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Abstract

An effective model for low energy hadronic interactions is formulated arising form
the bosonization of a Nambu-Jona Lasinio type Lagrangian including all chiral in-
variant multiquark effective interactions. The bosonized Lagrangian includes non-
renormalizable quark-meson vertices which are next-to-leading in the low energy
inverse cutoff expansion. Their relevance is explicitely discussed for the two point

vector currents Green’s function.

1 Introduction

In the framework of effective fermion models @ la Nambu-Jona Lasinio for low energy
hadronic interactions, the Quark-Resonance model [1] can be thought of as a generalized
ENJL [2] (see also chapter 1) model. While the ENJL model only includes the lowest

dimensional non-renormalizable four fermion interaction terms, the Quark-Resonance (QR)
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Lagrangian results from the bosonization of the infinite tower of chiral invariant multiquark
effective interactions ordered by an expansion in inverse powers of the ultraviolet cutofl A,
(~ 1 GeV). The addition of higher dimensional multifermion interactions with increasing
powers of derivatives takes into account in a perturbative way the nonlocality of the effective
low energy action.

In section 2. the quark-resonance Lagrangian is constructed up to including 1//\?<
terms, which are next-to-leading in the inverse cutoff expansion and leading in the 1/N,
expansion. All meson SU(3) flavour octet quantum numbers are included: the pseudoscalar
mesons m, K, 7, the vector, axial, scalar and pseudoscalar resonances. In section 3. two
parameters of the leading vector resonance chiral effective Lagrangian are derived, including
(Q*/A2)In(AZ/Q?) corrections to the leading logarithmic ENJL contribution: the coupling
of the vector resonance to the external vector current and the vector mass. They enter
the calculation of the vector two point function, which is studied in section 4 in the chiral
limit; the numerical relevance of (Q*/A2)In(A2/Q?) in the intermediate @ region is shown

through the comparison with experimental data.

2 The model

The effective action of the quark-resonance model, coming from the bosonization of the
most general NJL model, in the constituent quark base and in the presence of external

vector, axial, scalar and pseudoscalar sources is given by:

TepslRivass] _ % / DG, exp <_ / d4;giG§3G(a)w) 1A / DQDQ
~ , © 1N
exp [/ d*z <Q’y“(aﬂ +1G,)Q + Z<_> QRQ)]v (1)
0 AX

where the functional f[R] contains the terms with auxiliary boson fields which are not

coupled to fermions. The most general structure of the R operator can be represented by:

R = B(A) X {ypirac} x (W, W HY x {V,,(VE )"}, (2)

where the generic coupling 3(Ay) is not deducible from symmetry principles. V, and

VfT are the covariant derivatives of the constituent quarks defined as

—_ —

i
Ve = 0utlu— 575&
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7
v“ = 3# _F,LL - 575‘5,&7 (3)

with the vector current I', and the axial current ¢, defined in terms of the pseudoscalar

field ¢ = VU = exp(z/f®) which is the square root of the usual exponential representation

of the pseudoscalar meson octet ®

L,
€u

The set {W;F, W,

= €00, — o+ @u)JE + €10, — i — a)IEN)
= {€10, — i(vy + a))€ — [0, — v, — )N} (4)

[:[} contains all possible fields introduced by the bosonization which

can couple to the constituent quark bilinears and which can be identified with the physical

degrees of freedom of the low energy effective theory: the vector field W: , the axial-vector
field W and the scalar field H.

The equivalence of the most general chiral invariant constituent quark-resonance La-

grangian with the most general chiral invariant current quark-resonance Lagrangian holds

with two caveals:

i) The presence of £, and I, currents defined by (4) in the constituent quark Lagrangian

is entirely due to the transformation from current to constituent quarks

Qr. = &qr, Qr = ¢'qr
Qr = ¢ Qr = qr¢, (5)

and the following identities hold:

Vp, Qszdp qr, V/J, QRZST dp, 4R
_ =CT P _ CT P
QLvV, =q d, ¢ QrV, =qrdué, (6)

where d, is the covariant derivative of the current quark field d,qr (r) = 9,uq1.,(R) —

T

i(r) w91, (R), eﬂ and V, are the covariant derivatives defined in eq. (3).

As a consequence, the currents £, and I', can only appear in the combinations (3)

through the covariant derivatives on constituent quarks.
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i) The vector field Wj and the axial-vector field W can only appear in the combination
Wi — 4sW, and its charge conjugate W + W, i.e. in the combination of the
leading ENJL Lagrangian.

