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Introduction

The study of CP violation in neutral K decays has been, from the outset, the primary goal
of a high-luminosity ®—factory, like DA®NE. At the beginning, attention was focussed
almost exclusively on the measurement of the direct CP-violation parameter, ¢//e. Due
to the very interesting work of Buchanan et al. [1], it has been realized that, in addition,
a ®—factory offers the unique possibility to make a clean test of the CPT symmetry, at
the level of precision of few parts 107 of CP—violating amplitudes, independently from
possible conspiracies still allowed in presently measured quantities.

The aim of the present article is to provide a self-consistent introduction to the phe-
nomenology of CP and CPT violation in neutral Kaon decays and to give a first illustration
of the impact of DA®NE on the issue of the CPT symmetry.

More details are provided in the subsequent papers [2, 3]. The calculation of ¢ /¢ in the
Standard Theory is also reviewed here (but discussed in [3] in more detail). CP violation
in charged Kaon decays is deferred to a later part of this Chapter [4].

Of course, there exist in the literature many excellent reviews of the subject, starting
from the classical and influential article of Lee and Wu [5]. In the more recent literature,
CPT symmetry in Kaon decays has been analyzed by Barmin et al. [6] and, with reference
to the experiments at a ®—factory, in Refs. [7, 1].

1Supported by the INFN, by the EC under the HCMP contract number CHRX-CT920026 and by the
authors home institutions



1 Hamiltonian matrix, eigenvalues and mixing

The hamiltonian of the neutral Kaon system, in the particle rest frame, is a complex, 2x2
matrix:

H:(ii):M—%F (1.1)

We are in the basis:
up = |K°>; down = |K° >;

h, I, m, n are complex numbers (so that H depends upon 8 real parameters), and M and
I' are hermitian matrices.

The sign of the antihermitian part of H is determined by the requirement that it must
lead to exponential damping of the wave-function, for ¢ — 4+o00. With the sign given in Eq.
(1.1), the time-dependent factor of the wave-function is: exp(—iEt) = exp(—iMt — $T't),
which is correct, provided that I" has non—negative eigenvalues.

We shall also write:

M11 M12 F11 Fl?
( My My, ) ’ ( [ar Tao )
Symmelries.

CP:

|K®>— |K®>; |K°>— |K° > (1.2)
T:

makes the complexr conjugate (1.3)

It follows (7, = Pauli matrices):
CP:
M — rMr; TI''—nln (1.4)

T:
M- My I'=>TI" (1.5)

If we develop both M and I" in the basis of the Pauli matrices plus the identity,
X =¢l + Zcin; (co,..,c3 real)

we are led to the following Table, which gives the sign taken by each component under CP,
T and CPT transformations.



Tab.1

Co €1 C2 C3
CP: + + — —
T: 4+ + — +
CPT: + + + —
We recover the familiar result that CPT implies equal diagonal elements. Also, CP con-
servation implies CPT conservation (unlike in 27 decay amplitudes, see below).
There is some freedom to redefine the phases of the states | K° > and | K° >. Strangeness
is conserved by strong and e.m. interactions, so we can make the change:

| n, S > e | n,S >

ie.:

|KO>— e | K°>; | K>— e | K°> (1.6)

In the new basis, the CP transformation is not given by (1.2) anymore, so that the matrix
H needs not satisfy the rules given above, even if CP is conserved. All this amounts to say
that CP is conserved if and only if there exists a change of phase of the form (1.6) such
that, in the new basis, M and I' have vanishing components along 7 and 75. This happens
when Mi; and T';3 have the same phase. We conclude that the phase-invariant condition
for CP conservation is:

r
arg(M—i) =0 (CP symmetry) (1.7)

Diagonal elements are not affected by the phase change, so that the condition for CPT
symmetry is always:

M11 = MQQ; Fll = FQQ (CPT symmetry) (18)
Figenvalue equation:
h — A [
det ( I ) =0

leads to:

Ay = %[h+ni\/(h—n)2+4lm} (1.9)

note: (Ay — h)(A_ — h) = —Im.
(1)

Eigenvectors:
q Ay —h n—h:l:\/(h—n)2—|—4lm
(}—))i =—7= 57 (1.10)




The identification of Ky, and Kg states is obtained by going to the symmetric limit of
exact CP (and CPT). In this limit, see (1.7) and (1.8):

Ay =h+Vim

12— 5l 2 phase factor e
x* K3 * *
My, — 317, My,

1 ;o e_i%
U+ =P+ | o | =P+ g | &

= CP — even (after phase redefinition)

e—ioz _ia e—i%
v = —q_ _1 = —q_e 2 _e_i% =

= CP —odd (after phase redefinition)

2t

S

so that:

Therefore, by continuity, we identify:
| Ks >=wvy; | KL >=v_ (1.11)

