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We discuss aspects of the processes

Yy — ate~

vy — a°n° (1)
in the framework of chiral perturbation theory (CHPT).

1 Introduction

The cross section for vy — 77 has been calculated some time ago [1, 2] in the framework of
chiral perturbation theory (CHPT) [3] and of dispersion relations. For an early evaluation
using effective chiral lagrangians see Ref. [4]. In the case of charged pion-pair production,
the chiral calculation [1] at next-to-leading order is in good agreement with the Mark
IT data [5] in the low-energy region. On the other hand, for vy — 7%2° the one-loop
prediction [1, 2] disagrees with the Crystal Ball data [6] and with dispersion theoretic
calculations [7]-[14] even near threshold.

In the process vy — mF7~, the leading-order contribution? is generated by tree dia-
grams. One has a control on higher order corrections in this case, in the sense that it is

!Supported by the INFN, by the EC under the HCM contract number CHRX-CT920026 and by the
authors home institutions

2We denote the first nonvanishing contribution to any quantity by ”the leading-order contribution”,
independently of whether it starts out at tree level or at higher order in the chiral expansion.
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explicitly seen that the one-loop graphs do not modify the tree amplitude very strongly
near threshold [1]. Tree diagrams are absent for vy — 7%7® which starts out with one-loop
graphs. To establish the region of validity of the chiral representation also in this channel,
the amplitude has therefore been evaluated at two-loop order in Ref. [16].

Is a next-to-leading order calculation sufficient in this case? If the corrections are large,
the reliability of the result is certainly doubtful. However, a glance at the data shows
that the corrections needed to bring CHPT and experiment into agreement are not large
—a 25-30% change in amplitude is sufficient. Corrections of this size are rather normal in
reactions where pions in an isospin zero S-wave state are present [17]. As an example we
mention the isospin zero S-wave 77 scattering length, whose tree-level value [18] receives
a 25% correction from one-loop graphs [19]. Corrections of a similar size are present in the
scalar form factor of the pion [20].

In the following, we summarize the main results of Refs. [1, 2, 16], considering in
particular the cross sections and the pion polarizabilities. For a discussion of vy — 77 in
the framework of generalized chiral perturbation theory, see Ref. [21].

2 Notation

We discuss the processes (1) at lowest order in the electromagnetic interactions, in the
isospin symmetry limit m, = my4. Since the S-matrix element is of order €2, it follows that
M,+ = Mo in the approximation considered here. In the following, we use the symbol M,
to denote the charged as well as the neutral pion mass.

The matrix element for neutral pion pair production is given by

(7 (p1)7° (p2)out | y(q1)v(g2)in) = i(2m)"8* (P — P)T™
with
™ = v,

Vie = i [ doem @m0 (@) a0 (py)out | T,(2)ju(y) | 0).

Here j, is the electromagnetic current®. The decomposition of the correlator V,, into
Lorentz invariant amplitudes reads, with ¢ = ¢2 = 0,

Vl“‘ = A(S7t7u>T1;u/+ B(S7t7u)T2p,y+ e

S

Tl;w = 59#1/ — N1vq2u
TQ;w - QSA;LAU - VZQ;W - QV(QIyA;L - qQ,LLAI/) )
Ay = (p1—p2u (2)

3We use e?/4m = a = 1/137.036. Confusion with the notation for the polarizabilities seems unlikely.
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where
(1 +q2)* = 4g° = 4(M7 +p*)
t = (m—q)=M;- %(1 —o(s)cosf)
(p2 —q)* = M} — %(1 + o(s)cosl)
v = t—u,o(s)=(1 —4M£/5)1/2 ,

u =

are the standard Mandelstam variables, with

PL=—PpP2=pP ,q1=—q=9q ,p-q=|pllq|cosb ,

in the center-of-mass system. The ellipsis in Eq. (2) denotes terms which do not contribute
to the scattering amplitude TV (gauge invariance). The amplitudes A and B are analytic
functions of the variables s, and u, symmetric under crossing (¢,u) — (u,t). It is useful
to introduce in addition the helicity amplitudes

H_|_+ = A—|—2(4M3 —S)B 5
8(M} —1t
Hy = MB '
s
The helicity components H,, and H,_ correspond to photon helicity differences A = 0, 2,

respectively. The cross section for unpolarized photons in the center-of-mass system is

ma? [+

g (s,|cosO| < 7Z) = 76 dt H(s,t) ,
t_
H(Sat) = | H—H— |2 + | H+— |2 3

s
le = M?— 5(1 Fo(s)Z).

