 3, the latter can be decomposed as:

Az(4) = Ai,loop(:u) + A;l,}ct(/’b) + Ai,poles- (28)

In Eq. (28), A; 1,0y represents the contribution from chiral loop diagrams,® and AY ., ac-
counts for the tree diagram O(p*) weak counterterm contributions in Fig. 3, connected to
the above mentioned higher dimension operators determining ,C(V?/), with a priori unknown
low-energy coupling constants to be determined phenomenologically from data on K — 27
and K — 3. In addition, there appear a number of O(p*) strong interaction countert-

erms, which determine £f§1) needed in the pole diagrams of Fig. 3, but these constants are

5“Tadpole-like’ diagrams, with loops correcting the individual Eg,) and [:(52) vertices of Fig. 2, are not
depicted in Fig. 3.
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Figure 3: Examples of O(p*) contributions to K — 27 and K — 37: e and o have the
same meaning as in Fig. 2.

253



already available from the analyses of the strong interaction sector [21, 19], and therefore
do not introduce anything unknown.

Counterterms regulate loop divergences, and in general both contributions separately
depend (logarithmically) on a renormalization scale y, such that their sum in (28) is scale-
independent.

As for the structure of the seven weak counterterm contributions to the individual
amplitudes, denoting their coupling constants by K7, ..., K7, neglecting the tiny Al =1/2
component of ¢; and (small) corrections of order m2/m%, and adding the lowest order Eqs.
(24) and (25), one finds for the Al = 1/2 K — 27 amplitude the complete expression
[5, 25]:

a _ \/6 m%{ _g 2 [/ 29
1/2,tree — FQF]{ C2 9m]{ 1), ( )
and, absorbing the counterterm coupling K in ¢; — ¢} = ¢y — 2m3 K, for the AT = 1/2
K — 37 amplitudes:
w 1 m% 2 R w w 1 m?
al,tree = gFE}I;]{ <cl2 + §m§{[&2), gl,tree = Cl,ct = _EFEF]@ [X27 (30)
4

w 1 - w w [ 7
/81,7,‘7"66 = _FSFI( (c/Q + 57’)@?{[&3) ’ gl,tree = gl,ct = _EFSF]{ [XS-

Likewise, in the Al = 3/2 sector:

20 m3%

L,
ree — /= 5 "[’ ) ) 31
as/2,t N <‘33 + 3mh {4 (31)
and, absorbing the counterterm K, in the definition of ¢3 — ¢§ = ¢3 + %m%[ﬁ:
w 20 m3 2 . w w 4 mfr
25 m? , . My 5 m4
w - - s K w e Sl p— s 7 32
/83,1‘7‘66 3 FSF]{ (CS —I_ 30 Ll 53,7,‘7"66 53,@‘ 24 F FI& ( )
" 153 m? 1 o w15 miE
73,1‘7“66 = - 2 F3FB (C/ + 18mlx ]X7) 53,tree = 83,¢et — gF;’F]X [X77

where K = 4K + 3K;. Eqs. (30)-(32) imply the following consistency conditions among
the O(p*) weak counterterm contributions:

cl,ct = 4 4 al,ctv fl,ct =5 61 cts (33)
mpg
§3,ct 8 }1 A3 et fa,ct = - 53 ety é,ct = - 9 m% 73 ct (34)
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The strategy followed by the authors of Ref. [5], to phenomenologically determine the
weak coupling constants K, is to fit to the experimental data in Tabs. 4 and 5 the full
theoretical structure of K — 27 and K — 37 isospin amplitudes up to order p*, with the
calculated one-loop diagrams and the determinations of strong counterterms of Ref. [21]
as inputs.

The resulting numerical values of the weak counterterm constants, and of the calculated
one-loop contributions, are presented in Ref. [5] for the renormalization scale y = m,,
which minimizes loop diagrams with intermediate kaons and etas. It is interesting that the
ATl = 1/2 pattern, dominant at order p?, turns out to be reproduced also at the order p*
level by weak counterterms. The values of loops and counterterms at other renormalization
scales, such as y = m, and g = 1 GeV, can be found in Ref. [26], and show that the separate
scale dependences of these contributions can be quite sizable.