Conventionally, eigenvectors are written in terms of two complex numbers, ¢z, 5, defined

by:

| Ks >=vy = Ns(| K1 > 4es | Ky >); N32 =14 |es |? (1.12)
| Ki, >=v_ = Ns(| K2 > +er, | K1 >); Np2=1+ ¢ | (1.13)

with: |
| 1(172 >= —(| Ky >+ | R70 >) (114)

V2

The Hamiltonian matrix is determined by 8 real parameters, which we can substitute
with the 2 complex eigenvalues and the 2 complex mixing parameters, €7, 5. The relevant
formulae are:

i

(mp, — ms) + %(rs —Tp) = —/(h—n)? + 4lm (1.16)

1 —e¢s n—h—l—\/(h—n)2—|—4lm L1
l4+es 21 (1.17)




1 n—~h4++/(h—n)2+4m
ter V/(h—n) (L18)

1 —e¢p 2m

In the CPT symmetric limit, A = n and there is only one mixing parameter, € = €5 = €y,

My — F
\/ 12 5 12 (CPT exact)
My, — 517,

To keep contact with the CPT-invariant limit, the €’s are conveniently written as:

determined by:

GSZGM—I-A (119)

€, = eM—A (120)
2 K — 2m decay amplitudes, 1

The strong interaction, S—wave, phase shifts for 7 — 7 scattering are defined as:
< 2m,I;oul | 27, I;in >= %1 (2.1)

where I denotes the total isospin (I = 0,2) and a c.o.m. energy equal to the Kaon mass
is understood. In fact, since a 27 state cannot transform into 37 or 47 states by energy
conservation, Eq. (2.1) can be rewritten as:

| 27, I;in >= €*°1 | 2, I; out > (2.2)

271 decay amplitudes of K° and K° are defined according to:

3 .
A(K® = 2r, 1) =< 27, [;0ut | Hw | K° >=pgr \/;(AI + By) e (2.3)

B B 3 .
A(K® =21, 1) =< 2m, I;out | Hy | K® >=pgr \/;(A} — Bj) € (2.4)
(The factor /3/2 is inserted to simplify later formulae). Symmetry relations are as follows.

CP: <2m lout| Hy | K®>=<2r,L;out | CP7'(Hw)CP | K° > (2.5)

T: <2m[out | Hy | K® >*=<2m, [in | T7'(Hw)T | K°
= e %0 < 9n Lyout | T-YHw)T | K° > (2.6)

Writing, for fixed I:
A= AN 4i4?



B = B" 4+{B®

the symmetry properties of the various components of the amplitude are those given in the
Table.

Tab.2
A 4@ ) B

cCP: + — — +
T: + — + —
CPT: + + — —
In this case, we may have CP conserved and CPT violated or viceversa. B is exclusively
a signal of CPT violation.

3 The Wu-Yang phase convention

It is very important (and helpful!) to keep track of the phase arbitrariness embodied by
Eq. (1.6). From the formulae above, one has:

X — e750X (3.1)

with:
S=0; -2 42; (forX=horn;l;m) (3.2)
S=1; (for X= A or By) (3.3)

We can use the phase arbitrariness to make one of the quantities in (3.2) and (3.3) to
be real. The Wu-Yang convention [8] requires:

Ag = real and positive (3.4)

The Wu-Yang convention is phenomenologically very useful, as we shall see presently.
It corresponds to shift as much T-violation as possible away from the dominant, Al = 1/2,
non-leptonic amplitude into the suppressed, Al = 3/2 one.

In the usual parametrization of the KM matrix precisely the opposite occurs, namely
T-violation appears predominantly in the Al = 1/2 amplitude, due to t-quark exchange
in penguin diagrams, while the Al = 3/2 amplitude is predominantly real (except for
electroweak penguin effects, which may become important for large values of the t-quark
mass, see Sect. 5). Of course, amplitudes computed in the latter (KM) convention can be
transformed back to the Wu-Yang phase convention by the transformation (3.1) with:

. [mAO
Ao

(3.5)

o =

We adopt the Wu-Yang convention in the following.



4 K — 21 decay amplitudes, 11

From Egs. (2.3) and (2.4) and the isospin Clebsch-Gordan coefficients, one finds the decay
amplitudes in the 777~ and 7%7° channels:?

A(I(O — ’7T+7T_) = (AO + Bo)eléo + _(A2 + B2)6252 (41)
V2
A(I(O — ’7TO7T0) = (AO + Bo)emo — \/5([42 + B2)€i52 (42)
For K° amplitudes, A — A*, B — —B*. Also:
A(K — 7t7°%) = g(Ag + B2>€i52 (4.3)

From these formulae and from the experimental Kg and K+ decay rates we can derive
the values of the CP and CPT-conserving amplitudes:

Ag=2.7-107"GeV (4.4)
Ay
w A 0.045 ( 5)
as well as:
008(52 — 50) = 052, | 52 — 50 |: 590 (46)

The value of the phase is in reasonable agreement with the one found from pion production
in m-Nucleon scattering and in K4 decay:

So — 6y = (41.4 £8.1)° (Devlin and Dickey [9])

§o — 8y = (46.3720)°  (Shenk [10]) (4.7)

After these preliminaries, we proceed to derive the formulae for the 27 decays of Kj.

