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Abstract

A short introduction to quark models with four fermion terms and their pre-
dictions for the parameters of low-energy effective Lagrangians is given. Special
attention is paid to predictions that are as general as possible.

1 Introduction

The original Nambu-Jona-Lasinio model[l] was an extension of the BCS-theory of super-
conductivity to the domain of spontaneous symmetry breaking in the strong interaction.
The original model was phrased in terms of nucleons but has been rephrased in terms of
quarks in the seventies by the work of Kleinert and others. In the mid-1980’s it was revived
once more as a phenomenological model[2]. Recent extensive reviews can be found in [3].

The description given here will more or less present the model from the point of view
of the work that I have been involved in [4, 5, 6, 7]. This method tries to get as much
as possible out of the underlying structure of this class of models before putting in actual
values of the parameters and choosing a specific regularization.

The main aim of this general class of models is an attempt to understand the low energy
parameters of the Lagrangians described in chapter 2 from a model that is somewhat
closer to QCD with a minimal amount of extra free parameters. The framework presented
here can be easily extended to include more nonlocality. A more general treatment of the
nonlocality can be found in the Quark Resonance model[8] or via attempts to approximately
solve the Schwinger-Dyson equations in QCD (see ref. [9] for a review). It also in some
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sense includes a lot of the popular models like the chiral quark model(CQM) [10] and the
QCD-effective action approach[11].

[ will first give a short description of the model and a few arguments about its connection
with QCD. Then the occurrence of spontaneous symmetry breakdown will be discussed.
In the next part the low-energy expansion and a few of the relations between low-energy
parameters that follow in general from it are given. Last I will discuss a little how (Vector)
Meson Dominance(VMD) finds a basis in this way of looking at the low energy hadronic
world.

2 The model and its connection with QCD

The QCD Lagrangian is given by

1
Locp = Loep — 7w G
Loop = q{iv" (0y — v, —iayys —iG) — (M + s —ipys)}q. (1)

Here summation over colour degrees of freedom is understood and we have used the follow-
ing short-hand notations: § = (ﬂ, d, E); (7, is the gluon field in the fundamental SU(N.)
(N.=number of colours) representation; (7, is the gluon field strength tensor in the ad-
joint SU(N.) representation; v,, a,, s and p are external vector, axial-vector, scalar and
pseudoscalar field matrix sources; M is the quark-mass matrix.

All indications are that in the purely gluonic sector there is a mass-gap. Therefore
there seems to be a kind of cut-off mass in the gluon propagator (see the discussion in ref.
[12]). Alternatively one can think of integrating out the high-frequency (higher than A, a
cut-off of the order of the spontaneous symmetry breaking scale) gluon and quark degrees
of freedom and then expand the resulting effective action in terms of local fields. We then
stop this expansion after the dimension six terms. This leads to the following effective
action at leading order in the 1/, expansion

Locn — Lagn + L3+ L% + O (1/AL)

with Lo = %EM (ki) (@L.ar)
and LNy, = —%E@j:[(ﬂv“qi) (@d) + (L= R (2

Here 1,5 are flavour indices and ¥gy = (1/2)(1 4+ ~5)¥. The couplings Gs and Gy
are dimensionless and O(1) in the 1/N, expansion and summation over colours between
brackets is understood. The Lagrangian ,Cg)éD includes only low-frequency modes of quark
and gluon fields. The remaining gluon fields can be assumed to be fully absorbed in the
coefficients of the local quark field operators or alternatively also described by vacuum
expectation values of gluonic operators (see the discussions in refs. [4, 5]).
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So at this level we have two different pictures of this model. One is where we have
integrated out all the gluonic degrees of freedom and then expanded the resulting effective
action in a set of local operators keeping only the first nontrivial terms in the expansion.
In addition to this we can make additional assumptions. If we simply assume that these
operators are produced by the short-range part of the gluon propagator we obtain Gg =
4Gy = N.ag/m. The two extra terms in (2) have however different anomalous dimensions
so at the strong interaction regime where these should be generated there is no reason to
believe this relation to be valid. In fact the best fit is for G5 & Gy. We report however
also the fit with the constraint Gs = 4Gy included.

The other picture is the one where we only integrate out the short distance part of
the gluons and quarks. We then again expand the resulting effective action in terms of
low-energy gluons and quarks in terms of local operators. Here we make the additional
assumption that gluons only exists as a perturbation on the quarks. The quarks feel only
the interaction with background gluons. This is worked out by only keeping the vacuum
expectation values of gluonic operators and not including propagating gluonic interchanges.
Most fits are in fact best with the gluonic expectation value equal to zero (see table 1).