In Tabs. 5 and 6 we report the numerical results of the above mentioned ‘chiral fit’ for
the K — 27 and K — 37 amplitudes, respectively. From Tab. 5 it is important to notice
that the renormalization of the octet and 27-plet coupling constants ¢, and ¢z from the
order p? values, due to the O(p*) corrections, is substantial (about 30%) in the case of the
former, while the latter remains practically unaffected. As for the K' — 37 amplitudes, the
comparison of the numbers in the third column of Tab. 6 with those in Tab. 4 shows that
the theoretical structure including the next-to-leading chiral corrections is able to well-
reproduce the constant and linear amplitudes for all channels, in particular to accomodate
the phenomenological observation that such corrections should be somewhat larger in the
Al = 3/2 sector. Clearly, this is very encouraging and supports the chiral Lagrangian
picture. On the other hand, due to the large experimental uncertainties, the situation
for the quadratic slopes is not as well-defined, specially for the Al = 3/2 ones which are
expected to be suppressed, so that a real clarification should wait for better data.

In fact, in this regard, one could try to go beyond the global fitting procedure, and take
advantage of the consistency relations (33) and (34) among weak counterterm contributions
[25]. Once K; and K, are absorbed in the K" — 27 amplitudes giving the new values of
¢z and ¢z, and the remaining five weak counterterms are fitted from the (best determined)
constant and linear K — 37 amplitudes, the quadratic amplitudes can be parameter-free
predicted. Actually, these would represent the true, genuine predictions of yPT at O(p*),
and accordingly provide the non-trivial test of this framework.

Such predictions for the quadratic amplitudes are reported in the fourth column of
Tab. 6. The comparison with the determinations in Tab. 4 is remarkably successful for
the AT = 1/2 amplitudes. It is not as good for the Al = 3/2 slopes. However, these are
given by the difference of two (almost cancelling) large numbers, so that uncertainties can
have a dramatic effect in this case. To give an idea, we notice that, for K7, — 37°, the
value of the Dalitz plot parameter A predicted by Tab. 6 combined with the expansion
(15) would be & = —(1.2 £ 0.4) x 1072, Direct use of the determinations in Tab. 4 would
give, instead, b = —(1.2 £ 3.6) x 1072, to finally compare with the recent experimental
measurement reported in Tab. 2, h = —(3.34+ 1.1 £0.7) x 107° [14]. Indeed, by combining
their result with the experimental determinations of h for the charged kaon decay modes,
the authors of [14] would find the rather large ratio of Al = 3/2 to Al = 1/2 amplitudes
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(3/(1 ~ 0.340.10. All this shows, on the one side, the crucial role of quadratic amplitudes,
in particular of the Al = 3/2 ones, as tests of the xYPT framework, and, on the other side,
that possible discrepancies should not be considered as conclusive at the present level of
accuracy.

Therefore, further experimental work attempting to improve the determinations of
K — 37 isospin amplitudes, in particular of the X? and the Y? terms, is required for
more significant tests. In this regard, to substantially reduce theoretical uncertainties,
more accurate determinations of the strong counterterms, dominating the pole diagram
contributions in Fig. 3, should be extremely useful and would lead to more precise deter-
minations of the weak counterterms. Also, the order p* is the leading one for quadratic
amplitudes so that, in principle, their predicted values at this level stand on a less firm
footing with respect to constant and linear terms. Therefore, uncertainties of the order
of 20-40% from O(p®) corrections, affecting the predictions for quadratic terms in Tab. 6,
should be kept in mind until some quantitative assessment of such higher order effects is
available. Finally, in the quest of most reliable predictions, considering that substantial
QED effects can possibly affect quadratic amplitudes [27, 28], further theoretical work
should also be directed to improved estimates of isospin breaking corrections.