For charged pion pair production vy — 777, one has
{A,B,Hyy, H} — {A°,B°, H{, H"}

and

7'('0[2

¢
T (5, | cos 0] < Z) = 5 Tt HC (s,1) .

t_
To set the notation for the polarizabilities, we first consider Compton scattering for charged
pions,

(a7 (p1) = v(g2)75(p2) (3)
in the laboratory system p¢ = M. The electric () and magnetic (3,) polarizabilities are
obtained by expanding the Compton amplitude at threshold,

- ook a _ 2 (= — — - %
TC = 2 |:61 * €9 <ﬁ — arwle) — 57\, ((h X 61) . (q2 X €2 )_I_ . (4)

ks
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with ¢/ = (w;, ¢i). In terms of the helicity components, one has
_ > a
awiﬁwz—EH_}_:F(S:O,t:Mj) 5 (5)

where the bar denotes the amplitude with the Born term removed?. For neutral pions,
one uses the analogous definition,

_ ~ @
Q0 + 57r0 = EH_}_:F(O,M,?) s (6)
or, in terms of A and B,
e
Q0 = QMW (A + 16M3B)|s:0,t:MT2r ,
_ «
/67r0 = _QMWA|SZO,L‘:M$_' (7)

Below we also use the notation

(aiﬁ)c = @wigfa
(Oz:l:,@)N = ap [ . (8)

An unsubtracted forward dispersion relation for the amplitude B gives

M, o ds' 0
(a+B)N = = AMQ m@m (s) (9)

and analogously for the charged channel.

3 Low-energy expansion

The evaluation of the amplitude for vy — 77 in the framework of CHPT is standard [3].
The main points are the following:

1. The underlying effective lagrangian for SU(2) x SU(2) x U(1) considered here has
the structure [22, 16]
L=Ly+Ls+Ls+---

where the indices denote the number of derivatives, or quark mass terms. The leading
term Ly is the nonlinear sigma-model lagrangian. £4 contains all possible contribu-
tions with four derivatives, or two derivatives and one quark mass term, or two quark
mass insertions. These are multiplied with low-energy constants /; whose divergences
absorb the ultraviolet singularities of the one-loop graphs with £, [22]. Finally, Lg
contains terms with six derivatives, four derivatives and one quark mass term, etc.
[23]. These absorb the ultraviolet divergences of two-loop graphs.

*We use the Condon-Shortley phase convention.
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2. In the charged channel, the leading term is generated by tree diagrams,
Hf:t — Hfélt:ree _I_ Hfiloop _I_ . ,
(10)

with

The one-loop contribution is [1]

(Zi )c,uoop _ (_Q[G(s)—I-QE)ng —zg)]/Fg) . (12)

where F, ~ 93 MeV is the pion decay constant. The low-energy parameters 2IL, [§
are from L£4. The combination 2[f — [ is scale independent [22]. In the following, we
use

2L — 1 =2.85-107° . (13)

The same combination of low-energy constants occurs in radiative pion decays at this
order in the low-energy expansion [24]. Furthermore, the function G is given by

1 —I—MT’% (ln;—g—l—iﬂ)Z : 4M£ <s
—16mG(s) = 1 —Larctgl(gEs)F 5 0<s <4M?
et s

3. The leading term in the neutral channel is generated by one-loop graphs with £,,

— 1loop 2loops
Hyy = H{E" + HUED + -

3

with [1, 2]

( Zi ) _ ( A(s — Mg())G(s)/st ) ‘ (14)

