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Abstract

We review the latest calculations of the next-to-leading AS =1 effective Hamilto-
nian, relevant for K — 77 transitions. Numerical results for the Wilson coefficients
are given for different regularization schemes. Predictions of € /¢, obtained using dif-
ferent approaches to evaluate the relevant hadronic matrix elements, are compared.
Given the present value of the top mass, m; = (174 £ 17) GeV, all the analyses, in
spite of the large theoretical uncertainties, indicate that the value of ¢/e is smaller
than 1 x 1073,

1 Introduction

The understanding of mixing and CP-violation in hadronic systems is one of the crucial
tests of the Standard Model. In the last few years considerable theoretical and experimental
effort has been invested in this subject.

On the theoretical side, the complete next-to-leading expressions of the relevant effective
AS=1,AS=2, AB=1and AB=2 Hamiltonians have been computed [1]-[5], thus reduc-
ing the theoretical uncertainties?. Moreover, there is now increasing theoretical evidence
that the value of the pseudoscalar B-meson decay constant is large, fg ~ 200 MeV, and
that the B—B parameter Bp is quite close to one. This strongly constrains the Cabibbo-
Kobayashi-Maskawa parameters and it has remarkable consequences on CP-violation in

!Supported by the INFN, by the EC under the HCM contract number CHRX-CT920026 and by the

authors home institutions
2Indeed only the top contribution to the AS =2 Hamiltonian is fully known, at the next-to-leading
order. To our knowledge, the other contributions have been only partially computed [6].
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B decays, see refs. [7, 8]. Still, the evaluation of hadronic matrix elements is subject to
large uncertainties, that are particularly severe for ¢'/¢, where important cancellations of
different contributions occur for large values of the top mass. Indeed, a significative reduc-
tion of the theoretical uncertainty on ¢’/¢ would require a substantial improvement in the
calculation of the hadronic matrix elements, either from lattice simulations or from other
non-perturbative techniques.

On the experimental side, more accurate measurements of the mixing angles are now
available and the mass of the top quark, experimental evidence of which has recently been
found by CDF [10], is constrained within tight limits [11]. Still, in spite of very accurate
measurements, the experimental results for the C'P violating parameter ¢’/e are far from
conclusive [12, 13]. A better accuracy, at the level of 1 x 107*, should be achieved by the
experiments of the next generation.

In the following, we briefly introduce the AS=1 effective Hamiltonian and summarize
the main results of the next-to-leading calculation of the relevant Wilson coefficients. An
updated analysis of €'/¢, along the lines followed in refs. [7]-[9], is presented. Particular
emphasis is devoted to a realistic evaluation of the uncertainties. We also compare the
results of refs. [7]-[9] to the next-to-leading order analysis of ref. [14]. In section 2,
the basic formulae, which define the CP-violation parameters ¢ and ¢, are presented; in
section 3, the definition of the Cabibbo—Kobayashi—-Maskawa matrix and the notation used
in this work are introduced; in sections 4 and 5, we give several details about the AS=1
effective Hamiltonian relevant for direct CP-violation. In particular, the Wilson coefficients
in different regularization schemes are reported. In section 7, we give the formulae which
has been used to obtain the theoretical predictions; in section 8, the theoretical predictions
from the more recent analyses are given. Further details, including a theoretical discussion
of the matching conditions, of the B-parameters and of the uncertainties coming from the
choice of Agep, the renormalization scale, etc. can be found in ref. [9].

2 CP-violation in K — 7 decays

In this section, we introduce the parameters € and ¢ that describe CP-violation in the neu-
tral kaon-system. In the following, we assume CPT symmetry. A comprehensive discussion
of the general case, including CPT-violation, can be found in ref. [15].

There are two possible sources of CP-violation in the decays of the neutral kaons into
two pions. CP-violation can take place both in the kaon mixing matrix and at the decay
vertices. Let us consider the mixing first. The most general CPT-conserving Hamiltonian
of the K°-K? system at rest can be written as

i MO M12 Z F0 F12
H=M--1= - = 1
2 (Ml*2 MO) Q(Ffz F0)7 @
where the bra (ket) can be represented as the two component vector (K°| = (1,0), (K°| =

(0,1), M is the “mass” matrix and I' is the “width” matrix. Both My and I’y are real.
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Notice that there is some freedom in the definition of the phases of the kaon field. In
particular, one can make the change

|K%) — | KYY, |K%) — e K°). (2)

Correspondingly, the off-diagonal matrix elements of any operator X, acting on the K%~ K°
system, undergo the changes

X12 — 6_2iaX12, X21 — €2iaX21 . (3)

This arbitrariness enters in some popular definitions of the CP-violation parameters. For
definiteness, we choose a particular phase convention, namely we require that the CP

CP:(? é). (4)

1
V2
are the CP eigenstates. In the presence of CP-violation, [CP, H] # 0 and the eigenstates

of the Hamiltonian H are not CP eigenstates. We introduce the parameter € which defines
the eigenstates of H as

operator is given by

In this case,

[K:) = —= (|K°) £]K%) (5)

_|KZ) +€lKy) _|Ky) +€lKo) (6)
JU+ e J1+ |2

The corresponding (complex) eigenvalues are denoted as

(Hy1 4+ Hyz) —\/Hi2Hy
(Hi1 + Ha) + v/ HizHoy

In the phase convention (4), the parameter € controls the amount of CP-violation, namely
the CP symmetric limit is recovered for € — 0. We can explicitly write € in terms of the
matrix elements of H

| [X]L> | [X’5>

/\L = myj, —ZFL/Q =

DO | —

(7)

