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Dispersion relations provide a framework for the model-independent determination of
key parameters of hadron dynamics from measurements of vy — 77 scattering. This
framework is outlined. Particular attention is paid to the range of applicability of approx-
imations made in practical calculations and the consequent uncertainty in predictions or
quantities extracted. Precise measurements at DA®NE of the reactions vy — 777~ and
97% at low energies over as complete an angular coverage as possible will impose con-
straints on w7 phases, test Chiral Perturbation Theory and provide a firmer basis for the
determination of two photon couplings of the I = 0 scalar resonances at higher 77 masses

and so help to solve the enigma of their structure.

1 Introduction

At low energy the cross-section, integrated and differential, for the reaction vy — 77 |
Fig. 1, observed in ete™ — ete~mm [1], can be computed exactly with minimal assump-
tions. This makes this reaction almost unique among processes in which important strong
interaction effects occur.

Predictions are possible because Low’s low energy theorem [2] absolutely normalizes
the cross-sections at the nearby cross-channel threshold, Fig. 2. There at the threshold for
Compton scattering the photon just measures the charge of the pion and the amplitude
is given by the Born term, B. For 7
B = B7, while for y7° — ~y7°% it is zero. Because the all-important pion pole that
determines the Born amplitude is so very near the vy — mm physical region, it also
dominates [3, 4, 6] the behaviour of the 4y — 77 amplitude in the low energy region,
Fig. 2. Thus the amplitude is given by the Born term plus the effect of an infinite number

— ym® this involves one-pion-exchange [1] and
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authors home institutions
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Figure 1: The process vy — 7w in the s-channel.

of other exchanges, p, w, ay, ... These exchanges are relatively far from the physical region
below 500 MeV in 77 mass and so play a very small role close to threshold. Indeed, the
relative importance of these singularities can be judged by considering how close the poles
of these exchanges are to the centre of the vy — 77 physical region at cos ~ 0, displayed
in Figs. 2 and 3. Nearness is all that matters, since their couplings to ym are all of the
same order of magnitude.

That the pion pole does truly dominate can be seen by looking at the experimental
results. Normalized cross-sections for vy — 7¥7~ come from Mark 1T [7] and CELLO [8].
These are displayed in Fig. 4. Also shown are the low energy results of PLUTO [9]. These
are in fact for do/d |cos @ | at § = m/2 and have been extrapolated to the angular coverage
of Mark II for comparison, assuming the cross-section to be pure S-wave near threshold
%, For the 77 channel, data come from Crystal Ball at DORIS [10], shown in the lower
half of Fig. 4. It is easy to understand these cross-sections qualitatively : at low energy,
the photon, as in the Compton process, couples to the charge of the pion. This means
*tn~ is large ; how large is determined by
the charge of the pion. As the energy increases, the effective wavelength of the photon
shortens and it recognises that the pions, whether charged or neutral, are made of the

the m%7°% cross-section is small, while that for =

same charged constituents, namely quarks, and causes these to resonate. Thus at 1270
MeV, one sees the well-known tensor resonance, the f;. Tensor resonances naturally arise
in two photon processes (as in radiative decays of the .J/1) since they can couple with no
relative orbital angular momentum to the two spin-one photons. If the f5(1270) dominates
the reactions in this region, one could read off its v+ coupling from the peak height of
these cross-sections : that in 77~ and 7°7° being related by an isospin Clebsch-Gordan

Zn.b. this is not a good assumption for the charged channel above 400 MeV.
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marked. They cross at the ym thresholds.
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Figure 3: Nearness of poles in the t & u-channels (ym — ) from 7, p and as-exchange to

the s-channel (yy — 77) physical region, —1 < cos@ < 1, depicted as the shaded region,
at different 77 masses.