The equivalence of the current quark-resonance Lagrangian to the original current
multi-quark Lagrangian is guaranteed by a multi-step bosonization procedure [1] that gen-
erates interactions among the auxiliary boson fields which are the physical meson degrees
of freedom and with their excited states.

The QR Lagrangian at leading order in the 1/A, expansion and in the 1/N. expansion,
in the constituent quark base, coincides with the bosonization of the ENJL model discussed
in the previous section in this Handbook.

We proceed now to the classification in the chiral limit of all the constituent quark-
resonance bilinears which appear up to é order, i.e. suppressed by at most two powers
of A, with respect to the leading quark-resonance bilinears. They are all the quark-meson
bilinears which are locally chiral invariant and with the caveats already discussed. They

can be generally represented by:

(i)n x RF x (V,V)rk+t (7)
Ay

with n < 2. k ranges from 0 to 3 and identifies four possible classes. R is a resonance
from the set {W+ 4+ s W=, H}.

At order t there are no invariants.

In terms of the linear combinations of the axial and vector fields Wf = Wi £3W,

all possible invariants at 1/A2 order are:

OO S LA C R < 1o
2. Q’Yﬁt{eme }Q

1. Q’m{[ey,Wﬁj] vV -V, [ﬁ,W;]}Q
Qru{W,; v 10
QY. VI 1Q

Qvu(V,. W, W, + V., W, v,)Q
QvullV V.1, W 1Q

Qv W 23Q

AR AT A

160



—_

. Qv W, ]W +W[ v.0)Q
8. Qu.(W, W v, + v, W W )Q

9. Q[ Wy W, [V, W, W)@
10 Quu [V, W W, + W, W, .))Q
1. Qu{W=, W }Q

1. QLI:ISQR—I-h.C.
2. Q’Y;A{VMFIQ}Q

1. QW™+ W H)Q

2. QWIHW;Q

3. QVA{W#_’]:[Q}Q

4 QV#FIW:_FIQ
N JURREEN ~cT

5. QWrHV,-v, HW.)Q
A& ~cT

6. QUHW, V.-V, WIHQ

1_OT 1_OT

. QWiHY, H+0v,)—(v, H+Hv,)WQ,
(8)

where we have used the hermiticity of the scalar field # = H'. We have grouped the terms
into four classes according to the types of interactions among resonances.

The first class contains two independent terms with higher derivatives: the first term
is totally antisymmetric and is proportional to the field strenghts of I', and &, currents
defined in (4) through the identity

= = . 1 1

[V, V] =1Gun 4+ T — 5755;» — Z[S“’&]’ (9)
Where GW\ = aﬂG,\ - 8)\Gu —|— Z'[G#, G,\], FM)\ = 8#F,\ - 8)\FM —|— [FM F)\], fu)\ = dﬂf,\ - d,\fﬂ,
with d, & = 9,6 + [I'y, €. The second term acts as a renormalization of the fermion

propagator 9, — aﬂ(1+62/A§<). The second class is the Vector set and contains interactions
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among vector and axial vector fields Wf with pseudoscalar mesons through the covariant
derivatives V,,, Vf. The first three terms of this set enter the calculation of the two-point
vector Green’s function of section 4. The third class is the Scalar set which contains
interactions among scalars and interactions among scalars and pseudoscalar mesons. The
last set is the mixed Vector-Scalar sector. These terms contribute to the vector Lagrangian
parameters proportionally to Mg, where Mg is the vev of the scalar field H. We have
neglected corrections of order M3 /AZ in the calculation of the two-point vector Greens’
function.

1//\?< terms generate two types of corrections to the parameters of the effective meson

Lagrangian:
o next-to-leading power corrections to the leading logarithms (NPLL): (Q*/A2)In(A}/Q?),
o next-to-leading power corrections: Q?//\f< -1

It is crucial for the predictivity of the model the fact that NPLL corrections arise always
from a finite class of 1/ Ai terms, while genuine power corrections arise from an infinite
tower of higher dimensional terms. In the next sections the two-point vector correlation

fucntion is analyzed within this framework.

3 The vector meson Lagrangian

The leading non anomalous Lagrangian with one vector meson (i.e. of order p®) is

1 1
Ly = —1<VWV“”>+§M3<VMV“>—f—V<Vwi

2V2

E €] > +Hy < Vi[6, [2] > +ilv < V,[6",x] >

2\/5 "

(10)

and corresponds to the so called Conventional Vector model [3, 4].