/\S = mg —ZF5/2 =

N | —

_ HZI_HIZ
- 8
‘T AN—Hy— Hy' ®)

where AX = A, — Ag.
Experimentally CP-violation is a small effect, i.e. |¢] < 1. For this reason, one can
simplify eq. (8) to obtain
iIliz + ImF12/2 9

€~
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with

AN = AM —iAT/2
AM = —2R6M12 (10)
Al = —2R6F12 .
Moreover, since AM /AT = —0.9565 + 0.0051 ~ —1, eq. (9) becomes

2 2ReMi, 2 2Rely;

€ ~~

In view of the following discussion of the CP-violation parameters, let us introduce
amplitudes of the weak decays of kaons into two pions states with definite isospin

Are® = (ra(I)| Hw|K°), (12)

where [ = 0,2 is the isospin of the final two-pion state and the §;’s are the strong phases
induced by final-state interaction. Watson’s theorem ensures that

Aze®t = (ma(1)| Hw|K®) . (13)

Direct CP-violation, occurring at the decay vertices, appears as a difference between the
amplitudes (m7|Hw|K°) and (7| Hw|K°). This corresponds to a phase difference between
Ag and As.

One introduces the parameter ¢’ to account for direct CP-violation. A convenient
definition is

, _ {a(O) Hig | Ks){(2) | Hig | K1) = (re(0)| How | K ) (2)| H | Ks)

€ =
V2(r7(0)| Hw | Ks)?
.ei(52—50) A2 .ei(52—50) w

~ 7 m(AO ~ 75 Redy
where w = ReAz/ReAq. Equation (14) is obtained in the approximation ImAy < ReAy,
ImA; < ReA; and also w < 1, as a consequence of the Al = 1/2 enhancement in kaon
decays; ¢ is independent of the kaon phase convention. On the contrary, the parameter ¢,
defined in eq. (6), depends on the choice of the phase. Under a redefinition of the phases
as in eq. (2), € changes as

(w_llmAg — ImAO) , (14)

= —isina + €cos o (15)

cosa — 1€sin &

and the CP-symmetric limit does not correspond to ¢ — 03.
Another parameter, which is independent of the phase convention and accounts for
CP-violation in the mixing matrix, can be defined in terms of the K — m7 transition
amplitudes
(rm(0)|Hw|KL)  isin¢g + €cos ¢g e ImA,
~ {rm(0)|Hw|Ks) — cos ¢ +iesingy et ZReAO ’

(16)

3In this case, the states | K1) are not CP eigenstates.

30



where Ay = |Agle'® and the last expression is obtained in the approximation €, ¢y < 1.
The two definitions, egs. (6) and (16), coincide in the Wu-Yang phase convention, ImAy =
0. One can check that ¢y changes with the phase convention as ¢y — ¢9 + @ and that € is
invariant.

From unitarity, one has

Tiy =3 278( My — E,)(K°|Hy|n)(n| Hw|K°) . (17)

Given the dominance of K® — 77 (0) decay, one obtains the relation I';; = (Af)?. From
eqs. (11) and (16), one has

/4 ImM
€ (m 12 ) (18)

€= \/5 2R6M12 B
where £ = —ImAg/ReAy. In the Cabibbo-Kobayashi-Maskawa phase convention, the ¢

contribution is small and can be safely neglected.
To make contact with the experiments, one defines the two amplitude ratios

<7T07T0|HW'|I(L> <’,’T+7T_|Hw|[X’L>
T/OO = 0.0 .f ? 77+— = _ a ° (19)
<7T T |Hu/|[&5> <7T+7T |Hw|[XS>
Neglecting small terms, one has
oo ~ € — 2¢, M- et (20)

namely

|€|2 s |77+—|22|7700|27

¢ 1 |70/ )
Re | — ~ —|1-— . 21
(6) 6 ( 74— |? (21)

Expressing ngo and n;_ in terms of the corresponding widths

o2 = [(Kp — 7°7%)
Mool = ['(Ks — 7970)
Ky — ntr™)
P = 22
- I'(Ks — ntn—) (22)

eq. (21) gives the CP-violation parameters in terms of measurable quantities. Notice that
¢'/¢ is approximately real, since experimentally §; — dg & —7 /4.
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3 The CKM matrix

In the Standard Model, the basic quark charged-current interactions are described by the
Lagrangian
g _
ﬁquark—W = ﬁuz’yﬂ(l — ’)/5)‘/2]d]W# ‘|‘ h.C.7 (23)
where u; are the charged 2/3 quarks (u, ¢, t), d; the charged —1/3 quarks (d, s, b) and g is

the SU(2)r, weak coupling constant (GF/\/_ = g*/8M},, where G is the Fermi constant).
V' is the unitary CKM matrix [16]. A useful parametrization is [17, 18]

Ve Vus Vi
Vo = (Vcd Ves Vcb) (24)
Vie Vis Vi
CyC, SeC, Sge_ié
= (S@CT — (p8,5,¢  CpC. — 548,85, ¢ C,S; ) .
SpS, — CeCLS,e®  —CpS, — C.Sp5,¢  C,C-