One defines:
A(Kp — ntmn™) A(Kp, — 7°79)

== A(Ks — ntr—)’ oo = A(Ks — n970)
and finds, from Eqgs. (1.13) and (4.1-2) (Wu-Yang convention is used throughout, terms of
second order in CP/CPT violation and first order multiplied by w? are neglected):

(4.8)

A(Ky — mtm™)
_=c
T L A(Ky — ntm™)

=ec+ ¢ (4.9)

2The decay rates into 7t 7~ or 7t 70 are given by: Rate= &2 | A |2. For 7070 there is an additional

. . . 8w M?
factor of 1/2, for the identical particles.



Moo = €r, + / =e—2¢ (4.10)

with: PR
e= ey — (A — =20 (4.11)

A
r_ 2(52_50)i ]mAg o R€B2 . RGBO 4 12
€ =ie \/5{ 1, i 1, 1 )} (4.12)

Eqgs. (4.9) and (4.10) are formally identical to those of the exact CPT limit, but with
a different relation between e and the mass mixing parameters, and with an additional
contribution of the B’s to €.

In the limit of vanishing A and B, one obtains in (4.12) the usual expression for ¢, in the
notation appropriate to the Wu-Yang convention. As noted before, given the amplitudes
computed with a different phase convention, e.g. with the usual KM phases, we obtain
the amplitudes in the Wu-Yang frame by making, for any AS = —1 amplitude X, the
replacement:

Im AO
Ao

In this way, we obtain from Eq. (4.12) the phase-convention independent expression:

ImX — ImX — ReX

(4.13)

V2

The structure of Eq. (4.14) can be read very simply, with reference to the definition of
¢’ given in Eq. (4.9). The factor expi(dy — dg) arises from the final state interaction, the
dominant final states being I = 2 and I = 0 for the numerator and denominator of the
ratio in Eq. (4.9), respectively. The further factor of ¢ arises because €, being CP violating,

. ImA;, ImA B B
e it heBy _ ke 5] (4.14)

c=! A, A — i A, A,

must violate time-reversal in a CPT conserving theory (i.e. be imaginary, apart from the
final state interaction phases). CPT violation, indeed, appears as a further, T-conserving,
imaginary contribution to the square bracket in Eq. (4.14).

5 Standard Theory prediction of €' /e

The parameter € is uniquely related to CP (and CPT) violation in the transition ampli-
tude, see Eq. (4.14). In the usual terminology, € # 0 characterizes milli-weak theories,
i.e. theories in which the weak interaction itself has a small but detectable CP violating
component. The mass mixing parameter, ¢, arises as a 2"? order weak effect, in which the
CP-odd and CP-even parts combine to give the AS = £2 quantities My and T'y5.
Another, logically independent, possibility is that the observed CP-violation is the
1" order manifestation of a new interaction with AS = +2. In the mass matrix, the
new interaction competes with the 27¢ order weak contribution. Therefore, a very weak
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interaction is required, of strength ~ 1072 - (GFrM})* ~ 107", to give rise to the observed
CP violation. This is called the "superweak” theory [11], and it has the obvious prediction
that no CP-violation is visible in channels available to 15 order weak transitions, i.e. it
predicts ¢ = 0.

Milliweak theories are in danger to contradict the very tight experimental limits to
the electric dipole of the neutron, a T- and P-violating, AS = 0, effect. Unless a special
cancellation occurs, we expect any hadron to have an e.d.m. of the order of:

pe ~e-rp(GrME) | e |~ 107 e cm (5.1)

rp ~ 1073em is the proton radius, which gives the general dimension, the Fermi constant
Gp 1s associated to P-violation while €, in a milliweak theory, characterizes the generic
strength of T-violation. The present experimental upper bound to the neutron e.d.m. is
[12, 13]:

(1B ) newtron < 1.2-107%¢ - cm (5.2)

much too small to be compatible with (5.1), which therefore calls for a very special can-
cellation.

The Standard, six flavour, Theory [14] is a milliweak theory in which such a special
cancellation does occur [15]. CP-violation (rather, T-violation) arises because different
components of the weak charged current have non-vanishing relative phases. However, the
one-loop correction to the electromagnetic current of a given quark, e.g. the d-quark, is
given by a sum of terms in which each complex entry, corresponding to, say, d = ¢ (V.4),
is multiplied by the amplitude for the inverse process, ¢ — d (VZ;). Thus, the correction
is real and the e.d.m vanishes to one loop, which brings the estimate (5.1) already down
to ~107%* - ¢ - cm.