The order p* loop diagrams in Fig. 3, with on-shell propagators in internal lines,
generate the final state interaction imaginary parts at the leading order. For K' — 27 this
mechanism generates the strong interaction relative phase d; — dg between the two isospin
amplitudes. The determination of this phase obtained by the fit of Ref. [5], reported
in Tab. 5, is in reasonable agreement with the value directly measured in 7m-7 scattering,
92— 8o = —(47+6)° [29], the small discrepancy being due to the neglect of isospin breaking
and electromagnetic corrections in K — 27 amplitudes. From the fourth column of Tab.
5 we see that the leading order somewhat underestimates d; — do. This is not surprising,
since in this channel the relevant 7-7 phase shifts are evaluated at v/s = mp, a rather high
energy from the point of view of xYPT, so that ones expects a large contribution from the
next order in momenta [30].

As emphasized in the previous section, due to the small ()-values, final state interaction
phases in K — 371 are much more directly relevant to the low-energy regime, where leading
order calculations should be most reliable. Explicit expressions of rescattering at leading
order in xPT can be found in [31, 22] and, in the framework of the rescattering matrix,
in [12]. Numerical results for both real and imaginary parts of the loop amplitudes are
also given in Ref. [5]. However, the explicit kinematical dependence is needed in addi-
tion, in order to unambiguously reconstruct the rescattering matrix. In particular, for the
coefficients of the expansion around the centre of the Dalitz plot in Eq. (14), we find:

_ o Am (s0+m?) ~0.13
o= 2nF? S0 S0 M) = T
5 4m2 m2 (sg — 2m?2)
0= — l-—= - ™~ —0.13 35
0= T\ T Ty so—dm2 (35)

Bo = —do ! 1 - dmy (30 — mfr) ~ 0.047 .

- 32m k2 S0

256



An experimental verification of these predictions would also be of relevance to the chiral
test.”

5.2 Factorization and resonance exchange models

In order to complement the theoretical description and make it more predictive, it would be
desirable to estimate the strong and weak counterterm couplings in the framework of QCD.
There presently are some attempts to dynamically derive the values of these couplings from
‘first principles’, by means of suitable effective actions representing moderate-energy QCD,
limited to the operators relevant to the strong interaction Egl). Results seem encouraging
[33], and hopefully will lead to an improved theoretical situation, at least in the strong
interaction sector.

5.2.1 Large N, calculations

A definite prediction for O(p*) coupling constants (both strong and weak ones) can be ob-
tained by using the framework of chiral perturbation theory in the leading 1/N, expansion
(N, — o0) and leading order ay, N, being the number of quark colors, combined with
factorization. Basically, noting that the quark effective nonleptonic Hamiltonian (18) is
of the current x current form, in this approach a ‘bosonization’ prescription is separately
applied to each of the quark currents. For example, the left-handed currents, considered
as Noether currents of the chiral symmetry of the QCD effective action, can be expanded
in O(p) plus O(p?) terms as:

2
1
Ju = qyuan = —T” L,+ — (terms cubicin L,)+ (derivative terms)| , (36)

A
where L, has been defined previously, and A, is a scale characterizing chiral symmetry
breaking (of the order of 1 GeV). An analogous bosonization could be written for right-
handed current operators. Replacing Eq. (36) into the large N. effective nonleptonic quark
Hamiltonian [34], the chiral weak Lagrangian Ly assumes the factorized, current x current
structure [35, 36]
£W(8L71R) = C2 T?”/\GJ#J#, (37)

and an analogous expression can be obtained for the 27-plet component.

The advantage of factorization, which is expected to hold in the large N, approximation,
is that the strong Lagrangian, via the bosonization prescription (36) of the chiral quark
currents, uniquely determines the structure of ,C(V?,). In particular, the unknown weak
counterterms can be related to (known) strong counterterms. The additional advantage
of the large N. approximation is that, in this limit, the strong coupling constants can be

predicted [37], so that the number of free parameters is reduced to a minimum. Numerical

7Actually, if measured, such imaginary parts should be relevant also to n — 37, as they would unitarize
the leading order amplitude for that decay [32], because in this case mass and energy scales are almost the
same as in K — 3.
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results in the 1/N. approach, from Refs. [35] and [36], are reported in Tab. 6. The
comparison with the data seems encouraging, although, concerning the test in the Al = 3/2
sector and the needed accuracies, the same comments hold as previously made with regard
to Egs. (33) and (34).