In eq. (24), 0, 0 and 7 are quark mixing angles (in particular, § corresponds approximately
to the Cabibbo angle); Cy, Sy, etc., mean cosf, sinf, etc.; § is the CP-violating phase.
Experimental determinations of |V, 4], |Vis| and |V,3| from K and B decays show that there
is a hierarchy in the mixing angles, so that the CKM matrix can be empirically expanded
in powers of A = Sy ~ 0.22 [19]. Up to and including terms of order A* (A*) for the real
(imaginary) part, V' is given by

— % A AN (p —in)
V=| —2(1+AX(p+in) -5 AN? ., (25)
AN 1= (1=2) (p+in)] —AN(1+X2(p+in)) 1

where S; = AX? and S,e™® = AX3(p —in). In this particular (quark) phase convention,
the imaginary part of the matrix appears at order A
The unitarity of the CKM matrix implies

D Vi Vi = dij (26)
q

In particular, considering the condition
o Vua FVaVea+ ViVia =0 (27)
in the approximation V,4; ~ V;;, ~ 1, one obtains
Ve | Vu
AN AN
This relation identifies a triangle in the p—n plane (see fig. 1). The angles of this triangle,

—1=0. (28)

a, 3 and ¢, are measures of CP-violation.

Recent phenomenological analyses of the CKM matrix elements can be found in refs.
[9, 20, 21]. A brief discussion of these analyses together with the numerical results, can be
found in section 8.
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Figure 1: The unitarity triangle in the p—n plane.

4 The bare AS =1 effective Hamiltonian

Weak decays of light hadrons are more conveniently studied using the Wilson operator
product expansion (OPE) [22]. With the OPE, it is possible to introduce an effective
Hamiltonian, written in terms of renormalized local operators and of the corresponding
Wilson coefficients [23]-[26]. Short-distance strong-interaction effects are contained in the
coefficients and can be computed in perturbation theory, because of asymptotic freedom.
Long-distance strong-interaction effects are included in the hadronic matrix elements of
the local operators and must be evaluated with some non-perturbative technique (lattice,
QCD sum rules, etc.). The convenience of the effective Hamiltonian approach is that
all known non-perturbative methods are usually able to predict matrix elements of local
operators only. In this section we introduce the bare AS = 1 effective Hamiltonian, the
renormalization of which will be discussed in the next section.

At second order in the weak coupling constant and at zero order in the strong coupling
constant, the AS = 1 effective Hamiltonian can be written in terms of a local product of
two charged currents

_ G
My~ = _7F§ [Au (Spypur) (Urvudr) + Ac (uw — )] =

- M (Batta)y_ay (@pds) gy + e (u = €)] (29)
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where (Eada)(V_A) = SoVu(1 —75)ds; @ and (3 are colour indices and the sum over repeated
indices is understood. We have introduced the notation

)‘q = quvq*s (30)

for ¢ = u, ¢, t. In terms of the A,, the unitarity condition of the CKM matrix can be written
as

A+ A+ X =0. (31)

Equation (29) has been obtained from the original theory, by neglecting all masses and
momenta with respect to M. In practice, the effective Hamiltonian is obtained by taking
1/(M% —¢*) — 1/M3, in the T-product of the two charged currents and by putting the w,
d and s masses to zero. In order to discuss CP-violation, it is convenient to write H{7=!

as
Gr

My~ = —Auﬂ [(1=7)(Q; —Q3) + 7Q5] , (32)

where 7 = —)\; /A, contains the CP-violating phase and

Q3 = (Saa)(v_ay (4ds) (vy_ay - (33)

5 QCD corrections

Strong interactions play a crucial role in non-leptonic weak decays. The perturbative
short-distance effects, included in the calculation of the Wilson coefficients, may be very
important because of the presence of large logarithms ~ oZIn"™(Mw/u), where p is a
scale of the order of the mass of the decaying hadron. For an accurate estimate of the
short-distance contributions, the large logarithms have to be resummed to all orders using
renormalization group (RG) techniques.

The starting point is the T-product of the two weak currents expanded at short distances
in terms of local operators. Taking into account the renormalization effects due to strong
interactions, we write

(FIHES= 1) = %Q/d‘*ww () M) (F|T (Ju(2), J,(0)) 1) =

_G—é;awwi(mm o (34)

where (F'| and |I) are the generic final and initial states; the Q;(y) form a complete basis of
operators renormalized at the scale u; the C;(u) are the corresponding Wilson coefficients
and the dots represent terms which are suppressed with respect to the dominant ones as
powers of A¢qp /My, (mi /Mgy, for B-decays). The effective Hamiltonian is independent of
renormalization scale g. On the lattice, the renormalization scale can be replaced by the
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inverse lattice spacing ="' and the effective Hamiltonian can be expressed in terms of bare
lattice operators [9]. The OPE in eq. (34) must be valid for all possible initial and final
states. This implies that the effective Hamiltonian is defined from an operator relation

HY=1 = —% 3 CQuln) = TG ) - ). (35)

The important features of H°=! are the following:

e the Wilson coefficients can be calculated using (RG-improved) perturbation the-
ory, provided that one chooses a sufficiently large renormalization scale y ~ 2-
3 GeV > Aqgep. In the leading logarithmic approximation (LLA), all terms of
O (as(p)" log(Mw /p)™) are taken into account;

e all non-perturbative effects are contained in the matrix elements of the local opera-
tors, the calculation of which requires a non-perturbative technique.