A further suppression is due to the fact that one can rotate away the CP-violating
phase when any two quark of the same charge are degenerate in mass [15]. Thus, any CP-
violating effect in the Standard theory must involve light quark mass differences, which
brings in powers of mgyuark/Mw .

Finally, as shown in Ref. [16], the quark e.d.m. vanishes also at two-loops, which brings
in another factor of 1072,

In conclusion, current estimates are that the e.d.m. of the neutron in the Standard
Theory is essentially unobservable [16]:

(1B )newtron =2 107 e - em  (Standard Theory) (5.3)

The above discussion underlines the importance of a positive measurement of ¢'/e.

The first calculation of ¢/¢ in the Standard Theory is due to Gilman and Wise [17].
We summarize here the most recent analyses[18, 19]. The calculation of €¢'/e goes through
several steps.
i) Determination of the effective weak, non-leptonic Hamiltonian, H.ss. The coefficients of
the effective Hamiltonian depend upon the chosen value of the subtraction point. Provided
we choose the subtraction point large enough, the result is dominated by short-distance ef-
fects which, in QCD, are controlled by perturbation theory. Different terms in H.;f can be
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classified according to their transformation properties under chiral SU(3)xSU(3)[20]. The
dominant term transforms as (8z,1g), corresponding to the familiar octet-enhancement,
while Al = 3/2 transitions are produced by a (271, 1g) component. The (8;,1g) compo-
nent has a complex coefficient which arises, in the usual KM phase convention, because of
t-quark exchange in the so-called penguin diagrams. Electroweak penguin diagrams give
rise instead to (8,8gr) components, also with a complex coefficient.

ii) The (8;,1R) term gives rise to a non-vanishing value of Im Ay, thus giving a first con-
tribution to Eq. (4.14). Contributions to /m A, arise from two different sources. The first
is due to isospin breaking: the octet component contributes to Im A, a term proportional
to the quark mass difference, my — m,. Although this difference is small:

(mg —my) _ 3 MeV
ms - 150 MeV

= 0.02

it is partly compensated by the fact that such a term appears in Eq. (4.14) divided by
Re A, and is therefore enhanced by a factor of w™! with respect to the previous one, see
Eq. (4.5). A second contribution to Im Ay arises from the (81,8g) component. The small
Wilson coefficient with which it appears in H.;; is partly compensated by the factor w™!
and also by the fact that chiral symmetry does not require the matrix element of the
(81,8r) to vanish for vanishing external momenta, as is the case for both the (8, 1x) and
(271, 1Rr). The raising with the ¢-quark mass of the Wilson coefficient of the (8;,8g) term
is responsible for the decrease of €'/e.

ii1) Matrix elements of the effective Hamiltonian are parametrized in terms of the so-called
B-factors, scale factors which measure the deviation of the true matrix element from the
one computed in the vacuum insertion approximation. At present, systematic calculations
of the B-factors have been carried on with lattice QCD, QCD sum rules and the expansion
in the inverse of the number of colours, 1/V.,.

Predictions of ¢/e vs. the top-quark mass are discussed later in this report [3]. For
illustration, we show in Fig. 1 the theoretical prediction, for B-factors computed in lattice
QCD.

The value of ¢/¢ is generally predicted in the 107 range. A very small value results
for my ~ 200 GeV, due to the electroweak penguin effects. The top-quark mass recently
discovered by CDF [21] is:

Mo, =174 £ 17 GeV

For this value, the best prediction of lattice QCD calculation is [3]:

/

[%]lamce = (3.1+£2.5)107 (5.4)
6 Semileptonic amplitudes

We focus on K3 decays of K° and K°. On general grounds, there are 4 independent matrix
elements, related to the (complex) form factors of the transitions:
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140 150 160 170 180 190 200

Figure 1: €¢'/e as function of m;, obtained by applying the fg-cut [3]. The zones delimited by
the solid and dashed curves represent the allowed regions containing respectively 68% and
95% of the generated events. The region between the two double lines is the experimental
result coming from K731, see text.

AS = AQ:

K° = ety m™
( K° = e pmt ) (6.1)
AS = —AQ:

K° — e vt
( K° = ety.n™ ) (6.2)

Time-reversal relates each form factor to its complex conjugate, CP relates K° to K°
form factors. This suggests to parametrize the amplitudes according to:

<etvn” |Hw | K >=a+b (6.3)
<evnt | Hy | K° >=a* — b* (6.4)
<evnt |Hy | K >=c+d (6.5)
<etvn | Hyw | K® >= ¢ — d* (6.6)

a and b (¢ and d) obey the same symmetry properties as the non-leptonic amplitudes A
and By (see Tab. 2), i.e.: b and d are CPT violating, imaginary parts are all T-violating; ¢
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and d describe possible violations of the AS = AQ) rule. We consider Rea of order unity,

and keep first order terms in all the other quantities.