4. The next-to-leading order terms in the neutral channel are generated by two-loop,
one-loop and tree-diagrams generated by Lo, L4 and Lg, respectively. For an eval-
uation of these and for an explicit expression of the amplitudes see Ref. [16]. The
amplitudes contain, at this order in the low-energy expansion, the renormalized con-
stants [],...,[; and, in addition, three more renormalized parameters A’ , b’ from

Ls.
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Figure 1: The vy — 777~ cross section (] cos §] < Z) as a function of the center-of-mass
energy F at Z = 0.6, together with the data from the Mark II collaboration [5]. We have
added in quadrature the tabulated statistical and systematic errors. In addition, there is
an overall normalization uncertainty of 7% in the data [5]. The dashed line is the Born
approximation (10), and the solid line includes the one-loop contribution (12) [1].

5. The constants [/ from L4 are known [22]. On the other hand, those from Lg have
not yet been determined in a systematic manner. The ones which contribute to
vy — 7°7%  namely k7. and &7, have been estimated in [16] in the standard manner
[3] using resonance exchange with J¢ = 1= 177,07+ 2**. For an estimate of a
particular contribution to A7 by use of sum rules see Ref. [21, 25]. It would be
interesting to pin down all three couplings A, and A with this technique. Recently
the constants A’ and A’ have been calculated within the Extended Nambu Jona-

Lasinio model [26]. The results agree within the uncertainties with the estimate of

Ref. [16].
4 The cross section vy — wn~
Fig. 1 displays the data for the vy — w¥7 cross section o(s;|cosl] < Z = 0.6) as

determined by the Mark II collaboration [5]. They are shown as a function of the center-
of-mass energy F = /s. The dashed line displays the tree-level approximation®, whereas

5Tn order to take into account physical phase space, we use from here on

M. — 139.57 MeV vy = wtaT ’yﬂ'i —>'y7ri
T 134.97 MeV vy = 7070 yr® 5y
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Figure 2: The vy — 77 cross section o(|cos ] < Z) as a function of the center-of-mass
energy F at Z = 0.8, together with the data from the Crystal Ball experiment [6]. The solid
line is the full two-loop result, and the dashed line results from the one-loop calculation
[1, 2]. The band denoted by the dash-dotted lines is the result of the dispersive calculation
by Pennington (Fig. 23 in [9]).

the solid line denotes the one-loop result [1] according to Eq. (12). It is seen that the
one-loop graphs modify the tree result in the right direction with the correct size. At the
same time, the correction is small, of the order of 7% in modulus of the amplitude at
/s = 300 MeV. This indicates that higher orders will be negligible in this case. All in
all, good agreement is achieved with the data in the low-energy region. The low-energy
constant 2If — I¢ has also been determined [27] from the data below 500 MeV, with the
result 2[f — 15 = (2.4 4+ 1.8) - 1072 |, which is in agreement with the value given in Eq. (13)
taken from radiative pion decays. We conclude that the data and the chiral representation
in the charged channel agree with each other in the low-energy region.

5 The cross section yy — 7o’

Fig. 2 displays the data for the cross section o(s;|cos| < Z = 0.8) as determined in the
Crystal Ball experiment [6]. They are shown as a function of the center-of-mass energy
E = /s. The dashed line displays the one-loop result [1, 2], evaluated with the amplitudes
(14), whereas the solid line denotes the two-loop result [16]. Finally, the dash-dotted lines
show the result of a dispersive analysis (Fig. 23 in Ref. [9]). In that calculation, use was
made of the I = 0,2 S-wave mm phase shifts from Ref. [28] (these phase shifts satisfy
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Figure 3: The vy — 7%7® cross section o(|cosf| < Z) as a function of the center-of-mass
energy at Z = 0.8, with the data from the Crystal Ball [6] experiment. The solid line is the
two-loop result, whereas the dashed line is taken from the dispersive analysis of Donoghue

and Holstein (Fig. 2 in [10]).