Since H$ !, eq. (35), is independent of y, the coefficients 6@) = (Ci(p), Cap),...)
must satisfy the RG equations

=Gy = 347w, (36)

which can be more conveniently written as

0 0 1, -
(10 + Bl = 337 (@) ) ) = 0. 37
where J
O
Blas) = p? i (38)
is the QCD S-function and
. sy oo d 4
Vo) =27 IMZd—ALQZ (39)

is the anomalous-dimension matrix of the renormalized operators; 7 is defined by the
relation which connects the bare operators to the renormalized ones, Cj(,u) = ZA_l(,LL, as)QB.

The solution of the system of linear equations (37) is found by introducing a suitable
evolution matrix U(u, Mw ) and by imposing an appropriate set of initial conditions, usually
called matching conditions. The coefficients C_"(,u) are given by*

A —

C () = U, Mw)C(Mw) , (40)

“The problem of the thresholds due to the presence of heavy quarks with a mass My > mg > Aqcp
will be discussed below.
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with

N as(m2) o
U(my,m :Tasexp(/ 2 ATozs); 41
(m,ms) e ()

T,. is the ordered product with increasing couplings from right to left. The matching
conditions are found by imposing that, at 4 = My, the matrix elements of the original 7'-
product of the currents coincide, up to terms suppressed as inverse powers of My, with the
corresponding matrix elements of H3°='. To this end, we introduce the vector T defined
by the relation

Gr
V2

where <a|@T|ﬁ>0 are the matrix elements of the operators at tree level. We also introduce
the matrix M (y) such that

(A T(IT1)|8) = —==(al@"8)o - T + .. (42)

G
V2

(alHp7="18) = ——=(alQT (n)|B)C(p) =

)13 M (1) Co(p) . (43)

In terms of 7' and M, the matching condition
(T(II)[B) = (| Hy?="18) (44)
fixes the value of the Wilson coefficients at the scale My
C(Mw) = [MT(Mw)]~'T. (45)

Notice that the matching could be imposed at any scale i, such that large logarithms do
not appear in the calculation of the Wilson coefficients at the scale g, i.e. asIn My /p < 1.

Equation (40) is correct if no threshold corresponding to a quark mass between p and
Myw is present. Indeed, as a5, ¥ and S(a;) all depend on the number of active flavours,
it 1s necessary to change the evolution matrix U defined in eq. (41), when passing the
threshold. The general case then corresponds to a sequence of effective theories with a
decreasing number of “active” flavours. By “active” flavour, we mean a dynamical massless
(> mg) quark field. The theory with & “active” flavours is matched to the one with
k + 1 “active” flavours at the threshold. This procedure changes the solution for the
Wilson coefficients. For instance, if one starts with five “active” flavours at the scale My
and chooses m,. < u < my, the Wilson coefficients become

—

Cp) = W, MwC(Mw) = Us(pt, my)Us (s, My )C (M) . (46)

The inclusion of the charm threshold proceeds along the same lines.
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6 The operators of the AS =1 effective Hamiltonian

So far, we have presented the exact solutions of the renormalization group equations for
the Wilson coefficients. In practice, it is only possible to calculate the relevant functions
in perturbation theory. For illustrative purposes, we consider the calculation of the AS=1
effective Hamiltonian at the leading order in QCD. The bare Hamiltonian is given in eq.
(29). In the presence of QCD interactions, other operators appear in the Wilson expansion.
A complete basis is given by the following operators

Q1 = (Sada)wv-a)(upus)v-a
Q; = (Eadg)(V_A)(aﬁua)(V—A)
Qs = (Sada)v-1) > (4395)(v-n)

q

Qs = (Sadp)v-a) ) (3s9)(v-a)

q

Qs = (Sada)v—a) _(Gs05)(v+4)

q

Qs = (5ads)v-s) ) (Gsq0) (v+a)

g

Q7 = (Sada)v-a)(¢ses)(v-a)

Q5 = (Sadg)v-a)(Csca)(v-a)- (47)
The ¢ index runs over the “active” flavours. The above operators are generated by gluon
exchanges in the Feynman diagrams of fig. 2. In particular, ()1 is generated by current—
current diagrams and (J)3—()g are generated by penguin diagrams. The choice of the oper-
ator basis in not unique, and different possibilities have been considered in the literature
[27]. If the electromagnetic correction, are also taken into account, the operator basis
enlarges to include the following operators

3 _
Qr: = §(Sada)(V_A)Eeq(QﬁQﬁ)(V+A)
q
3 _
Qs = §(Sadﬁ)(V_A)Zeq(Qﬁqa)(V+A)
q
3 _
Qs = §(Sada)(V_A)Zeq(QﬁQﬁ)(V—A)
q
3 _
Qo = (Sads)wv-a) > €(@s6a)v-1) (48)

q

Below the bottom threshold, the following relation holds
Qio— Qo —Qa+Q3=0, (49)

so that there are nine independent operators. The basis is further reduced below the charm
threshold by using the relations

Qs—Q3—Q24+Q1 = 0
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X
=)

Figure 2: One-loop corrections to the AS=1 effective Hamiltonian.

