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1 Introduction

The pion is the lightest hadron. Its mass is small on the scale of hadron physics, typically
the proton mass. Though pions are obviously strongly interacting, low energy 77 scattering
is weak. This has long been attributed to the pion being a (pseudo-) Goldstone boson
associated with the spontaneous breakdown of chiral symmetry [1]. Not only does this
explain the near masslessness of the pion, but imposes the vanishing at threshold of =7
scattering, with one pion off-shell [2]. Though this Adler zero does appear on-shell in
physical 77 scattering, and so this consequence of chiral dynamics is a feature of the real
world, its position depends on the details of the explicit breaking of chiral symmetry. This
is embodied differently in different models [3, 4]. The fact that experiment still cannot
decide between these has made this a live issue in the 1990’s, despite the many sources of
mm final states.

1Supported by the INFN, by the EC under the HCM contract number CHRX-CT920026 and by the
authors home institutions
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The task of extracting 77 information from experiment is handicapped by the ab-
sence of direct 77 scattering measurements, but favoured by various simplifying features
of the partial wave structure. This means there is unusual scope for exploiting S-matrix
principles [5] in 77 phenomenology. Such methods help to compensate for the gaps and
uncertainties introduced by the rather complicated recipes needed to pass from what is
actually measured to inferred 77 scattering ‘information’.

The layout of this short review is as follows : S-matrix methods are described in
Sect. 2 and how one derives cross-sections for 77 scattering from experiment in Sect. 3.
Conclusions on low energy mm scattering from existing measurements are summarized in
Sect. 4. Future experiments at DA®NE should yield important new information on several
relevant processes, notably K.4 decays and vy — mm. These are mentioned briefly in
Sect. 4 and in greater detail elsewhere in this Handbook.

Like all low energy hadron processes, mm scattering is dominated by resonances : the
I = 1 channel has the p—resonance — a prime example of a quark model state. However the
composition of the I = 0 resonances, the broad fo(e(1300)) and narrower f,(.5*(980)) [6],
is still controversial. Since our focus is the near threshold region of 77 scattering accessible

at DA®NE, we do not consider these here.

2 S-matrix methods

(a) Correlating and interpolating 77 scattering data

The S-matrix constraints of analyticity, crossing and unitarity are exceptionally useful
for mm phenomenology [5, 7, 8]. It is the simplicity of 77 scattering that makes these
constraints so powerful and easy to apply. This can be exploited to compensate for the
indirect way that 77 scattering information is obtained.

We start here with a brief account of S-matrix methods. As usual one defines the
Mandelstam variables s,{ and u for the process 12 — 34 and its crossing variants 13 — 24
and 14 — 23 (Fig. 1). These obey the familiar relation s + ¢ + u = 4m?2. For the s-
channel reaction, s = (p; + p2)? is the CM energy squared, whilst ¢ and u are the squared
momentum transfers respectively from ‘1’ to ‘3’ and from ‘1’ to ‘4’. With 6 the s—channel
CM scattering angle and ¢ the 3-momenta of the pions, then ¢(u) = —2¢*(1 F cos 8).

Before getting into detail, it is worth recalling the general thrust of S-matrix principles
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Figure 1: s,t and u variables for 77 scattering.
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Figure 2: s —t — u plane for 77 scattering; the shaded wedges indicate the physical regions.
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and how they combine to restrict possibilities. Crossing properties are of obvious impor-
tance for mm scattering because this process transforms into itself under crossing (Fig. 1),
albeit with a mixing of isospin (777" scattering becomes 7+7~ scattering for example).
Furthermore, because of the lightness of the pion, the s, and u channel physical regions
are close to each other on the typical hadronic energy scale of O(1 GeV) (Fig. 2). This
underpins the well-known correlations between low energy parameters to be discussed be-
low. With 7¢! denoting the 77 amplitude of isospin I in the channel z, the general formula

that expresses s — u crossing, for example, is

T (s,t,u) = ZCH, T"I (u,t,8) < (1,1'=10,1,2) (1)
where
/3 -1 5/3
= 1-1/3 1/2 5/6 . (2)