The parameters which enter the calculation of the vector two-point function are the
vector mass My and the coupling fy to the external vector source. The full Lagrangian
up to 1//\?< order which gives contribution to fy and Zy, the vector wave function renor-

malization constant, (or equivalently to My ) is:

Br Bt

£ = Q(é - MQ)Q + Q%AFMQ - %QV#W:—Q + Q%td)\ #/\Q ‘|’ Q'Yu{dm d }Q
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35_1/ 2117+ _ﬁv
+2A2Q W, Q+2A2

1 By

Q’-}/M{dQ W+}Q +5 2A2

@AW {d,d3}Q. (1)

The first term defines the inverse free fermion propagator Dy = d— Mg. The remaining
part defines the local perturbation to the free Lagrangian up to order 1/ Ai. There are five
1//\32< terms with new coefficients (3;. Fach term can be traced back to the corresponding
term in the list (8) where the covariant derivative d,, is defined in terms of the covariant

derivative V, as follows:

i i
V=0, +1, - 5’75@ =d, — 575@- (12)
The covariant derivative on the vector-like fields Wi, T', is defined as:

d W = 0,WS + [, WSl (13)

The general formula resulting for fy and M{ and including the leading contribution

from the ENJL model can be written as follows:

N, V2 1 Bk - A2
v ‘/QZV+1623\/ZA2[Z /dp o)In 5

13, v A2
_Z : do P, 1 _X]
2 ZZ:; BV/O « 2 (a) n S(Oé)
N. 7 A2\ 1
oo e ( X )_ 14
v 1672 \2Gv /) Zv’ (14)

where the wave function renormalization constant Zy is given by:

o= 16w23[/ de o1 A(i +25”A2/ da Py )IHSA(i)
3%/ do Py (o SA(X)]

A2
v 1623[Eﬂ" /daPZV S(X)

2 A2
3 529 r
FA2/ da Bz (o) In e

The ﬁ%/r coefficients must be determined from experimental data. The function S(«)

| (15)

is equal to M3 + o1 — a)Q?. The PZ»V’F(a) are polynomials in the Feynman parameter a.

Their explicit expression is given by:
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= Pf(a)=12a(1 —a)

2

(@)
PY(a) = S[8a(l—a)—160%(1 — a) — 360%(1 — a)? + 24a*(1 — )]
(@) = 6[3a*(1—a)’—20°(1 — a)]

(@)

= —%[36@3(1 —a)? = 18a*(1 — a)). (16)

From eq.(16) one obtains that the purely divergent contribution (i.e. In(A2 /M3) [ da Pi(a))
to B¢, By, BE terms is identically zero.

We are left with two independent coefficients: S, By

4 Phenomenology of the Vector-Vector correlation func-
tion

To estimate the values of the 3%, 3y coefficients we study the Q? behaviour of the vector-
vector correlation function where one can compare the theoretical predictions with exper-
imental results.

The two-point vector correlation function is defined as

() (g —z/d%aW<ow( *(2)VE(0)]0 >, (17)

14

where V(z) is the flavoured vector quark current:

Ve(r) = q(xm%q(:c), (1)

with A% the Gell-Mann matrices normalized as tr()\”“)\b) = 26, Lorentz covariance and

SU(3) invariance imply for the H , the following structure:

(%) = (4040 — 9u0a”) THA(Q*)8™ + quqy T15(Q%)6™, (19)
where @ = —¢*, with ¢* euclidean. II$,(Q?) is zero at all orders in the chiral limit. For
IT},(Q?) the following expression holds at NPLL order [1]:

2/v(Q°) My (Q7)
MEQ) QT
where the running of f§ and M{ at NPLL order can be extracted from eq. (14) with

Q) = (20)

BE, BE, By terms set to zero.
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The real part of the invariant IT;,(Q?) function is related to its imaginary part through

a standard dispersion relation

llmﬂl )
1L(Q / ds . 21
Re S—I—Q2 (21)

For a review on QCD spectral Sum rules and the calculation of QCD two-point Green’s
functions see [5]. The imaginary part is given in terms of the experimentally known total

hadronic ratio of the eTe™ annihilation in the isovector channel

L p=1(g), (22)

Imlly(s) = o

with

0121(e+6_ — hadrons)
olete” —= ptp~)

RI='(s) = (23)

We have performed a comparison between the QR model parametrization (20), valid
in the energy region 0 < Q? < A2, and the prediction obtained from a modelization of
the experimental data on e*
numbers (I = 1,.J = 1). For a determination of the function II},(Q?) in the high Q? region
(i.e. beyond the cutoff A, ) see [7].