Of course, one should introduce analogous amplitudes for muonic decays, but we will

leave this understood, in the following, to avoid a too heavy notation.
The following notations are also used [2]:

b
Yy=——
a
- —d* .+ d
Tr = ; prnd
a-+b a—2>b
with:
AS = AQ exact:
r=z=0
CPT exact:
r=z" y=0
T exact:
x, x, y=real
CP exact:

r=1T, Yy =1imaginary
For convenience, we shall also define:

Red . Imc
Rea ZRea

A=A

FE/s = F(KL/S — et 4 )+ F(KL/S —e +..)
with A defined in Eqs. (1.19) and (1.20) and:

FSLI/S = Fi/s + Fi/s

The following relations are immediate:

A, = Ky — etven™) = T(Kp = e ven™) — 2(Reer + Reb
sum Rea
Reb
=2 — Re A"+ —
(Reepr — Re A"+ Rea)
Reb
As =2(Reeyr + Re A" + @)

14

Red

+ Rea

) =

(6.7)

(6.8)

(6.9)
(6.10)
(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)



s -1y _2Rec

A, = (6.17)

sum  Rea

There are in all four semileptonic rates, which can be expressed in terms of the three
combinations given above plus the average rate, which determines (Rea)?. In addition, to
study the correlated decays of the K7 -Kg pair produced at a ®—factory, it is convenient
to introduce the complex quantities:

<etven™ | Hyw | K > Rec Imd
= =1-2 —2A" =2 6.18
=2 etver= | Hw | Ks > Rea "Rea (6.18)
<evnt|Hw | Ki > Rec Imd
_ = =—(1-2 A" — 21— 6.19
n <evert | Hy | Ks > ( Rea + ZRea) (6.19)

In the Standard Theory, CP'T and CP are conserved in semileptonic processes and the
AS = AQ rule is obeyed to a very good precision [22], with (gs ~ 5 is the relative strength
of the octet non-leptonic amplitude):

| |
z 2!]
8\/§

In the current x current picture there is, in fact, little space for the violation of these
symmetries, given our very good knowledge of the currents themselves.

Violation of CP or of the AS = A@) rule could arise from contact interactions of quark
and leptons (e.g. in composite models) and one should keep an open mind on the possible
presence of anomalies in the semileptonic amplitudes. However, AS = —A() transitions

fP~7-1077 (6.20)

require hadronic operators transforming as 10 + 27 of flavour SU(3), see e.g. the second
paper of Ref. [22], that can be induced only by effective quark and lepton operators of
dimension higher than four. A typical example is:
dmr 0 _ _
AHesy = 1|5 (Ermuver)|(arydr)(5py.dr) (6.21)

with A the compositeness scale, which leads to the (rather generous) estimate:

47 <1C16V)4 ~ 10_10(#)6

| z |~ (6.22)

The result (6.22) justifies the neglect of AS = —AQ amplitudes, still keeping open the
possibility of CPT violation.

For the sake of brevity, the case in which semileptonic amplitudes are assumed to
conserve both CPT and the AS = AQ rule will be called Scheme I, in the following.
Scheme [l will be the case in which CPT is relaxed, still keeping exact the AS = AQ)
rule. We shall also comment on Scheme [l where Eqs. (6.3) to (6.6) are considered in
full generality.
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7 Comparison of notations

The recent analyses [6, 1] of neutral Kaon mixing and decays without assumption of CPT
do not follow a unified set of notations. To facilitate the comparison, we give below the
translation table from ours to their notations.

Tab.3
our Barmin et al. Buchanan et al.
notation Ref. [6] Ref. [1]
Scheme 111 Scheme [ Scheme I1
657L:6M:|:A 657L:6:|:A 657L:6K:|:(SK
Mo =etd o =ctd  m_=c+d
€ € €
RZOBO a RZOBO
a, b; Eqs.(6.3-4) b= a, b
¢, d; Eqs.(6.5-6) c=d=0 c=d=

8 Unitarity constraints

We know little about the real part of the Hamiltonian, the mass matrix M, which is sen-
sitive to virtual particle, high-energy effects (this is, for instance, the case in the Standard
Theory, where T violation in M is determined by top-quark exchange). On the other hand,
unitarity relates the matrix I', the imaginary part of H, to the real decays of the neutral
Kaons, about which we have considerably more information:

Loy = 27 §(Mg — E,) <a|Hw |[n><n|Hy|b> (8.1)

In particular, we know that the 27, I = 0 final state is by far the most prominent one
in K and K decays, and this simple fact gives interesting restrictions on the parameters
€L,s-

We start from Eqs. (1.16) to (1.18), which are easily solved to obtain h —n, [ and m
in terms of the physical parameters. Separating real and imaginary parts, one finds six

relations:
9Re My, = —(my, — ms) (8.2)
9Im My = —(T's — I'y) [Re(=> ;“ L) + tandsw Im (= ;“ 4 (8.3)
9ReTyy = (I's — I'y) (8.4)
ImTyy = —(Cs — I'p) [tandsw Re (= ;“ LYy Im (2 ;“ 4 (8.5)