/3 1/2 1/6],,

To extrapolate the 7' from one physical region to another one has to take account
of their analyticity properties, in particular, the cut structure implied by unitarity. It
is the interplay of analyticity with unitarity that allows the low energy amplitudes to
be determined. Unitarity singles out the partial wave amplitudes, ¢4(s), defined by the

Legendre expansion

T!(s,t,u) = 327 Z (2J 4 1) t5(s)Ps(cos ) (3)
(J+I)even
where cosf = (¢t — u)/4m2 . Our notation accords with work on Chiral Perturbation

Theory [3] and not that generally used for 77 scattering [7]. In the standard normalization,

the requirement of unitarity in the elastic region (for energies below 47 threshold), is
Imiy=p|th*, (4)

with
p=1/1—4m2/s . (5)

This relation is satisfied by the familiar parameterization in terms of the corresponding
phase shifts, 57,
t1(s) = explidh(s)) sin h(s)/p (6)

Above inelastic threshold, additional contributions appear on the right hand side of Eq. (4).
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Near threshold, it is often convenient to write the partial wave amplitudes as functions
2

of g, the CM 3-momentum, where ¢* = s/4 — m?2. Thus, scattering lengths and slope

parameters are defined for each partial wave by the formula
Re tj = ¢*" (aj +bjq* + O(q")) . (7)

The S and P-wave scattering lengths are of special importance since they feature in pre-
dictions from chiral symmetry and current algebra. These are discussed by Gasser in the
context of standard Chiral Perturbation Theory [9]. Generic features of such predictions
are brought out in the lowest order version, or equivalently in Weinberg’s simple current
algebra scheme [10]. According to this model, the full amplitudes near threshold are of the

form

T° = 2¢c (5 - mi/?)
" = c(t—u) (8)
T = ¢ (mer — 3)

with ¢ = 1/F? &~ 2.20m_% The pion decay constant F, is taken to have the value 92.4
MeV [9]. This yields scattering lengths in pion mass units :

ag = 0.159, aj = —0.045, a; = 0.030, (9)

and predicts zeros for T° and T2 just below threshold, respectively at m?2/2 and 2m?.
These are interpreted as the on-shell manifestations of the Adler zeros [2] predicted by
PCAC at the unphysical point s = ¢ = u = m?. Such predictions are modified by unitarity
corrections, which if the S-wave scattering lengths are small should be relatively unim-
portant. It is because mm amplitudes are small close to threshold that the corresponding
scattering lengths are hard to extract from data and we have to resort to methods based on
dispersion relations. A prime aim of these is to fix low energy parameters and to establish
relations between them.

The only reliable starting point for such an approach is fixed-¢ dispersion relations.
The form of these depends on the amplitude and its asymptotics. General theorems [11]
require the amplitude to be bounded by | s |* for | s |— oo for ¢ < 4m2. Thus at most two

subtractions are needed in writing a dispersion relation, so
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TSI(S,t) = a(t) + sb(t) + —

T

st oo ImT(s ) s? oo Y O8% ImT (ul 1)
[ gl e,
am2 s (s —s) T Jam2 u?(u' — u)

(10)
where a(t) = T%1(0,t),b(t) = 9T*1(0,t)/ds. Typically these subtraction terms are related
to scattering lengths by considering these relations at ¢ = 0 or 4m?2.

By the late sixties, experimental knowledge of w7 phase shifts from 500 MeV to 1
GeV (cf. Sect. 3) together with an understanding of Regge asymptotics was sufficient to
allow amplitudes to be extended to threshold using dispersion relations. One of the first
analyses was by Morgan and Shaw (MS) [12], who used forward dispersion relations, i.e.
Eq. (10) at ¢t = 0, and their derivatives for such a procedure. Though the experimental
P-wave amplitude was known to be controlled by the p—resonance, the I = 0 S-wave was
largely determined by its interference with this P-wave. Consequently, the S-wave has an
UP-DOWN ambiguity to be referred to later and, depending on which solution was input,
different threshold parameters resulted. Nevertheless, MS found that the ensuing [ = 0
and 2 scattering lengths were correlated lying along a band, subsequently to be called
the Morgan and Shaw universal curve. An explanation for why a9 and a2 are strongly
connected is provided by examining the sum rule obtained by writing an unsubtracted
dispersion relation for the amplitude 7/=!(s,¢ = 0) divided by (s —u). This is guaranteed
to converge assuming Regge asymptotics. Evaluating this at the s—channel threshold, one