A )4

3 1
Qs — 5@1 + 5@3 = 0. (50)

All the operators considered above are dimension-six operators. In principle, two
dimension-five operators

Qe 1

Qll = @msSaU(V_A)daF;w
g "
Q12 = m?mssaU#V—A)téﬁdﬁGﬁu (51)

should also be included in the operator basis. The matrix elements of ()11 and )12, however,
enter only at O(p*) in chiral perturbation theory. Since the phenomenological analysis
presented in the following is only valid up to terms of O(p?), we do not need to include
the contribution of the dimension-five operators in the calculation of ¢//e. The effect of
these operators on ¢'/¢ has recently been analysed in ref. [29]. Other operators of lower
dimensionality (e.g. two-fermion operators) are also potentially present. However, it can
be shown that their effect can be reabsorbed in a suitable redefinition of the fermion fields
and by diagonalizing the quark mass matrix at first order in G [23]-[26].

In summary, the AS=1 effective Hamiltonian, renormalized at a scale g > m., can be
written as

M = A1 7[00 (@) — Q) + Cal) (Quli) — Q50
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+7Q(m)"Clu)} (52)

where, in order to find the Wilson coefficients to a given order in a;, we have to calculate
eqs. (41), (45) in perturbation theory.
The explicit expressions of 4;(a;) and ((as), in the LLA

2
N Qs Ots
A(as) = E’Yio)a Blas) = —Eﬁo, (53)

can be found for example in ref. [5]. In eq. (41), using 4{®) and 3y, one obtains

(0)T
OKS(MW>),VS /250 (54)

Ulp, Mar) = ( (1)

At this order, the matching conditions are trivial: M, eq. (43), is the identity matrix;
T, eq. (42), has all vanishing components with the only exception of T = 1. Thus the
Wilson coefficients at the leading order for m. < p < my are given by

~(0)T ~(0)T
nf:4 ('Vs /Zﬁo)nf=4 "Lf:5 ('Ys /Zﬁo)nf:5
- as’™ (my) as’ (Mw) -
s b

as’(u) o

with C3(Mw) = 1 and all the other Wilson coefficients at the scale My vanish.

In the next-to-leading logarithmic approximation (NLLA), one proceeds along the gen-
eral scheme described above. In this case, all quantities entering in the matching procedure
have to be computed at order a; (a. for the electromagnetic case). The S-function and
the anomalous dimension matrix have to be computed at second order in the coupling
constants. Thus, for example, the anomalous dimension matrix in the NLLA has the form

s

y _ Y 2(0) | De 2 (0)
V=% e + (

Qs

47

24 (1 Qs Qe (g
)7£)+EE£)’ (56)
where O(a?) corrections have been neglected. We will not give here any details of the
NLLA calculations. They can be found in refs. [1]-[5]. At the next-to-leading order, it
is necessary to solve numerically eq. (37). Table 1 contains the coefficients, calculated
at the leading (LO) and at the next-to-leading (NLO) order, using the ’t Hooft—Veltman
(HV) and the naive dimensional (NDR) regularization schemes, for different values of
the renormalization scale p. The errors in the table take into account the variation of
the values of the coefficients due to AS)CD = (330 + 100) MeV and m; = (174 + 17)
GeV. Notice that the next-to-leading Wilson coefficients and operators both depend on the
regularization scheme, while the effective Hamiltonian is scheme-independent up to terms
O(a?). Actually the dependence of the effective Hamiltonian on the regularization scheme,
due to the unknown next-to-next-to-leading terms, can be estimated and contributes to
the uncertainties in the prediction of €'/e, see ref. [9].

The coefficients in table 1 have been computed independently by the Munich group

[4, 14]. The definition of the renormalized operators in the HV scheme used here differ
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from those defined in ref. [14]. This is due to the different way of taking into account
the two-loop anomalous dimension of the weak current, which does not vanish in the HV
calculation. One can relate the HV coefficients of table 1 (C_") and those of ref. [14] (6’)
The relation is

Gy = (1= HE 2 1)), (57)
where NZ 1
vy =4 SN_ Bo. (58)

Once these differences in the definition of the renormalized operators and the reduction
of the operator basis, eq. (49), are properly taken into account, the numerical results
presented here agree with those of ref. [14].

7 Relevant formulae

In order to estimate €'/ ¢, we have to constrain the CP-violating phase ¢ in the CKM matrix,
by using the available experimental information. To this end, we consider the CP-violating
term in the K% K° mixing amplitude and the CP-conserving term for B°-B° mixing. In
the following, we present all the formulae used in our analysis, namely the expressions of
¢, vg and €'/ from the AS=2, AB=2, AS=1 effective Hamiltonian, respectively.

The effective Hamiltonian governing the AS =2 amplitude is given by

G3 _
HET = 1o Mip(75d)? {NLF (we) + A () + 20 A (e 2) | (59)
where z, = m2/My, and the functions F(z;) and F(z;,z;) are the so-called Inami-Lim
functions [28], including QCD corrections [2]; F/(z;) is known at the next-to-leading order
and has been included in our calculation. From eqs. (18) and (59), one can derive the
CP-violation parameter

lele=o = C.BrA*X°osin§ {F(x.,x:)+

F(a)[AX(1 = 0 cos §)] — F(x.)} , (60)
where
— G%‘f?{M]{M&V (61)
O 6V2mAM

In eq. (60), p = ocosd, n = osind and A, A, p and 5 are the parameters of the CKM
matrix in the Wolfenstein parametrization [19]. Bk is the renormalization group invariant
B-factor, the definition of which at the leading order is