16



My — My, = —(Ts — T'p) [tandsw Re (S ; Ly _ Im (2 5 ] (8.6)

%(ru ) = (s = 1) [Re( S0 D) - tangow I (L) (8.7)

We have introduced the ”superweak phase”, ¢sw , defined by:

Z(mL — ms)

tangﬁsw —DEF = 09565 :|: 00051

I's—T7y,
dsw = (43.73 £0.15)° (8.8)
and will denote by v and w the complex numbers:
v = ! (141 tandsw)
(1 +tan?¢sw)?
w = ! (—tangsw + i) (8.9)

(1 + tanQQbsw) %

Eqgs. (8.3) and (8.5) specify the components of (es + ¢1) along v and w, regarded as
mutually orthogonal vectors in the complex plane. Eqs. (8.6) and (8.7) do the same for
the CPT violating parameter (es — €r,).

In the first case, we use the fact that the dominant 27, I = 0 amplitude is exactly
real, in the Wu-Yang convention. Correspondingly, ImI'i, receives contribution from 27
with I = 2, 37 and semileptonic decay modes. In general, the scale of these contributions
is suppressed, with respect to the r.h.s. of Eq.(8.5), by a factor of I'(K*)/T's or I'1,/Ts.
Thus, to be competitive with the r.h.s., CP violation on the L.h.s. of Eq. (8.5) should be
of order unity, which is not the case (rather, as we have indicated in Sect. 5, ¢ effects in
21 decays are much more suppressed).

More in detail, one may classify the contribution of the most prominent intermediate
states as follows (first order terms only are retained).

27
3
([mFlz)(%) = §]m[(A(2) — Bg)* + (Ag — BQQ)*] X (phase space) =
4 r C+ ]mAg _ ]’ITLAQ
— —B(K*t 0y KL I's~ —2.04-107° r
3(& —>7T7T)F5R€AQS (RGAQ)S
37

We approximate 37 decay amplitudes with their value at the center of the Dalitz plot
and consider only the Al = 1/2 contribution to the CP—conserving transition. Defining
CP-violating parameters according to [4]:

, AK) = 7tr= 7% 1 =1)
€ o= ;
O A(Ky = atam % 1 = 1)
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, A(K, —»3n%1=1)
€000 = A(Ky — 3n%1=1)

one finds:

(ImT12)@ny = D(K; = nfn~a%) Ime, o + T(K; = 37°) Imegy, =

~ 214 - 107%(Ime), o + 1.74Imegy) s

semuleptonic:

¥+

(ImTy3)s = —Im(z* 4+ 2)I'§ ~ —2.26 - 1072 I'm (

)U's

(we have averaged the electron and muon contributions). The semileptonic contribution is
suppressed, since it requires AQ = —AS.
Neglecting completely the Lh.s of (8.5), we conclude that (es + €z,) is orthogonal to w:

Arg(es + 6L) ~ (ﬁsw (810)
The component along v is determined by the short-distance sensitive quantity, Im Mis:
€s + €1, —Im My tandsw(l + itandsw) —iIm My,
= ear ~ ( ) — )= - (8.11)
2 myp —mg (1—|—tan QDSW) mL—ms—E(FL—Fs)

In addition, since:

Arg[ie'®2=%)] ~ 45° ~ Gy (8.12)

it follows from Eq. (4.12) that ¢ is approximately parallel to ey, except for CPT-violating
effects.

To make a similar analysis for the CPT-violating quantity, A = (es — €1,)/2, we first
extract the 27 contribution to the r.h.s. of Eq. (8.7). Explicitly (p4—, poo are the 27
phase-space factors; py_ =~ 2pgo for exact isospin symmetry):

(F'11 = Ta2)2my = p4—(| AK® = 7%77) P = | A(K® = atn7) |P)+

+poo(| A(K® — 7°7%) > — | A(K° — 7%2%) |?) =

3 Re BO Re B2

= —py_ (445 4A; ~
2,0—1— ( ORGAO—I_ ZRGAQ)
Re BO i wQ Re B2

~ 20(Ks — 2
(Ks = 2m)[— o

] (8.13)

With this result, Eq. (8.7) becomes:
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1 RGBO

§(F11 —T'99)res +61( A

Re BO
Ao

)+ tangsw Im(A — Rif”)} (8.14)

)= (s —T'p) [ Re(A—

The suffix res indicates the sum over intermediate states different from 27, I = 0, and:
ST =T(Ks = 2m) —Ts+Tp =T —T% ~ T — T3 ~0.59-107°Ts

(assuming the semileptonic rates af Kg and Ky, to be approximately equal).