This model has the same symmetry structure as the QCD action at leading order
in 1/N. [13] (notice that the U(1)4 problem is absent at this order [14]). (For explicit
symmetry properties under SU(3), x SU(3)g of the fields in this model see reference [4].)
The QCD anomaly can also be consistently reproduced|6].

There has been a recent suggestion that the four-quark operators could result from QCD
ultraviolet renormalon effects [22]. There it is suggested that Gy should be very small.
The picture there is in fact quite different from the one usually pictured in this model.
They argue that the vector sector follows more or less from the standard QCD picture but
that the scalar and pseudoscalar sector is strongly perturbed by ultraviolet renormalons.
These are local effects and can thus be described via a local four-quark operator like the
term proportional to GGg. Therefore I have included a fit to the low-energy data with
Gy = 0. Other arguments for this model can be given by looking at the local effects of
purely gluonic operators. The most prominent gluonic operator beyond (G?) are in fact
gluonic correlators of D*G\,5 which is related to four-quark operators. This again leads to
a NJL-like model at low-energies[23].

3 Spontaneous Symmetry Breaking

We can self-consistently solve the Schwinger-Dyson equation for the fermion propagator
in terms of the bare propagator and a one-loop diagram (see figure 1). In the case where
the current quark masses are set to zero this equation allows for two solutions for G's > 1,
one with constituent quark mass M = 0 and the other with M # 0 and the model
shows spontaneous chiral symmetry breaking. In the presence of explicit chiral symmetry
breaking only the second solution is allowed. In the leading 1/N, limit the solution of the
Schwinger-Dyson equation is a flavour diagonal matrix for the constituent quark masses
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Figure 1: The Schwinger Dyson equation for the propagator. A thin (thick) line is the
bare (full) fermion propagator.
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Figure 2: Plot of the dependence of the constituent quark mass M; as a function of G'g for
several values of m;

with elements M, 4. The gap-equation now becomes

M; = m;—gs(0] : Gq: : [0), (3)
_ _ d*p ? N,
(0] : 75q: : [0) = (@iq:) = _NC4Mi/W}72—7W = —167T24M23F(—176i) , (4)
v er
gs = : (5)
N.AZ

Therefore, in this model the scalar quark-antiquark one-point function (quark conden-
sate) obtains a non-trivial nonzero value. The dependence on the current quark-mass is
somewhat obscured in eq. (4). We use here a cut-off in proper time as the regulator. The
quantity ¢; appearing in (4) is M?/A2. In figure 2 we have plotted the dependence of M;
on Gg for various values of m; and A, = 1.160 GeV. It can be seen that the value of M;
for small m; converges smoothly towards the value in the chiral limit for the spontaneously
broken phase. This is an indication that an expansion in the quark masses as Chiral Per-
turbation Theory assumes for QCD is also valid in this model. However, it can also be
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seen that the validity of this expansion breaks down quickly and for m; ~ 200 MeV we
already have 2M; ~ A,. We note that the ratio of vacuum expectation values for light
quark flavours increases with increasing current quark mass at p*> = 0 in this model and
starts to saturate for m; > 200 MeV.

In the mean-field approximation, we can introduce the vacuum expectation value into
the Lagrangian, via an auxiliary field, and then keep only the terms quadratic in quark
fields. The EISV’?L’V’A above are then equivalent to a constituent chiral quark-mass term [11]
of the form —Mg(qLU qr + qgrUqr).

4 The low-energy expansion

This section is essentially a very abbreviated version of [4]. The Lagrangian (2) can be
made into a form bilinear in quark fields by introducing a set of auxiliary fields L,, R,
and M. The first two transform respectively as a left (right) handed vector field (3 by
3 hermitian matrices) and the last one as M — gRMgz, M is a 3 by 3 complex matrix.
Once the Lagrangian has been brought into the bilinear form we can then assume a vacuum
expectation value for M and make an expansion in its inverse. This expansion can be done
using the heat kernel expansion (see [15] for a review). The vacuum expectation value
is determined selfconsistently from this expansion. This leads to the same gap equation
(in the chiral limit) as the one discussed in the previous section. Current quark mass
dependence is of course treated perturbatively with this method.