= . 8
(K| (s75d)? |K) = 2 Ff Mo ()°/ Brc (62
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| LO NLO HV NLO NDR
u =15 GeV
Ci1 | (-4.224+0.65£0.00) x 1071 (—3.91+0.51 £ 0.00) x 1071 (—3.80 £ 0.55 £ 0.00) x 10~!
C (11.62 £ 0.38 4+ 0.00) x 1071 (106.134 0.82 £ 0.00) x 10~2 (11.95+0.35 £ 0.00) x 1071
Cs (1.994 0.35 £ 0.00) x 1072 (2.174 0.41 £ 0.00) x 1072 (2.604 0.52 £ 0.00) x 1072
Cy | (-4.164+0.56+0.02) x 1072 | (—4.514+0.60£0.01) x 10~2 | (-0.63+0.11 £0.00) x 10~}
Cs (1.1940.12 £ 0.00) x 1072 (1.374 0.15 £ 0.00) x 1072 (10.52 £ 0.61 + 0.01) x 1072
Ce¢ | (—0.66+0.13+0.00) x 1071 (—0.63 £ 0.11 +0.00) x 101 (—0.93+0.21 £ 0.00) x 10~}
Cr (0.16 4+ 0.04 £ 0.19) x 1073 (—0.04 4+ 0.0040.17) x 1073 (0.0240.06 £ 0.20) x 1073
Cs (0.634+0.14 £ 0.16) x 1073 (0.9740.19+ 0.15) x 1073 (1.064+0.26 £ 0.19) x 1073
Co | (=6.774£0.27+£0.71) x 10~° | (—6.324+0.374+0.64) x 10~> | (-7.24+0.19+0.73) x 107>
un=2 GeV
C1 | (-3.474£0.44+£0.00) x 1071 (—3.294+ 0.37£0.00) x 1071 (—3.13 4+ 0.39 £ 0.00) x 10~ !
Cs (11.16 £ 0.23 £ 0.00) x 107! (104.13+ 0.54 £ 0.00) x 10~2 (11.544+0.23 £ 0.00) x 107!
Cs (1.5940.23 £ 0.00) x 1072 (1.734 0.26 £ 0.00) x 1072 (2.0740.33 £ 0.00) x 1072
Cy | (—-3.504£0.40+£0.01) x 1072 | (—3.824+0.4440.01) x 1072 | (=5.19£0.71 £ 0.01) x 1072
Cs (10.40+0.94 £ 0.04) x 1072 (1.20+£0.11 4 0.00) x 1072 (10.54+0.16 £ 0.02) x 102
Ce | (—5.234£0.80+£0.03) x 1072 | (—5.0840.7240.03) x 10~2 | (-0.72+£0.13+0.00) x 10~}
Cr (0.18 £0.02 4+ 0.19) x 10~3 (0.01 £ 0.00+ 0.18) x 10~3 (0.01 £ 0.04 £0.20) x 1073
o (0.5040.08 £ 0.12) x 1073 (0.774£0.12 4 0.12) x 1073 (0.814+0.16 £ 0.14) x 1073
Co | (-7.034£0.20+£0.74) x 107° | (=6.714+0.274+0.68) x 10—® | (=7.49+0.1540.75) x 1073
n=3GeV
Ci | (—2.68+0.28+0.00) x 1071 (—2.59 4+ 0.25 £ 0.00) x 1071 (—2.414+0.25 £ 0.00) x 107!
C (10.71 £ 0.12 4+ 0.00) x 1071 (101.884 0.24 £ 0.00) x 1072 (11.12+0.14 £ 0.00) x 1071
Cs (1.2040.14 £ 0.01) x 1072 (1.294 0.16 £ 0.00) x 1072 (1.564+0.19 £ 0.01) x 1072
Cy | (-2.784+0.26+£0.01) x 1072 | (=3.064+0.2940.01) x 1072 | (—4.10+ 0.46 £ 0.00) x 1072
Cs (8.604 0.67 £ 0.04) x 1073 (9.994 0.84 £ 0.04) x 1073 (9.7540.46 £ 0.03) x 103
Ce¢ | (—3.89+0.47+0.03) x 1072 (—3.84+0.44 4+ 0.03) x 1072 (—5.33£0.73 £ 0.03) x 1072
Cr (0.2240.01 £ 0.20) x 1073 (0.08 4 0.00 £ 0.19) x 1073 (0.0440.02 £ 0.20) x 1073
Cs (3.734+0.50 £ 0.92) x 104 (5.8440.74 £ 0.91) x 1074 (0.5940.09 £ 0.10) x 1073
Co | (=7.2940.14+£0.77) x 10~° | (-7.044+0.184+0.73) x 10—> | (—7.66+0.11 £ 0.78) x 10~>
uw=4.5 GeV
C1 | (-2.07£0.19+0.00) x 1071 (—2.03 4+ 0.18 £ 0.00) x 1071 (—1.84 £ 0.17 £ 0.00) x 1071
C» | (103.85+0.674 0.00) x 10=2 | (1001.15+ 0.43 4+ 0.00) x 10~2 | (108.20 £ 0.87 £+ 0.00) x 10~2
Cs (1.134+0.11 £ 0.03) x 1072 (1.1940.12 £ 0.03) x 1072 (1.4040.14 £ 0.03) x 1072
Cy | (-2.4240.204£0.02) x 1072 | (-2.674+0.234+0.02) x 1072 | (—3.51+0.34+0.02) x 1072
Cs (7.06 £ 0.49 £+ 0.04) x 1073 (8.36 £ 0.66 £+ 0.04) x 10~3 (8.75+£0.52 £+ 0.04) x 1073
Ce | (—2.9440.29+0.02) x 1072 | (-2.974+0.2940.02) x 1072 | (—4.09+0.46 £ 0.02) x 1072
Cr (0.29+£0.01 £ 0.20) x 1073 (0.17+£0.00+ 0.19) x 1073 (0.09 £ 0.01 £ 0.20) x 1073
o (2.8840.32 £ 0.69) x 104 (4.5340.49 £ 0.70) x 104 (4.3940.52 £ 0.77) x 1074
Co | (—0.9640.01£0.10) x 1072 | (=0.9340.00+0.10) x 1072 | (=0.97 £ 0.01 £ 0.10) x 1072
Cio (2.12+0.19+0.24) x 10~° (1.95+0.17+0.24) x 10—° (1.86+£0.16 +£0.23) x 10~3