obtains the sum rule 2

2

0 2 _ My [ ds 150 sl 152
2@0 — 5@0 = 8? Am% m |: QIm T (S,O) —|— 3Im T (S,O) — 5Im T (S,O) :| .
(11)

With experimental inputs, this typically gives [13]
2ay — 5ay = 0.66 & 0.05 (12)

for 0 < @) < 0.3 again in pion mass units. About half the numerical answer comes from the
p—contribution and the other half from a combination of S—waves and high energy inputs

— the energy region determining the S—wave contribution depending on the particular

2if the normalization looks unfamiliar, this is because we here follow chiral practitioners and make our
amplitudes 327 times larger than is common in discussion of such sum rules.
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solution. Eq. (12) provides the correlation between the S—wave scattering lengths for
small values of these. For larger values the low energy contribution to the dispersive
integral becomes more important and the relation ceases to be linear (see Fig. 9 later). A

similar evaluation [14] of the P—wave scattering length yields
ay = 0.040 £ 0.005 . (13)

Fixed-t dispersion relations naturally embody s—u crossing symmetry of 77 amplitudes.
By the clever use of the 3-channel s — ¢ — u crossing properties, Roy [15] was able to write

a system of equations for partial waves. Typically, the Roy equations have the form

Ti(s) )+ Z Z / - K9 (s,s") Im T (s")ds" . (14)

=0J'=
The AL(s) combine a subtraction term enforcing given S-wave scattering lengths, a/, and
driving terms carrying contributions from high energies and higher partial waves [16]. The
K’s are known kernels. When combined with partial wave unitarity these equations neatly

encapsulate the proven S-matrix constraints. The phenomenology resulting from these

requirements will be discussed later in Sect. 4.

(b) Constraints for other processes leading to nm final states

We confine our remarks to the simplest case of a weak or electromagnetic (production)
process leading to a specific 77 final state with no inelasticity; a simple example would
be vy — @m. Unitarity requires that the production amplitudes should have the same
phase as the 77 final state. Analyticity demands that rapid phase variations translate
into variations of the modulus. In particular resonance poles transmit to all coupled chan-
nels. This has clearcut consequences for how we learn about narrow resonances, requiring
that alternative sources of information are essentially interchangeable. Thus, one cannot
have a resonance that couples to a particular production process but not to others or to
elastic scattering; this has sometimes been forgotten. The machinery for implementing
the universality of final state interactions by means of the Omnes function [17] is detailed
in [18], for example. This interconnection allows production information to supplement
elastic data. The method extends to cases where there are several two-body final states as

illustrated by analysis of the fo(980) [19].
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T 0OPE other exchanges

Figure 3: One-pion-exchange (OPE) and other contributions to peripheral dipion produc-
tion.

What the above considerations do not deliver is any model-independent recipe for
extracting slowly varying phase shifts from the modulus variation of production amplitudes.
Schemes such as the isobar model that appear to provide such a linkage do not yield reliable
phase shifts and hopes of extracting w7 phase shifts from various three body processes
like n — 37 are unfounded. For processes like 7m (and K7) scattering, the situation is
rescued by the existence of identifiable one-pion exchange signals to be discussed next. For
the majority of meson-meson scattering processes like mn scattering, this resource is not

available.