Although being quite predictive, the leading 1/N, scheme has also some conceptual
difficulties. For example, the results of Tab. 6 are obtained by employing the values of
¢z in Eq. (37), and of the corresponding 27-plet coupling constant ¢z, measured from the
experimental K — 27 data, instead of taking the (rather different) leading 1/N, values of
these coefficients. This opens the question of the quantitative role of next-to-leading 1/N,
corrections and nonfactorizable contributions [38], and of the convergence of the expansion
for N. = 3. Another point is that chiral loops are negligible at the leading order in 1/N.,
hence strong rescattering phases vanish and must be included by hand. In the absence of
meson loops, the counterterm coupling constants become mass-scale independent, so that
the problem of the p-dependence is not well-addressed and, at this order, the comparison
with the results obtained in the full chiral Lagrangian theory is not unambiguous.

5.2.2 Resonance exchange model

Spin-zero and spin-one resonance exchange, with chiral invariant couplings between res-
onances and pseudoscalar mesons, is a phenomenological model which turns out to be
numerically quite successful for the O(p*) strong interaction constants. Also, it improves
the theoretical description, by giving a well-recognizable physical meaning to the coun-
terterms. By construction, this determination of counterterms is p-independent, so that,
in principle, the comparison with the scale-dependent matrix elements of Ef;)
ambiguity. Nevertheless, it was shown that meson exchanges almost entirely saturate those
couplings, as being in good agreement with the values determined phenomenologically from
experimental data in Ref. [21], if the scale u is chosen between, say, m, and 1 GeV [39, 40].
This suggests that a similar meson-exchange dominance could work also for the weak con-
stants needed in ,C(v?,). However, while there exists enough information to experimentally

has some

determine the strong resonance couplings needed for the ,Cgl) counterterms, in the case
of ,C%) the situation is complicated by the additional need of weak resonance couplings
to pseudoscalar mesons, which are not known and can only be calculated within specific
models. Clearly, as a common feature, the role of such models is to relate the weak O(p*)
constants to the strong constants, the only ones which are known.

One possibility is represented by the factorization model previously introduced, which
is based on independent ‘bosonization’ of the weak quark currents similar to Eq. (36),
and leads to a factorized weak Lagrangian of the form in Eq. (37) (but with with fi-
nite N. = 3). In this case, the strong counterterms needed in the next-to-leading terms
are phenomenologically determined either directly from experiment or via the resonance
exchange parametrization. More precisely, in the application of Ref. [26], to phenomeno-
logically account for next-to-leading corrections in 1/, a free coefficient k; is introduced

in the factorized expression of /3%,;1/), so that naive factorization would correspond to ky = 1.
Another proposed model is the so-called ‘weak deformation model’ [41], essentially based
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on (i) the observation that, at leading order p?, the weak nonleptonic Lagrangian can be
directly obtained from the strong one by means of a suitable transformation, called ‘defor-
mation’, and (ii) the requirement that the same ‘deformation’ generates, more in general,
also the higher order weak Lagrangian from the corresponding strong one. This model is
found to be equivalent to the previous one for k; = 1/2 [26]. Clearly, from the outset the
above models for the weak constants do not refer to resonances. The latter are introduced
once the strong couplings are saturated by resonance exchange.

Vector-meson dominance was initially considered in Ref. [42], limiting to the (8, 1R)
component of the weak Hamiltonian. Due to Bose statistics, by their vectorial nature
spin-one mesons can only contribute to the amplitudes 3; and &, because they couple only
to final states antisymmetric under exchange of two pions, so that only the constant K
in (30) would be nonzero, while K; = K, = 0. In addition, in the factorization model
with only vector-meson exchange, also K3 is found to vanish [42]. Therefore, having been
determined phenomenologically to be non-zero within uncertainties [5], weak counterterms
are likely not to be dominated by vector-meson exchange. This might signal a situation
rather different from the strong interaction case.

Even limiting to the (8;,1r) component, the general structure of ,C%) including both
spin-zero and spin-one resonance exchanges introduces too many weak resonance couplings,
and no simplification of the O(p*) chiral structure of ,C%,?,) would be obtained at the general
stage, without assuming a model [26].