Table 1:

here correspond to the central values of these paramelers.

Wilson coefficients of the AS =1 effective Hamiltonian at p =
GeV. For u < my, the relation (49) has been used to reduce the operator basis. We take
Ag)CD = (330 £100) MeV and m; = (174 £ 17) GeV. The values of the coefficients shown
The first error is due to the

uncertainty on Agcp, the second is due to my.
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The AB=2 effective Hamiltonian is given by

_ G* -
HET = e Miv M (v d)* F(x0) (63)
Here \; = V;;Vj;. From eq. (63), one finds the B°-B° mixing parameter
AM 2
Tqg = FB = CBT]Z];BBBAZ/\G(l—|—02—20c085)F(;r:t),
G% M3, M3
Cp = ——F 5 (64)

where Bpg is the B-parameter relevant for B— B mixing, the definition of which is analogous
to the By one.
We can write ¢ as
/ ei0amdo) g —1 /
¢ = ZTRGAO {w (ImA2)" — (1 — Q;B) ImAO} . (65)
With respect to eq. (14), we have here explicitly written the isospin-breaking contribution
Qg see for example ref. [30],

(ImA,) = (ImAy) — Qrp(wImAy). (66)

To compute ImAg and (ImA;)’, we need the hadronic matrix elements of the operators
(); between a kaon and two pions. Usually they are given in terms of the so-called B-
parameters:

(mr(1 = 0)|Qu(u)|K) = B(u)(mn(l = 0)|QilK)vra
(rr(1 = 2)|Q:(w)|K) = BY(u)(wm(l = 2)|Qi| K)via (67)
where the subscripts VA means that the matrix elements are computed in the vacuum

insertion approximation. The relevant V' I A matrix elements can be expressed in terms of
three quantities

X = g (M), (65)
Y= (ms<u>ﬂﬁnd<m)2wmx(%)2’ (69)

fﬂ'

From Hff*j,:l, the expressions of (ImA,)" and ImAg in terms of Wilson coefficients and of
the B-parameters are obtained

7 :4(@—1))& (70)

G 1
ImA, = —TISIHI(‘/;;‘/M) {— (CGBG + §O5B5) 7+ (C4B4—|-
1 o 7 X
50333) X +C:B;"” <? +5 5) + CsBy? (2Y +
z X 1/2X

O, Be
Z o) OBt
2+6) 0993+<3

+ CQB;) X} , (71)
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Yy X

X 2X
Cs B <Y - g) + 0933/27} . (72)

Notice that the matrix elements of the electromagnetic left-right operators )7 s, which
belong to the (81, 8g) representation of SU(3);, ® SU(3)g, contain Y and do not vanish in
the chiral limit.

The evaluation of the B-factors requires a non-perturbative technique. The Wilson
coefficients and the hadronic matrix elements both depend on the regularization scheme.
In order to cancel this dependence (up to O(a?)), it is necessary to control the matching
between the B-parameters and the coefficients at the next-to-leading order. Notice that
many non-perturbative methods (e.g. 1/N expansion) do not fulfil this requirement.

Two different approaches to the matrix element evaluation have been used in recent
next-to-leading €'/e analyses:

e In our previous analysis [8, 9], the numerical values of the B-parameters have been
taken from lattice calculations [31]. Suitable renormalization factors are introduced
to take into account the difference between the HV, NDR and lattice regularization
schemes. For those B-parameters not yet computed on the lattice®, we have made
educated guesses, which are discussed in detail in ref. [9].

e A phenomenological approach has been implemented in ref. [14], where the B-
parameters are constrained by using the experimental information from CP-conserving
processes, by assuming SU(3) flavour symmetry and deducing some constraints re-
lating hadronic matrix elements at the charm threshold. Unfortunately, there is no
way to determine the most important B-factors necessary to estimate €'/¢, namely
Bg and Bg, which remain essentially unconstrained in this approach.

8 Results

In this section, the main results of our analysis are summarized. These results have been
obtained by varying the experimental quantities, e.g. the value of the top mass my, 75, etc.,
and the theoretical parameters, e.g. the B-parameters, the strange quark mass mg, etc.,
according to their errors. Values and errors of the input quantities used in the following are
reported in tables 2-4. We assume a Gaussian distribution for the experimental quantities
and a flat distribution (with a width of 20) for the theoretical ones. The only exception is
mg, taken from quenched lattice QC' D calculations, for which we have assumed a Gaussian
distribution, according to the results of ref. [32].