3 How we know about the 77 interaction from ex-
periment

Reliable information about the 77 interaction [7, 8, 20] comes mostly from the study of
peripheral di-pion production, principally 7N — 77N and 77 A with emphasis on the
one-pion-exchange (OPE) component of the cross-section (Fig. 3). This is inevitably
accompanied by other types of exchange (w, a1, aq, ho etc, again see Fig. 3) that confuse
the interpretation. Some kind of Amplitude Analysis has therefore to be performed to
distinguish the OPE signal from these other effects ( which for example give quite different
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angular distributions for the same .J ). Since the beam energy has to be sufficiently high
to allow a peripheral component to be identified, yet below the energies at which natural
parity exchange comes to dominate over m exchange, beam momenta in the range 7 to
50 GeV/c are preferred. Ideally, the OPE signal should be extrapolated as a function
of momentum transfer, {5 or {5, to the pion pole. Such extrapolation, advocated by
Goebel and by Chew and Low [21], provides a direct measure of the 77 cross-section as a
function of both 77 mass and scattering angle. However, this extrapolation is statistically
very demanding and most analyses instead fit to the entire small-¢ production cross-section
assuming a simplified structure for the production amplitudes. A classic example is the
method applied by Ochs and Wagner [22] to analyzing the 17 GeV /¢ CERN-Munich ex-
periment on 7~ p — 7t77n [23]. The method makes various factorization and coherence
assumptions concerning the production amplitudes. These assumptions are partly tested
via self-consistency requirements [22] and explored in experiments on polarized targets [24].
However, the main check is comparing the phases that result from applying different meth-
ods to the same data or that are derived from different processes with distinct production
characteristics like 1N — 77N and 7N — 77 A. As we shall see, such comparisons are
mostly satisfactory. Peripheral production provides information for each w7 isospin and, in
principle, for all partial waves with no absolute cut-off in di-meson mass. Inelastic channels
can be investigated too. In practice, most information is for M,, below 2 GeV but above
500 MeV. There tends to be a dearth of data towards 77 threshold.

Other reactions provide additional data for particular sectors of the mm interaction;

te™ — mta~ helps to fix the I = 1 P-wave. A valuable

thus, study of the reaction e
source of extra information on the I = 0 S-wave phase shift, 67, at low M,, comes from
study of K.y decay (see [25]). This reaction has the virtue of providing model-independent
information on &) close to threshold. Strictly, what is measured is the phase difference
50 — 41, but §] is taken to be known from the foregoing dispersive analysis. However,
much of the hard-won information content of any K., experiment goes into determining
weak-interaction form-factors; the precision of the final 3 determinations thus tend to be
somewhat disappointing.

Other would be sources of mm scattering information are either restricted in scope or

highly model-dependent (at least pending substantial development of the theoretical ap-

paratus). In recent years, central production has come to be a useful source of data about
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various meson systems [26], including 77 , and various -onia decays like .J/¢» — ¢ M M pro-
vide similar information. Such data is valuable for probing narrow resonances like f5(980)
but affords essentially no constraint on slowly-varying phase shifts. Huge statistics have
been accumulated in recent years on various NN annihilations leading to three meson final
state like 37, wmn, mnn and 3n [27]. Properties of the various di-meson combinations are ex-
tracted using the isobar model; methods of analysis need to be considerably refined before
model-independent information can be derived. Such refinement is quite possible although
laborious [28]. However, this could yield substantial benefits, for example knowledge of the
low energy mn phase shifts.

The same goes for the claimed extraction of 77 S-wave scattering lengths from data
on 7N — N near threshold [29]. In principle, 7 N — 7w N near threshold is not related
to low energy mm scattering. However, particular models do lead to simple connections
between these two processes. In this spirit, an effective Lagrangian model due to Olsson
and Turner [30] has been used to extract very precise values for a) and aZ from the excellent
nm N production data near threshold [31]. Care must be taken in interpreting these results
since the extraction is model-dependent. Work is now under way to generate systematically
a relation between 77 — 77 and 7N — 77 N at low energies based on Chiral Perturbation
Theory [32]. This may provide a more dependable way of extracting 77 scattering lengths

from these very good data.