The term proportional to ' can be safely neglected.? Proceeding as before, we write
the most important contributions to the 1.h.s. of Eq. (8.14) as follows.
2, [ = 2:

1 B B
—(FH — ng)(%. 1=2) = B([X’S — 27T)w2 fic ZFS ~ 2.02- 10_3@FS
2 ' A 2
3 !
§(F11 —Ty2)3my = D(Ky — T 7°)Re € _o+T(K; — 3% Re €hpp =
~ 214 -107%(Re€ _o + 1.74Re €)o)'s
semuleptonic:
1 Reb Reb
—(I'yy = Tgg) = 20— ~ 2261072 ——T
2( M 2)sl Rea T Rea °

(electron and muon contributions averaged).

It is difficult to say anything more precise about the first term in the L.h.s. of (8.14),
except that it should be very small, for the same reasons which justified the neglect of
ImT'15. DA®NE can improve substantially on the present limits to the above CPT-violating
quantities and therefore lead to improved bounds to the unitarity sum.

If we take the L.h.s. to vanish, Eq. (8.14) leads to the elegant result that the complex
number (A — Re By/Ap) is parallel to w, i.e. it is orthogonal to e:

Re BO

Arg(A —
rg ( i

) = dsw + 90°

so that: B
A Re By N %(WL —mg) + %(Mn — Mys)

: 8.15
A mp —ms — 5(I'p = I's) (8.15)

or, equivalently:

A ~ _E(Mll - M22) - iszo(FS - FL) -~ _an — My — %(Fn - F22)(27r)
o 2 mL—mg—%(FL—FS) o 2 mL—ms—%(FL—Fs)
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Figure 2: Schematic representation in the complex plane, of the relations between ez, €, 94—
and ngo. € is drawn approximately parallel to ¢, as appropriate in the exact CPT limit.
Relative sizes are not in scale.

The situation is illustrated in Fig. 2 (without paying attention to the relative propor-
tions).
The phases of €y and A are sometime discussed, in the literature, in connection with

the Bell-Steinberger (BS) relation [23]:

[—i(ms — mL) + %(FS + FL)] < Kg | K7, >= Z A*(I(S — f)A([(L — f) (816)
f

The BS relation can be derived directly from the conservation of probability.

By substituting Eqgs. (1.12) and (1.13) in the r.h.s. of (8.16), it is immediate to see
that the real and imaginary parts of the BS relation coincide with Eqs. (8.7) and (8.5),
respectively.

It could have not been differently. The unitarity condition Eq.(8.1) is all we can say
about probability conservation. The BS equation involves a total of 4 real quantities:
Rel'yy, Im1'yp, I'y; and T'gg. Rel';s and the average I'y; 4 ['gp are related to the CP
and CPT conserving total widths, I's and I'y; the CP-violating (CPT-conserving) Im1'15
determines the phase of €j;, while the CPT and CP violating difference, I';; — 'y, fixes
the phase of the combination A — Re By /Ay.

There can be no other general restrictions.

3Even if we want to leave open the possibility that Re (A — Re Bg/Ay) is considerably smaller than its
individual components [1], we consider it very unlikely a cancellation by three orders of magnitude.
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9 Comparison with present data

We can analyse the data at different levels, according to whether CPT symmetry and the
AS = AQ rule are kept exact or released in the semileptonic transitions. Exact CPT
and the AS = AQ rule are assumed by Barmin et al. [6], who adopt what we have
called Scheme I, while Buchanan et al. [1] adopt Scheme I1. We illustrate in detail, in this
Section, the results in the Scheme I, and will comment, in the next Section, on the impact
of DA®NE on the complex of Kaon parameters in Schemes Il and I11.

Data [13]:
| ne— |= (2.269 £+ 0.023)10~° 9.1
el — 0.9955 + 0.0023 (5-1)
4|
Arg(ny_) = dy_ = (44.3 £0.8)° 9.2)
qb_}__ - 9500 - (10 :i: 10)0 -
Ap = (327 £0.12)107% [13] (9.3)
REA = (07 + 5-35tat + 4-55y5t) [24] '
¢ [ (234+7)107* NA31[25]
Re(2) = ( (6 + 7)10~* E731[26] (94)
Analysis:
The smallness of €//e implies that ¢ is very close to ny_ and ngo:
204
| e |=] w |= (2.266 + 0.023)103 (9.5)
1,
Arg(e) = ¢1- + 5(do0 — ¢4-) = (44.0 £ 1.0)° (9.6)

With the most recent analysis of the data there is no indication of a possible CPT-
violating difference between € and €. With ¢sw the superweak phase, Eq. (8.8), we
have:

Arg(e) — ¢psw = Arg(e) — Arg(ear) = (0.3 £1.0)°

Since A — Re By/Ag is at right angle with respect to epr, see Fig. 2, the above result
translates into:

| —A+ |~| ¢ | [Arg(e) — Arg(ear)] = (0.1 £0.3)107* (9.7)