534



coefficient. However, life is not so simple. Analysis of the angular distribution allows a
large S-wave signal under the f,(1270) [11, 8], associated with the f5/¢(1000) (which is the
same state as the fo(1300) of the PDG tables [12]). It is the couplings of the f,(1270) and
of the fo/€(1000) to vy , with a small effect from the f,/5%(980), that are the outcome of
experiments from 600 to 1400 MeV in w7 mass, as we discuss later.

w7 production, initiated by two very nearly real photons, can by Bose symmetry have
isospin zero and two. G-parity means these pions are in an even spin state. In charged pion
production, the two isospin amplitudes constructively interfere, while in 7%7° production
they destructively interfere. It is this that makes the two cross-sections so different at
low energies, Fig. 4. Thus unusually for a hadronic reaction, the isospin two interaction
is as strong as that with isospin zero at low energies. This is a consequence of pion pole
dominance. Away from threshold, this is no longer the case, when I = 0 resonances enter
the scattering process. Nevertheless, this emphasizes how measurements of both 7¥7~ and
7070 cross-sections are needed to be able to separate the vy — 7 cross-section into its
isospin components.

The photons scatter with either their helicities parallel or anti-parallel, so the observ-
ables are specified by two helicity amplitudes [1] MJ% and MZ” | where ¢ denotes charged
pion production and n neutral. With unpolarised beams one only measures the sum of the
squares of the moduli of these amplitudes, so at a vy c.m. energy of /s the differential
cross-sections are : )

do" Ié;

0= Taers I MERE ML (1)

where = /1 —4m?/s with m, appropriately the charged or neutral pion mass. The
helicity amplitudes can be partial wave projected to give the components, F;\(s) , with
mm spin J and helicity A (=0 or 2) with even .J > A, defined by :

Mi(5,0,6) = VI6r 3 Fii(s) Yiol0, )
J>0
(2)
M (s,0,) = VIor S Fol(s) Yi(0,¢)

J>2

where the factor of €2v/167 has been taken out for later convenience. With this normal-
ization the integrated cross-sections are

c,n /6 Cy T
s :27Toz2;Z|fJ}\ ?. (3)

JI>\

These amplitudes and their partial waves are combinations of amplitudes with definite
mm isospin I, F!, in terms of which the amplitudes for the physical processes yy —
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Figure 4: (a) vy — 777~ cross-section for | cos@ | < 0.6 from Mark II [7] , CELLO [§]
and PLUTO [9] — the last of these is only shown at low 7 mass where the experimental
results on do/d | cosf | at cos@ = 0 can be scaled to give o for | cosf | < 0.6 assuming
a flat distribution ; (b) vy — 7°7° cross-ses3on for | cosd | < 0.8 from Crystal Ball [10]
(labelled Marsiske) and the higher statistics, higher mass data (labelled Karch) tabulated
in the data review by Morgan et al. [1].

Both are as functions of m7 invariant mass.
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Note once more that the one-pion exchange Born term contributes to both isospin ampli-
tudes.

T

2  The Dispersive Approach

Let us discuss the properties of the partial wave amplitudes, ,7:}7/\(5) , and what we need
to know to calculate them [13, 14, 3, 4]. Firstly, these amplitudes are analytic functions of
s. They have a left hand cut starting at s = 0 from the pion exchange Born term and then
other cuts running to the left from s = —(M?* — m?2)?/M? generated by p, w and other
exchanges of mass M. Of course, only the nearby part of the left hand cut from s = 0
2 is really known from one pion exchange [3]. For s £ —m?  , form-factor

Py pyw )
damping in the vV vertex (where V = p or w) as well as other exchanges affect the left

tos = -—m

hand cut discontinuity.

The partial wave amplitudes also have a right hand cut generated by final state inter-
actions. At low energy, the only possible strong interaction is 7y — 7w . Then the final
state pions will scatter strongly back to 77 . Indeed, it is in this way that the cross-section
for vy — 7%7° can readily become non-zero : vy — ntn~ — 7% | where the first process
in the chain can occur by the Born term. Fortunately, such effects are exactly calculable,
thanks to two body unitarity. Above inelastic threshold, which effectively means above
KK threshold near 1 GeV, yv can also go to KTK~ , which in turn can scatter back
to mm . Though unitarity still constrains these contributions, one needs information on
vy = KK and 77 — KK scattering, as well as 77 —77 , to know how. This means
it 1s more difficult to implement the constraints of unitarity when many channels enter.
However below roughly 1 GeV, elastic unitarity enforces Watson’s theorem [15] that makes
the phase of the partial waves for vy — 77 for each [ and .J, .7:}7/\(5) , equal to the phase of
the corresponding mm — 7w amplitude, 7/ (s). This is exceedingly useful, since knowledge
of the phase of an amplitude largely determines the behaviour of its modulus — amplitudes
being analytic functions. A simple example of this is the phase rising rapidly from 0° to
180°. The modulus then has to peak at a position and width wholly correlated with the
phase variation. This relationship is exemplified by the well-known Breit-Wigner formula.
The general relation between the phase and the modulus of the amplitude is embodied in
the Omnes representation [16]. Thus knowing the phase of a partial wave amplitude, qbi/\,
from 77 threshold to infinity, we can define a function Q7 ,(s) (the Omnes function)