4  What we know about the 77 interaction from ex-
periment

We now summarize the experimental findings for 7 scattering below 1 GeV. For produc-
tion data on di-pion final states, we principally rely on the high statistics medium energy
experiments [23, 33, 34, 35, 36]. Various other experiments with lower statistics or at lower
energies have also taken data [37, 38, 39, 40].. Of other #*7~ production experiments on
unpolarized targets, we only mention the results of Alekseeva et al. [41]. From study of
TN — 47 A [42], it is concluded that the inelasticity below K'K threshold is negligible.
The resulting partial wave structure is very simple in that S, P and D-waves dominate
below 1 GeV. The P and D-waves are unproblematic. The P-wave phase shift, J;, Fig. 4,
is dominated by the p resonance and the I = 0 D-wave by the tail of the f,(1270). Near
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Figure 4: The I =1 P—wave nm phase shift, below 1 GeV: energy independent fits from
the LBL experiment [33] (solid squares) and from separate analyses of the CERN-Munich
experiment [23] by Ochs and Wagner [22] (open circles) and by Estabrooks and Martin [44]

(open triangles).

threshold it is more reliable to fix both these phases by dispersion relations incorporating
the above resonance dominance than to perform an energy independent phase shift analysis.

I = 2 phase-shifts result from studies of the production of 7*7* and 7*7°. The charged
pair experiments [35, 36, 39, 40] only allow the determination of the moduli of the phases,
while 770 studies [38] show that both 62 and 62 are negative. Fig. 5 displays the results
of the more recent high statistics experiments [35, 36], which are in mutual agreement.
Certain other measurements, e.g. [40], including an earlier version of Hoogland et al.’s [43]
have reported somewhat larger values. Ochs [20] points out possible defects in the way the
phase shifts are extracted in some of these earlier experiments.

Information on the corresponding I = 0 S-wave phase shift, §7, comes from study of
both 7#t7~ and 7°7° production. The 7T~ experiments are mostly in very satisfactory
agreement as to the general form of §) below 1 GeV. Figs. 6 and 7 compare various aspects
of phase shifts derived from the high statistics CERN-Munich experimenton 7~p — 777 n
at 17 GeV/c [23] and the 7 GeV /c LBL experiment on 77p — 7t7~ A%+ [33]. In addition,
Fig. 6 shows results of Alekseeva et al. [41] based on a 4.5 GeV/c 7~p — 777~ n experiment

( just one of the four alternative sets of §7 that they report ). Also shown are results near
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Figure 5: The I = 2 S and D—wave 77 phase shifts, 62 and 3 below 1 GeV: from the
CERN-Saclay [35] (crosses) and Amsterdam-CERN-Munich [36] (solid squares) experi-

ments.
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Figure 6: The I = 0 S—wave 77 phase shifts, 3, below 1 GeV: from the LBL experi-
ments [33] (energy dependent fit) (solid squares); from the favoured down-type solution of
Alekseeva et al., [41] (crosses); from Ochs and Wagner’s [22] energy independent fit (open
circles) to the CERN-Munich experiment [23] — their energy dependent fit is shown as a
reference curve here and in Figs. 7 and 8 labelled OW ; also from the Geneva-Saclay K4
decay experiment [45] (open diamonds). For more comparisons see Figs. 7 and 8.
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Figure 7: The I = 0 S—wave mm phase shifts, §) below 1 GeV — alternative analyses of the
CERN-Munich experiment [23] : Estabrooks and Martin’s [44] s-channel (solid circles), ¢-
channel (open circles) analyses EM compared to Ochs and Wagner’s [22] energy dependent
fit (full-line labelled OW). For other comparisons of d) data see Figs. 6 and 8.

threshold inferred from study of K.4 decay [45] to be discussed below ( see also Fig. 11 ).
The CERN-Munich experiment having the highest statistics has been analysed in several
different ways. Fig. 7 compares phases from some alternative analyses. The curves in
Figs. 6 and 7 show the energy dependent fit by Ochs and Wagner [22]. Fig. 7 compares
this to the results of the s-channel and t-channel analyses by Estabrooks and Martin [44].
The S-wave in 777~ production is principally inferred from interference with the dom-
inant P-wave signal from the p—resonance. This determines sin(25) — d;) — assuming &2

to be known. This quantity is invariant if §0( DOW N) is replaced by
So(UP) = g — &%DOWN) + §! . (15)