[29] constraints imposed by Roy-type equations). The one-loop result is below the data
also near the threshold. This fact created some dust in the literature and in talks given
at conferences, to the extent that the validity of CHPT in this process was questioned.
However, it is seen that the contributions from the two-loop graphs generate the corrections
which are needed to bring the calculation into agreement with the present data and with
the dispersive calculation. In this connection, we recall that the low-energy constants A/,
and h7 contribute very little to the cross section below £ = 450 MeV [30]-[33]. Their exact
value is, therefore, of no concern for the low-energy region in vy — 7°7%. In Fig. 3 is shown
a comparison of the two-loop result with the calculation of Donoghue and Holstein [10].
These authors use a dispersive representation of the S-wave projected helicity amplitude
and fix the subtraction constant from the chiral representation at order £*. Contributions
from resonance exchange which generate the left-hand cut are also added. The final result
for the cross section agrees very well with the two-loop calculation below £ = 400 MeV.
The main differences in the two representations are as follows. First, in the dispersive
method, higher order terms are partially summed up. We consider the fact, that the cross
sections agree, as an additional indication that yet higher orders in the chiral expansion
indeed do not affect very much the amplitude in the threshold region. (In Ref. [16], the
uncertainty due to higher orders is estimated at 15% — 20% in the cross section below 400
MeV.) Secondly, CHPT reveals that the amplitude contains chiral logarithms, generated
by pion loops. All of these effects are not incorporated in the dispersive analysis of Refs.
[8, 9, 10]-we refer the reader to Ref. [16] for a more detailed discussion of this point.
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6 Pion polarizabilities

6.1 Data on pion polarizabilities

The data available are collected and commented in the contribution by Portolés and Pen-

nington [35]. See also Ref. [36].

6.2 Chiral expansion of &, and 3,

The structure of the quark mass expansion of the polarizabilities is very similar to the one
of the threshold parameters in 77 scattering. To illustrate, we consider, in addition to the
polarizabilities, also the chiral expansion of the [ = 0, S-wave scattering length aq [18, 19],

T™; M2:B
o = 327TF2{ A+ 1672 F2 + O(M;:) + O(M;f)} ;
N,C
N.© @ N.C M2By 4
b — - A s M ‘
(et 5) 1672 F2M, { 0 + + - 1672 F2 + O( w)}
tree 1loop 2loops 3loops

The last line indicates the number of loops required to generate the corresponding term
in the quark mass expansion. The similarity of the two expansions is obvious — the only
difference being that the expansion for the scattering length starts out with tree graphs [18],
whereas the leading order term in the polarizabilities are generated by one-loop diagrams

[172737]7
_ N _ 0 c 0
A=1, 4 —(_g) ’ Ai_(64w2(21g—lg))‘

The next-to-leading order terms B and BY have been determined in Ref. [19] and [16],
respectively. BY contain the low-energy constants hZ from the order E® lagrangian. Work
to evaluate the corresponding coefficients BY in the charged channel case is in progress
[38].

The numerical value for the leading-order terms in the expansion of the polarizabilities

ig®

(a+ 8" = 00,
(a—B)N = —1.0,
(a—B3)° = 53.

The two-loop result for the neutral pion case is shown in table 1. The second column
contains again the leading order contribution O(E~'), whereas the third and fourth ones
display the terms of order K. The total values are given in column 5. Finally, the estimates

6We express the polarizabilities in units of 10~* fm? throughout.
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Table 1: Neutral pion polarizabilities to two loops in units of 10=*fm®.

O(E=T) O(E)
1 loop h’ 2 loops total || uncertainty
(a4 B)Y 0.00 | 1.00 017 ~1.15 +0.30
(=N | -1.01]-058 —0.31 ~ —1.90 10.20
ap | =050 | 021 —0.07 ~ —0.35 +0.10
Bro 0.50 | 0.79 024  ~1.50 +0.20

of the uncertainties are shown in the last column. These correspond to the uncertainty
with which the low-energy constants were obtained in Ref. [16], and contain neither effects
from higher orders in the quark mass expansion nor any correlations.
For an estimate of pion polarizabilities using dispersion sum rules see [39, 40]. See also
[41] for a calculation of the contributions from resonance exchange within CHPT.
Turning now to a comparison with the data, the two-loop results for (a & 3)" agree
within the errors with the values found in [13, 14],