The theoretical predictions (cosd, €'/¢, etc.) depend on several fluctuating parameters.
We have obtained their distributions numerically, from which we have calculated the central
values and the errors reported below.

BB/

®Indeed B-parameters,which give the main contribution to the value of €'/e, namely Bgs, Bg and

Bé3/2), have already been computed on the lattice, see table 4.
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Parameters Values
my (174 £ 17) GeV
ms(2 GeV) (128 £18) MeV
AgeD (230 + 80) MeV
Vi = AN? 0.040 £+ 0.006
|Vip/Vap| = Ao 0.080 + 0.015
B (1.49 £ 0.12) x 1072 sec
T4 0.685 + 0.076
(fBY ) (200 £ 40) MeV
QB 0.25 £ 0.10

Table 2: Values of the fluctuating parameters used in the numerical analysis.

Using the values given in the tables and the formulae given in the previous sections, we

have obtained the following results:

a)

b)

o)

The distribution for cos d, obtained by comparing the experimental value of ¢ with
its theoretical prediction, is given in fig. 3. As already noticed in refs. [7, 8] and
[20, 21], large values of fg and m; favour cos § > 0, given the current measurement of
z4. When the condition 160 MeV < fBB]lB/2 < 240 MeV is imposed ( fg-cut), most of
the negative solutions disappear, giving the dashed histogram of fig. 3, from which
we estimate

cosd =0.47+0.32 . (73)

A contour plot in the p—n plane is given in fig. 4. It shows the current limits on the
unitarity triangle defined in fig. 1.

In fig. 5, several pieces of information on ¢'/e are provided. Lego plots of the
distribution of the generated events in the €¢//e—cos § plane are shown, without and
with the fg-cut. In the same figure, the corresponding contour plots are displayed.
One notices a very mild dependence of €//¢ on cosd. As a consequence, one obtains
approximately the same prediction in the two cases (see also fig. 3). In the HV
scheme the results are

dle=(234£2.1)x107* no — cut (74)

and

/e =(2.8+£24) x 107" fg— cut, (75)

whereas in the NDR scheme we obtain

dle=(28+22) x 10~* no — cut (76)
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m=(174+£17) GeV  A®,=(3304100) MeV
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Figure 3:  Distributions of values for cos d, sin 23, €'/e and €' [e(A*n)~', for m; = (174417)
GeV, using the values of the parameters given in labs. 2-4. The solid histograms are
obtained without using the information coming from By—B; mizing. The dashed ones use

the x4 information, assuming that 160 MeV < fBBJIB/2 < 240 MeV.
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m=(174+£17) GeV  A®,=(3304100) MeV
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Figure 4:  Contour plots in the p—n plane. The solid, dashed and dotled conlours contain
5%, 68% and 95% of the generated events respectively. The conlours are given by excluding
or including the fg-cut. Similar resulls can be found in refs. [20, 21].
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m=(174+£17) GeV  A®,=(3304100) MeV
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and

By averaging the results given in eqs. (75) and (77), we obtain our best estimate

where the third error comes from the difference of the central values in the two
schemes and gives an estimate of the uncertainty due to higher-order corrections.

Constants Values
Gr 1.16634 x 107°GeV ™~
M, 1.5 GeV
my 4.5 GeV
Mw 80.6 GeV
M, 140 MeV
My 490 MeV
Mg 5.278 GeV
AMy 3.521 x 107'2 MeV
fr 132 MeV
I 160 MeV
A =sinf 0.221
€cap 2.268 x 1073
ReAq 2.7 x 1077 GeV
w 0.045
L 2 GeV

Table 3: Constants used in the numerical analysis.

/e =(3.4425) x 107" fg — cut.

¢/e=(314£254+£0.3) x 107" fp — cut,

A similar result has been obtained in ref.

[14], using a different approach to the

B By B;_, Bs.4 Bsg | BYD, | BB/
0.754+01510624+010 [ 0—-0.15% [ 1 —6® [ 1.0+02] 10 [1.04+0.2

The only exceplion is By",

rgi

has been taken equal to By, at any renormalization scale.

s BS/Z(M = 2 GeV). Entries with a ) are educated guesses, the others are laken from
lattice QCD calculations.
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Table 4: Values of the B-parameters, for operators renormalized at the scale p = 2 GeV.
which is the renormalization group invariant B-parameter. By 3/2
The value reported in the table




hadronic-matrix-element evaluation. They quote

!

% = (6.7 +2.6) x 107 (79)
for my = 130 GeV. For this value of the top mass, the cancellation between penguin and
electropenguin contributions is less effective, thus their ¢’ /e prediction is significantly larger
than ours. Actually the two predictions agree, once the difference in the top mass is taken
into account®. It is reassuring that theoretical predictions, obtained by using quite different
approaches to matrix elements evaluation, are in good agreement.

On the basis of the latest analyses, it seems very difficult that ¢'/¢ is larger than
10 x 107*. Theoretically, this may happen by taking the matrix elements of the dominant
operators, (J¢ and (Jg, much more different than it is usually assumed. Omne possibility,
discussed in ref. [14], is to take Bg ~ 2 and Bg ~ 1, instead of the usual values Bg ~ Bg ~ 1.
To our knowledge, no coherent theoretical approach can accommodate such large values of

Bg.
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