Prior to the high statistics production experiments [23, 33|, this led to an UP-DOWN
ambiguity in determinations of §3 between the p mass and 1 GeV. The UP-alternative
entails a comparatively narrow S-wave resonance in the p region whereas the DOWN
branch yields a slowly rising §) as in Figs. 6 and 7. By common consent, the ambiguity
was resolved with the DOWN alternative selected once the form of the f5(980) (alias S*)
was clearly delineated in 7¥7~ production [42, 22]. This is because the dramatic fall in

the integrated cross-section and the forward-backward asymmetry near K K threshold can
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Figure 8: The I = 0 S—wave w7 phase shifts, &) below 1 GeV inferred from a 7°7° pro-
duction experiment by the Notre Dame-Argonne group (NDA) [34], two solutions (solid
circles, open circles), compared to a representative outcome from the study of 7+~ pro-
duction [23] — Ochs and Wagner’s energy dependent fit to the data of [22] (full line labelled
OW). For other 6 comparisons see Figs. 6 and 7.

only be understood if 63 begins its rise through 180° from 90° ( see Fig. 6 ).

One might hope that study of 7%7° production would provide confirmation, but, unfor-
tunately, the various published experiments [34, 37| disagree. In particular, the relatively
high statistics experiment of the Notre Dame-Argonne group (NDA) [34] challenges the
above picture and finds an UP-type form for §J below 1 GeV. The corresponding phase
shifts are plotted in Fig. 8 and compared with a representative DOWN-type of solution.
We do not find the NDA scenario convincing, partly from the absence of corresponding
signals in central dipion production and ¥y — 7w, but principally because of the above
argument involving the fo(5*) signal. Data on 7°7° production through the K'K threshold
region with fine energy resolution would settle the issue.

Similar objections can be made to the recent claim of Svec et al. [46] to revive the UP
alternative for §J, on the basis of an Amplitude Analysis of their own and earlier CERN-
Munich [24] 7T~ production data off polarized targets. Significantly, their analysis stops
at M., = 900 MeV, thereby side-stepping the requirements from the form of the fo(S*)
signal. Parenthetically, we note that Pennington and Protopopescu [47] have shown that

only the DOWN alternative reproduces itself through dispersion relations. Since we do not
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Figure 9: The Morgan and Shaw universal curve showing the correlation between the 7w
S—wave scattering lengths aJ and a?, here obtained by fitting representative 7 scattering
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data using the Roy equations from the BFP analysis [49].
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Figure 10: [ = 2 S—wave mm phase shifts §3, below 1.1 GeV: experimental values ( legend
as for Fig. 5 ) compared to BFP’s fits [49] using the Roy equations (fitting &5 above 500
MeV to the phases from [36]). Curves a,b and ¢ correspond to alternative values for the
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09

I = 0 S—wave scattering length, aJ = 0.17, 0.30 and 0.50.
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regard either of the above claims for an UP-type as credible, we are left with the standard
form shown in Figs. 6 and 7.

What these data imply about the low energy parameters beyond the earlier analysis of
Morgan and Shaw [12] is provided by more sophisticated dispersive analyses using the Roy
equations [15]. These are the ideal vehicle for determining the S—wave scattering lengths,
since these are the only subtraction constants. The Roy equations require input informa-
tion on all partial wave amplitudes from threshold to infinity, but being highly convergent
dispersion relations they are most sensitive, when evaluated below 1 GeV, to input infor-
mation below 1.2 GeV or so. At higher energies m7 scattering is assumed to be dominated
by the well-known f5(1270) and p3(1680) resonances [6] with absorptive parts that average
Regge exchange contributions with factorised residues. These contributions provide the
so-called driving terms to these partial wave dispersion relations seen in Eq. (14). Since
the integrals are twice subtracted, cf. Eq. (10), the driving terms are essentially quadratic
in s for energies below 1 GeV.