In the factorization model, where vectors do not contribute, finite values of the con-
stants K; can result only from spin-zero meson exchange, which would imply K; < 0 and
K> = Ks in Eq. (30). The phenomenologically determined constants do not seem to
agree with these predictions. Furthermore, the size of K 33, predicted by using the scalar
resonance couplings determined in Ref. [39], does not compare well with the phenomeno-
logical determinations, unless the value of k; is chosen very far from unity. Interpreted
pessimistically, this might indicate a trouble for the factorization model. However, such
a comparison might not be completely conclusive yet, considering the uncertainties which
affect the present determinations of the constants K;. These uncertainties are induced
by the experimental ones, and also in large part by the inaccuracies of the strong cou-
plings determinations that are used as input in the ‘chiral fit’. In addition, the strong
scale-dependence of the K; complicates the comparison with models at the present stage.®

6 Measurements at the ¢ factory

According to the previous considerations, accurate measurements of the K — 37 Dalitz
plot for the individual channels would allow a stringent test of the current theoretical
description of the |AS| = 1 nonleptonic weak interaction, in particular of the chiral La-
grangian realization to order p*. The determination of isospin amplitudes requires, in

8Numerical predictions for the K — 37 isospin amplitudes in the framework of factorization and
resonance-exchange have been worked out in Ref. [43], choosing the (rather low) renormalization scale
# = my, for loop contributions. The p-dependence of the results is not discussed in this paper.

259



general, the combination of data on both K* and K° decays. DA®NE is a source of pure
kaon beams, free from background contaminations, which in principle should allow high
statistical accuracy (see Tab. 1), provided that detection efficiencies for decay products
are also high. However, in some cases the present experimental accuracy is mostly limited
by systematic errors that must be decreased accordingly, in order to take advantage of the
quality of kaon beams. Another source of difficulty, to be taken into account in K — 3«
analyses, is the correlations among, e.g., linear and quadratic Dalitz plot slopes, which
relate the accuracies obtainable for these parameters. The case of K, — 37° is a special
one, since the quadratic slope is not contaminated by the linear amplitude which is zero
for this mode (see Eq. (14)), and electromagnetic corrections are not required.

The direct observation of many hundreds of Ks — nt7~ 7 decay events, with prac-
tically no background (see Tab. 1), should represent a significant achievement obtainable
at DA®NE and, as pointed out previously, will allow to carefully test the Al = 3/2
component of the weak Hamiltonian.

Another interesting analysis of K — 37 is suggested by the use of DA®NE as an ‘inter-
ferometer’, where the time dependence of Kj-Kg interference in vacuum can be accurately
studied. Since the initial K K state from ¢ decay is the antisymmetric superposition

i > = [[KL(2)Ks(=2)) — [Ks(2)Kn(=2)], (38)
V2

where Z is the direction of the kaons momenta in the c.m. system, the subsequent K7,
and Ks decays are correlated, and their quantum interferences show up in relative time
distributions and time asymmetries, which are of great interest in order to test CP (and
CPT) violation [44]. In addition, as an alternative to the direct observation, also the CP
conserving Ks — ntn~n°
be measured via the time dependent interference of this decay with Ky — #t7~7° [45, 12].
Specifically, a convenient observable is represented by the transition rate for the initial

amplitude and the final state interaction imaginary parts could

state |7) to decay into the final states f; = 7¥[Fv at time ¢; and fo = 7t7 =70 at time s,
respectively (in the following, ¢; and t; are understood to be the proper times). Defining
the ‘intensity’ of time correlated events [(¢) as:

1) = 5 [ dr |G (0. L) 1) (39)
It
where 7 = t; + {5 and ¢ is the time difference ¢t = ¢{; — ¢5, making use of the exponential
time-dependence of the mass eigenstates Ks and Kz, and integrating over the K° — wlv
phase space, one easily finds, with the notations Ag;, = Ai’foz

'K [
[(7*Fv,atn 7%t <0) = % {JAL2e Tell 4| Ag2eTsll 4 9Tl

X [R(ALAS) cos(Am|t]) + S (ALAS) sin(Am|t])]},  (40)

and

'K [
[(7*Fv,ntn~ 7%t > 0) = w {|ALe™ st 4 |AgPe Tt £ 27
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X [R(ALAY) cos(Amt) — S (ALAS) sin(Amt)]}. (41)
In Egs. (40) and (41), I' = (I'y, + I's)/2, Am = my, — mg, and for the K — 37 amplitudes

the expansions (14) or (15) must be introduced. From these equations one can notice the
possibility to study, in general, also negative ‘times’, which is peculiar of the ¢ factory [46].