We adopted the following parametrization of the experimental hadronic isovector ratio:

e~ — hadrons [6] in the channel with the p meson quantum

— 9 FeeF 3 s
R (s) = —
102 (5 —m)p T2

This is a generalization of the one proposed in ref. [8], where corrections due to the
finite width of the rho meson have not been included. I'.. = 6.740.4 KeV is the p — ete
width and ', = 150.9 £ 3.0 is the total widht of the neutral p [9]. We used the leading

logarithmic approximation for a,(s):

)9(5 — s0). (24)

T

127 1
33 — 2ny log(s/Adep)
Expression (24) includes a dependence of the p channel upon the p width and the

as(s) = (25)

contribution from the continuum starting at a threshold sq = 1.5 GeV? [8]. For the
running of a, we used a value of 260 MeV for Agcp, according to the average experimental
value A(Q)OD = 26013 MeV [9] and with n; = 4 flavours.

The results are practically insensitive to the a,; running corrections and our leading log

approximation turns out to be adequate.
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Figure 1: The derivative of the experimental vector invariant function IIj,(Q?) (solid line)
the curve from the best fit in the region 0.5 < @ < 0.9 GeV (dashed line) and the ENJL
prediction (dot-dashed line).

To extract information on G}, 3{ coefficients of the NTL logarithmic corrections we
made a best fit of the first derivative of the 2-point function coming from the parametriza-

tion (24) of the experimental data:

12 _ 2 < RE(s)
Q%) ewp = —m/o dsma (26)

where the derivative of the VV function in the QR model is given by:

(Q%)r = i1+ f7) -2 (1~ @5 . (27)

R 2
(- 50)

We have used Mg = 265 MeV for the IR cutoff and A, = 1.165 GeV for the UV cutofl,
determined by a global fit in ref. [2].

In fig.(1) we show the @Q? behaviour of the derivative of the experimental 2-point function,
the curve from the best fit, which has been done in the region: 0.5 < @) < 0.9 GeV, and
the derivative of the ENJL prediction with quark-bubbles resummation.

The best values of the two free coeflicients are
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Figure 2: II5,(Q?) from the QR model (dashed line), obtained from the fitted derivative
of fig. (1) by imposing the matching with the ENJL function at Q = Mg, versus IT},(Q?)
from the ENJL model (solid line).

511 = —0.75+0.01 ﬁ‘l/ = —0.79+0.01 (28)
The x? of the fit has been defined as 3=,(IT: — I1°*%)2/5? and the o; are defined assuming

a 10% of uncertainty on the experimental data. A y*/n.d.f. = 0.2 has been obtained. The

ENJL prediction differs by roughly a 40% from the experimental curve at 0.8 GeV. Most
of this discrepancy can be accounted for with the corrections that we have calculated.

The invariant function II3,(Q?) obtained from the best fit automatically match the

ENJL function at ) = Mg, because we have normalized the corrections to vanish at

Q?* = Mgg:

1()2 ENJL( 2 2 2 @ Iy

(@) = MY 003~ @ + [ o

The TI},(Q?) function obtained with the values (28) and with the matching of eq. (29) is

plotted in fig.(2) and compared with the ENJL prediction (i.e. including the resummation

dQ"” 0(Q* — Mg). (29)

of linear chains of quark bubbles and including only logarithmic corrections).
The difference between the two curves reaches a 30% at 0.7 GeV.
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5 Conclusions

The extension of effective quark models @ la Nambu-Jona Lasinio to hadronic interactions
is a powerful tool to predict the hadron parameters in the low energy region, i.e. 0 < Q* <
1 GeV. Within this framework the quark-resonance model fully takes into account the
nonlocality of the effective interactions through a derivative expansion in inverse powers
of the ultraviolet cutoff A,.

The bosonization of the lowest dimensional four-quark operators leads to the ENJL
model, while the inclusion of higher dimensional multiquark operators generates next-to-
leading corrections to the leading ENJL contributions to the parameters of the effective
low energy meson Lagrangian.

Next-to-leading power corrections to the leading logarithms proportional to Q? have
been explicitely calculated for the two-point vector correlation function. They can be
written in terms of two new coefficients which are fixed by experimental data. Their
numerical relevance in the energy region 500 = 900 MeV has been shown in this case.

The type of corrections we have analyzed are not the only ones: next-to-leading correc-
tions in the 1/N. expansion and gluonic corrections can be present to bridge the remaining

gap with experimental data.
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