With such inputs, the Roy equations can and have been used in two ways, firstly to
extend a given dataset down to threshold and secondly to map out the whole range of such
extrapolations consistent with experiment. They were used in the first way by Pennington
and Protopopescu [48] inputting the results of the high statistics 77 production experiment
of the LBL group [33] with I = 2 information from Baton et al. [38]. When combined with
partial wave unitarity, the Roy equations allow the energy dependent S and P—wave
phases of Protopopescu et al. [33] to be filled in for regions not experimentally accessed —

in particular below 500 MeV. This analysis leads to values for
a) = 0.15 + 0.07, al = —0.053 £ 0.028 (16)

in pion mass units. The errors are determined largely by the uncertainties in the S—wave
phases. While, from such an energy dependent phase shift analysis, it is possible to assess
the statistical errors, the size of the systematic uncertainties is far more difficult to judge.
It is here that the yet higher statistics experiment from the CERN-Munich group [23] has
been additionally useful. These data not only confirm the results of the LBL experiment,
but extend our knowledge of 77 scattering up towards 2 GeV. It turns out that the larger
event sample does not significantly decrease the errors on the S-wave. However, these data

have been analysed in a number of different ways with differing assumptions about the
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Figure 11: [ = 0 S—wave 77 phase shifts, &3, below 1 GeV: experimental values (legend
as in Fig. 6) compared to BFP’s fits [49] using the Roy equations, (fitting &3 above 500
MeV to the phases from [44]). Curves a,b and ¢ correspond to alternative values for the

I = 0 S—wave scattering length a$ = 0.17,0.30 and 0.50.

production mechanisms. This has allowed a better idea of the systematic uncertainties in
50 as illustrated in Fig. 7.

This is the basis of the second approach to implementing the Roy equations. Basde-
vant, Froggatt and Petersen (BFP) [49] studied the maximum (sensible) range of S—wave
scattering lengths allowed by a broad band of possible phase shifts. They find a corre-
spondingly large range of scattering lengths with

—0.05 < a < 0.6 (17)

in the case of the CERN-Munich data. Their solutions map out the universal curve of MS
(Fig. 9) in a systematic way. The fact that such a band correlating a) and a3 exists means
that there is essentially a single parameter family of extensions to threshold, which is most
usefully specified by ag.

Figs. 10 and 11 illustrate the results, respectively for I = 2 and 0, that BFP obtain
from fitting to the Estabrooks and Martin’s [44] phases above 500 MeV and for af = 0.17,
0.3 and 0.5 (the corresponding curves are labelled a, b, ¢). The solutions are also compared
with the representative experimental findings previously shown in Figs. 5 and 6. The

I = 2 S—wave is not input in the BFP analysis, but is predicted and the comparison
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Figure 12: Results for the 77 phase shift difference 63 — 4] inferred from the Geneva-Saclay
K.4 experiment [45]; the curves show BFP’s predictions [49], as in Figs. 10 and 11, labelled
by the associated af value ( 0.17, 0.30, 0.40 and 0.50 ).

with data is quite impressive (Fig. 10). However, &3 does not show much sensitivity to
ay except near threshold. As the corresponding I = 0 plot (Fig. 11) shows what is
really needed to fix a better is, as one would expect, improved ) measurements at low
energies, either from further peripheral production experiments or from K.4 decay. The
best existing K4 data ( indicated by the diamonds in Figs. 11,12 ) are from the Geneva-
Saclay experiment [45]. A free fit to these experimental phases using an effective range
formula yields a§ = 0.31 & 0.11 [45]. The Roy equations imply a correlation between
the slope and the scattering length as illustrated by the curves in Fig. 12 for different
scattering lengths from BFP [49]. Incorporating this correlation the Geneva-Saclay group
quote a = 0.28 + 0.05. This determination is shown on the af v a3 plot of Fig. 9. The
curves in Fig. 12 show BFP’s predictions for various values of a.

Improved K.4 measurements will be one way for planned DA®NE experiments to help
refine our knowledge of aj. Prospects are discussed in [25]. Another possible route (dis-
cussed by one of us in the previous edition of this handbook [50]) would be via two-photon
experiments leading to improved measurements of vy — 7°7% (and yy — 7t7~). DAONE
holds out the prospect of increasing our understanding of 77 scattering to a significant de-

gree.
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