An important aspect of the interference in (40) and (41) is that, besides the real parts,
the (expectedly) small final state interaction imaginary parts appear linearly. Instead,
the width depends quadratically on them and thus has less sensitivity to such effects.
Accordingly, by a fit to the full {-dependence of the interference, both the real and the
imaginary parts could be determined (or at least, for the latter ones, a significant upper
bound could be obtained, depending on the available statistics). This would be a desirable
achievement, in view of the discussion in Sec. 3.

Using Eq. (14) or (15), the interference terms are easily seen to drop from the intensities
(40) and (41) integrated over the full K — 37 Dalitz plot, giving the total event rates.
Considering that in the CP conserving case the Dalitz plot distributions are even in X for
all channels, the interference can be extracted by integrating the intensities (40) and (41)
over the K — 37 phase space with odd-X cuts.

For example, with d® the phase space element, one can define the asymmetries

_ [dPsgn(X) [(IFrty, nta~n01)

RE(1) = 42
x(*) [dO [(I(Frnty, mta-7n01) (42)

and

" [d® sgn(XY) [(IFntv, mtn=n% 1)
RXY( ) = + + . — 0. :
[d® [(IFrnty, mtn—m051)
Using Eq. (14) to expand R(ALA%) = RALRAs and S(ALAY) = RAsTS AL — RALSAs up
to second order in the kinematical variables, one finds to a good approximation

4 _p,apby [cos (Amt) — dx sin (Amt)] [d® | X]|
+ _ Tt 2
Rx(t>0)= :F?)e [d® [|Ap|2eTst + |Ag|?eTs1] ’

(43)

(44)

where

5X = Qg — 50. (45)
The amplitude a,, (and b,) can be measured from the rates. Therefore, Eq. (44) shows
that the separate determination of the cos (Amt) and sin (Amt) dependences allows the
measurement of the Kg — «+ 0
phase ag — . In particular, the leading order xPT predictions in Eq. (35) indicate
dx ~ 0.18.

The expression for RE (1 < 0) is directly obtained from (44) by the changes ¢ — ||,
d0x — —dx and I', &> I's but, as a function of time, the denominator would quickly become
large and suppress the interference.

Analogously, RE is given by the more complicated expression:

Rf}%y(t S 0) = iée_rt(bnbg + 2a,dy) [dP |)_(Y| — a,by fflCI) | X |sgn(Y)
3 [d® (| ApfeTat 1 [AgfeTe]
X [cos (Amt) — dxy sin (Amt)], (46)

m-m" amplitude by, as well as of the rescattering relative
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where

Bo — o + Z—n (Oéé-l-Q%Oéo) - Z—n(ao—fso)ﬁ’
5XY = 8 a, d22 a, - > (47)
YR b,
and
_ [d®|Xsen(Y) )

[dd|XY|

If separately determined, the coefficients of the cos (Amt) and sin (Amt) terms could
be useful to constrain the value of the quadratic amplitude d; and the combination of
imaginary parts in (47). In this regard, we can notice that the expectedly small d; has a
large coefficient proportional to a,/b, (see Tab. 4). In fact, to leading order in xyPT, the
numerator in Eq. (47) must be of order p? (the same counting applies to dx), so that for
theoretical consistency dy, which is of order p*, should not be included. In that case, Eq.
(47) simplifies considerably, and using Eq. (35) we would predict dxy ~ 0.30 [12].

In conclusion, studies of the time-dependent interference described above should provide
alternative measurements of the CP conserving K° — 37 amplitude, and eventually could
also give indications on rescattering phases and test the relevant predictions. A quantitative
discussion for DA®NE, taking into account also the background from the CP even (K°K?°)
state due to the radiative decay ¢ — KK, is presented in Ref. [44].
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