Re BO
Ao

In Scheme I, the Kz, lepton asymmetry, Eq. (9.3), already allows a separate determination
of A and Re By/Aq. From (9.3) we get:
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A =2Re(ep — A) = 2cospsw | €| —2Re A

whence:

ReA = (0.0 £ 0.6)10*

Since, as we saw:

Re BO

0

~A+ =w(0.140.3)107" =

= (0.1 £0.3)107*(—0.6912 + i0.7226)

we find at once:

RGBO
Ao

= (=0.1+0.6)107* (9-8)

and:

A =1[(0.0 +£0.6) —4(0.1 £0.2)]10~* (9.9)
Note that this result is still more precise than the direct measurement of CP-LEAR

[24] quoted in (9.3).
Using Eq. (8.6), we find a limit to the CPT-violating mass difference,* My;-Maj:

My — My, 148, 10_14(M11 — My
mp I's—Tpg
A last possible CPT test is given by the phase of €¢//e. As seen from Eq. (4.12), the
phase of ¢'/e is made of two components:

) = (0.0 + 0.9)1078 (9.10)

!/

€
ATQZ =3¢ + dopT/CP

¢/=(g+52—5o—Arge):(Oi4)0

. ReB ReBy. ImA, _
bcpriop = —( I S AOO)( AQZ) ! (9.11)

2

A precise measurement of the real and imaginary parts of ¢/e allows, in principle, a
determination of the CPT violating phase, ¢cpr/cp. The smallness of Re(€'/¢), Eq. (9.4),
implies I'm Ay/A; ~ 107*, so that we can obtain anyway an interesting bound to the CPT
violating part of €'/e. In formulae, from Eqs. (4.9), (4.10) and (4.12), one finds:

4For comparison, the results quoted by Carosi et al., Ref. [27], are: Arg(e) = (47.0 & 2.0)%; (M1, —
Mas)/mg <5-10718 (95% c.1.).
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(€ e) = Tm( (=0 ) o L6, ) =

214- + noo
—w ., ReBy  ReBy , Im A, —w ., ReBy  ReBjy
= — — ~ — 9.12
ol (2 = B sing (] eon (2 - ) (012
so that: ReB ReB
€ € ,
(el BBy 4107264 — ) = (487107 (9.13)

Note that the error of the strong interaction phase drops out in first order, because ¢’ ~ 0.

It will be difficult to make this into a much more precise test. DA®NE can produce,
anyway, a substantial improvement on the determination of Im(€'/e) and of the strong
interaction phase.

10 The impact of DAPNE on CPT violating parame-
ters

In Schemes IT and II1, the presence of the new parameters b, ¢ and d, in the semileptonic
sector considerably complicates the situation, with respect to what found in the previous

Section. Eq. (9.9) still holds for ImA, i.e.:
ImA = (-0.140.2)107*

but the present data give a bound only to the combination | A— ReBy/Ag |, which raises the
possibility that the smallness of the r.h.s. of (9.7) may be due to (fortuitous?) cancellations
of larger effects.

As pointed out in Ref. [1], the observation of correlated Kj, — Ks decays at DA®NE
will permit to disentangle the individual CPT violating parameters, in Scheme [I. In the
last instance, this is made possible by the fact that ®—decay provides a beam of tagged
Ks. With reference to the integrated luminosity of the present Report (2.5 - 10°* cm™2
sec™! for an effective year of 107 sec) one estimates a yearly production of 1.7 - 10° Ksg,
which corresponds to a statistical error on the asymmetry As, Eq. (6.16):

AAs~T7-107* (10.2)

As seen from Eqs. (6.12) to (6.16), the observation of the three possible semileptonic
asymmetries allows a separate determination of the three parameters: Rec/Rea, Reb/Rea
and ReA’. The same conclusion is reached starting from the measurement of | n;+ | and
of the CP-conserving asymmetry, A%,
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In Scheme II, Re A" = Re A, while Im A is still given by Eq. (9.9), and we succeed in
disentangling A from Re By/Re Ag, as anticipated. The observation of correlated semilep-
tonic and hadronic decays allows, in addition, to determine the phase of m+, which, in
Scheme I, gives a further check of the imaginary part of A.

In Scheme I1I, the phases of n+ determine Ime and Imd, but the determination of
Re A’ is no more sufficient to fix A, if we allow a non vanishing value of Red.

A conspiracy between CPT-violating parameters in AS = AQ and AS = —AQ am-
plitudes may seem unlikely. It remains that, in this situation, a full separation of A from
the other parameters requires a further experimental input. One possibility is given by
experiments where a K® (or K) can be tagged on the basis of the strangeness, like e.g. in
CP-LEAR, rather than the semileptonic decay. In this case, we have access to the further
experimental quantity:

_|<e 4. Hw | KO(1) >)?
< et + .| Hw | KO(1) > 2

which is sensitive to Red, for small times. The imaginary parts of a and b remain unde-

R(1)

termined, at this level.
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