B =
(a+B)" =
— see, however, the objections made in [35] on the results found in Refs. [13, 14]. As for

the charged channel case, we note that the two-loop contribution Biv contains (squares of)
chiral logarithms [16],

—-1.1 £1.7
1.00 £0.05

[13] Y

14] (15)

2 M? M?
N m r m
B+ = § (1H?—967T2l2) IHILL—2—|- ;
where ¢ denotes the scale of renormalization. These are the analogue of the chiral logarithm
in the expansion of ag [19],

2
B:—gln%—l-'-- .
2
The contribution of the chiral logarithms are potentially large. There is no reason why
such logarithms should not be present in B{ as well. Therefore, in order to compare the
prediction with the data in a meaningful manner, a full two-loop calculation is required

also for the charged channel [38].

6.3 On the determination of polarizabilities
from data on vy — 7w

A direct measurement of the Compton amplitude ym — ~7 is difficult to achieve, as is
illustrated by the scarce data available on this process. Direct experimental information
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on the pion polarizabilities is therefore difficult to obtain as well. For this reason, one may
seek to determine them instead from data on the crossed channel reaction vy — 7. Let us
compare the mathematical situation with pion-nucleon scattering. Here, the value ¥ of the
amplitude at the Cheng-Dashen point is of considerable theoretical interest, because it is
closely related to the sigma term. It has been shown by the Karlsruhe group [42] that ¥ can,
also in practice, be obtained from the data on 7N — 7N by analytic continuation. In this
language, the determination of the polarizabilities from 4y — 77 amounts to the opposite
problem: determine from data on 7w — NN the scattering lengths in 7N — 7 N. It would
be interesting to proceed in a manner similar to the case of pion-nucleon scattering in order
to find out whether data on vy — 77 does or does not suffice to pin down in practice the
polarizabilities.

Quite apart from this general setting, one may gain information on the polarizabilities
by use of an explicit expression for the amplitude, which serves to interpolate between
the Compton threshold and the physical region for yv — 7m. The free parameters in the
amplitude are adjusted such that a satisfactory description for ¥4 — 7m is achieved, which
allows one finally to read off the values of the polarizabilities. Examples of this procedure
may be found in Refs. [35, 9, 10, 13, 14, 27], for a critical discussion of the method see
in particular Ref. [35]. In the case where the chiral representation [16] is used for the
interpolation in the neutral channel, the situation is as follows [10]. As we mentioned
above, there are three low-energy constants A7, A7 which enter the amplitude at order E°.
The two parameters A, may be traded for the polarizabilities (a F 3)Y, whereas k7 may
be determined e.g. from resonance exchange. It turns out that the cross section in the
low-energy region is not very sensitive to the values of the polarizabilities. To illustrate,
Fig. 4 displays the cross section at two-loop order for a fixed value (a + 8)N = 1.15 and
a fixed value of A7, varying (a — 8) between —0.95 and —3.8. See also Fig. 10 in Ref.
[10]. The sensitivity of the cross section to (o + )" is even weaker. The charged channel
is discussed in Ref. [10], see in particular Fig. 9 in this reference.

We conclude that, in case the chiral amplitude is used as an interpolation in the neutral
channel, low-energy data on the cross section alone will not suffice to pin down the neutral
pion polarizabilities at this order in the low-energy expansion [35, 10, 16, 21]. On the
other hand, the chiral amplitude contains 3 parameters which may be determined by other
means [16, 21, 25], see also [26]. Once this is achieved, the process vy — 7%7°
a consistency check of the calculation. Using presently available data, we have seen above
that the chiral amplitude has successfully passed this check [16].

serves as

7 Improvements at DAPNE

The DA®NE facility will have the opportunity to test the chiral predictions at next-to-
leading order in much more detail than is possible with present data, both in the charged
and in the neutral channel.
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Figure 4: The two-loop result for the cross section e =7 at Z = 0.8, evaluated with
(a+ B)N = 1.15 and h” = 7, varying (o — 3)V between (a — 8)N = —0.95 (dashed line)
and (a — 3)Y = —3.8 (dash-dotted line). The solid line corresponds to (a — 3)V = —1.9
[16]. For additional explaining text see Fig. 3.
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