This procedure in fact generates kinetic terms for all the auxiliary fields. So the model
reproduces the low lying hadronic spectrum of pseudoscalars, vectors, scalars and axial-
vectors. The combination L,+ R, becomes after a wave function renormalization essentially
the vector field. The different vector representations can be reached by making a redefini-
tion of the vector field here. Since the underlying model does not depend on the form of the
vector field chosen it is obvious that the resulting physics also does not depend on it. (See
[16] for a discussion in the general case). An added feature that appears here is that the
axial-vector auxiliary field, R, — L, mixes with the derivative of the pseudoscalar field U.
The U field is obtained as the polar decomposition of M, M = £ HE. H is hermitian and
contains the vacuum expectation value of M and the scalar excitation part. This mixing
introduces a coupling of the pion field to the quarks which is different from 1, the axial
coupling of the (constituent) quark, g4. This already occurs at leading order in 1/N,. The
latter point is discussed exhaustively in [17]. This coupling is smaller than 1 for Gy # 0.
As an example of a successful prediction we have the value for L,

N, 1

Lo = —
T 16726

(1= g3)T(0,2) + 26371, 2)] . (6)

xr = 2\42)//\)2< and I'(0, z) the incomplete gamma-function. In fact the main improvement is
obtaining a better value for Ls and Lg where the inclusion of the vectors and scalar degrees
leads to an improvement over the QCD effective action model. The expressions are in fact
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rather simple.

N. 1,
Ls = 1672 ZQA ['(0,2z) = T'(1,2)] ,
N. 1 2
Ly = ———4¢*|T — =I'(1 .
8 1672 169A (va) 3 ( ,:L') (7)

It is the presence of the extra g, factors and the cancellation between both terms that
allow for phenomenologically good values for these latter two constants.

The main feature of this analysis is that even leaving the coefficients in the heat kernel
expansion completely free, leaves a number of interesting relations. In this respect it should
be mentioned that as a consequence these relations survive in extensions of the model that
do not change the structure of the heat kernel terms. In particular, background gluonic
contributions do obey this criterion. These relations correspond to a set of well-known
phenomenological relations that were previously derived using Meson dominance arguments
and QCD short distance relations. Some of them are

2= ffM}— fiM; First Weinberg sum rule
1
Ly = §fvgv VMD of 7 form factor
1 1
Lo(2H,) = —ng + (—)fol VMD of VV and AA 2-point functions
2
=1 - =7 8
“=1T e )

The full list of relations can be found in [4]. This approach also works very well numerically,
witness table 1. The input parameters there are Mg, x = Mé//\i, g4 and the combination
g = mas(G?)/(6N.Mp). Fit 2 is the fit with only low-energy parameters as input and
everything free. The meaning of the other fits can be found in [4] while the last columns are
with the low-energy parameters and the constraints Gy = Gg/4(fit 6) and the renormalon
picture with Gy = 0. We have also enforced the gluon condensate to vanish in these two
fits. Notice that in both cases the cut-off has decreased significantly compared to the full
case where Gy was left free.

In general this model seems to interpolate well between VMD type of predictions and
chiral quark model type of predictions. This can be seen in eq. (6), the first term is
the one coming from the vector exchange while the second one is the “chiral quark loop”
contribution. By changing g4 one can have either a full VMD or a full CQM picture. A
major improvement compared to previous attempts in quark models is the correct value
for Ls and Lg that are obtained here.
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Figure 3: The graphs contributing to the two point-functions in the large N, limit. a) The
class of all strings of constituent quark loops. The four-fermion vertices are either ,CN’fL or
/:Eﬁ in eq. (2). The crosses at both ends are the insertion of the external sources. b) The
one-loop case.

5 Beyond the low-energy expansion and Meson Dom-
inance

This section is a very short summary of references [5] and [7]. Similar work can be found
in [18, 19, 20]. For 2-point functions the general graph is depicted in fig 3. The sum of all
diagrams is essentially a geometric series that can be easily summed. The full two-point
function then becomes

II
11— KII (9)

Here II denotes the 2-point function at one-loop and K the relevant four-fermi coupling.
When the 2-point functions mix a similar formula exists except that I and II become
vectors and K a matrix. The rest can be dealt with as a matrix inverse.

Here we see how the resummation has produced a pole and thus a bound state. In
the previous section this was dealt with by getting the kinetic term and then using the
equations of motion for the auxiliary fields. The 2-point functions can usually be rewritten
in a meson-dominance form but with slowly varying parameters rather than constants.
E.g.(in the equal mass case) for the transverse vector case:

M), h2 2 (QY)ME(Q?)

HV (Q ) - M‘Q/(QQ) _ QQ

2f0(Q)ML(Q?) = N.AY/(87%Gy)
8N

2@ = 15 [ dea(l - 2)T(0,20) (10)

with zg = (Mg? +z(1 — :U)QQ)/Ai, and Q% = —¢°.
In fact some of the relations referred to in the previous section remain true even after

resummation to all orders. This is because the symmetries impose certain identities on
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the one-loop functions and these have still some consequences after resummation. Exam-
ples are the first and second Weinberg sum rules, the famous Mg = 2Mg relation and
generalizations of these away from the chiral limit [5, 7].

A general argument for meson dominance appears here. An n-point function consists of
a set of graphs consisting of one-loop vertices joined by 2-point functions. These two-point
functions can now be rewritten in a form that looks very much like meson dominance.
Then as far as the "vertices” are slowly varying we will find the VMD predictions within
this model. In general it is not so simple but still numerically results look very much like

VMD, see section 5 in [7].

6 Conclusions

I have presented a short representation of the extended Nambu-Jona-Lasinio model some-
what biased towards my own view of this set of models. Further references can be found
in the reviews cited. There is also work on more vector meson phenomenology within the
same approach [21], both for anomalous and non-anomalous decays. The general conclu-
sion is that within its limitations the ENJL-type models do include a reasonable amount
of the expected physics from QCD, its symmetries, their spontaneous breakdown and even
some of its short distance information (as embodied in the Weinberg sum rules). It is
also quantitatively successful. Its major drawback is the lack of a confinement mechanism.
A general understanding of the interplay between meson dominance and the chiral quark
model is understood within this framework and a rather good description of all low-energy
parameters is obtained.
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Table 1: Experimental values and predictions of the ENJL model for various low-energy

parameters from the heat kernel expansion. All dimensionful quantities are in MeV. The
difference between the predictions is for slightly different choices of parameters. (*) means
that there are in addition uncertainties due to higher order chiral corrections. The meaning
of the different fits are explained in [4], fit 2 only uses f, and the L; while fit 6 and 7
include constraints on Gy, see text. The numerical error in [4] for Hy has been corrected.

All masses are determined from the low-energy expansion, not the pole position of the

2-point functions.

exp. exp. fit fit1 | fit2 | Ait3 | fit4 | fitH | fit6 | it 7
value error | error
fr 86(1) — 10 89 86 86 87 83 86 86
V=< qq > | 194(%) 8(%) — 281 260 255 178 254 | 210 | 170
10% - Ly 1.2 0.4 0.5 1.7 1.6 1.6 1.6 1.7 1.5 1.6
10° - L —3.6 1.3 1.3 | —42 | 41 | =44 | =53 | —4.7 | =3.1 | =3.0
10% - Ls 1.4 0.5 0.5 1.6 1.5 1.1 1.7 1.6 2.1 1.9
10% - Lg 0.9 0.3 0.5 0.8 0.8 0.7 1.1 1.0 0.9 0.8
10% - Lg 6.9 0.7 0.7 7.1 6.7 6.6 5.8 7.1 5.7 5.2
10% - Lyg —5.5 0.7 0.7 | =59 | =55 | =H8 | =51 | —6.6 | —3.9 | —2.6
10° - H, — — — —4.7 | =44 | —4.0 | =24 | =46 | =3.7 | =2.6
10° - H, — — — 1.4 1.2 1.2 1.0 23 | =02 | 0.8
My 768.3 0.5 100 811 830 831 — 802 | 1260 —
M4 1260 30 300 | 1331 | 1376 | 1609 — 1610 | 2010 —
fv 0.20 (*) 0.02 | 0.18 | 0.17 | 0.17 — 0.18 | 0.15 —
gv 0.090 (*) 0.009 | 0.081 | 0.079 | 0.079 — 1 0.080 | 0.076 | —
fa 0.097 | 0.022(*) | 0.022 | 0.083 | 0.080 | 0.068 — 10.072 | 0.084 | —
Ms 983.3 2.6 200 617 | 620 709 989 657 | 643 | 760
Cm — — — 20 18 20 24 25 16 6
cq 34 (*) 10 21 21 18 23 19 26 27
x 0.052 | 0.063 | 0.057 | 0.089 | 0.035 | 0.1 0.2
ga 0.61 | 0.62 | 0.62 1.0 | 0.66 | 0.79 | 1.0
Mg 265 263 246 199 204 | 262 | 282
g 0.0 0.0 | 0.25 | 0.58 | 0.5 0.0 0.0
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