00 I !
() = Qh(s) | 0l = expli/ dw] , (5)

T Jam2 s'(s"—s)

™

3the sign of the amplitudes is a matter of convention; some others use the opposite sign for the neutral
one.
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where in the region of elastic unitarity gbgA(s) = §(s), the mm phase shift, independent
of the two photon helicity A. This function, €, has the phase ¢ by construction. The
way convergent dispersion relations work, ) at low energies fortunately does not require
detailed knowledge of the phase ¢ above 1 GeV. We will return to this later.

How this information can be used to compute vy — 77 scattering is explained in detail
in Ref. 6. Here we sketch the methodology. We can write an appropriately subtracted
dispersion relation for each partial wave amplitude, specified by I, J and A. For the S-
waves (J = 0, A = 0), these are twice subtracted [17] : two subtractions to suppress
the dependence at low energies on what the distant left and right hand cut discontinuites
are. That is, there should be only a weak dependence on both higher mass cross-channel
exchanges and the phases of the vy — 77 amplitudes above 1 GeV. The lack of knowledge
of these terms is parametrized by two subtraction constants that are fixed by two crucial low
energy constraints. Firstly, Low’s theorem that states each partial wave amplitude equals
its corresponding Born term at s = 0 — that follows from QED gauge invariance. Secondly,
from chiral dynamics we have a prediction in the low energy region for the amplitude minus
its Born term. Thus, for instance the neutral channel S-wave has a zero at s = O(m?) —
in one loop Chiral Perturbation Theory (xPT ) [18, 19] this is at s, = m?2. In general, all
we know is that these near threshold corrections are O(m?2/f2). These low energy limits
fix the two subtraction constants, dy, in the I = 0 and 2 vy — 77 S-wave amplitudes.

Thus

Fools) = Hog(s) + drs Qge(s) — < lo(s) A; ds' Hoo(s') (o) ) . (6)

T s (s"—s)

The functions H!(s) have the complete left hand cut and no right hand cut. They are given

by
HO(s) = @BW(S) — LP(s) — @m(s)
Hi(s) = \/gB“(S) + \/gfi“’(S) :

where B™ is the one pion exchange Born term and £”, £* denote the contributions to the

(7)

left-hand cut generated by exchanges with p and w quantum numbers, respectively. Then
the combinations in the charged and neutral channels are :

He(s) = B"(s) — \/gﬁp(s)
H(s) = \/g,/:p(s) + LY(s)
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According to Low’s theorem : H° — B™ and H"™ — 0 as s — 0, so in turn this

means : L7(s) — 0 , L¥s) — 0 as s — 0. Recalling 8 = /1 —4m2/s (Eq. (1)),

the S-wave Born amplitude is, for example, [1, 3]

piy 128 (145
B = Ly (1) ()

with a cut for s < 0.

The fixing of subtraction constants by appeal to chiral dynamics only affects the S-
wave amplitudes. The higher partial waves satisfy essentially once subtracted dispersion
relations on dividing out their known threshold behaviour, so that only Low’s QED theorem
is needed for these waves. Thus [3]

SS_mQJ/QIS 00 IS/mIS/—l
F}/\(S) — 'H{]\(S) . ( 4 7r) QJA( ) [}m% ds' HJA( )I (QJ/\( ) ) (10)

m s'(s —4m2)7? (5" — s)

where the 7—[5 ,(s) are the appropriate partial waves of the left hand cut components of
Eq. (8). Using Eqgs. (3, 5-10), the cross-sections can then be deduced from these partial
wave amplitudes.

It is useful for our later discussion, though not necessary for our low energy calculations,
to note that these partial wave amplitudes , for all .J, can be expressed quite generally [3]
as :

Fin(s) = Pils) Hinls) Qnls) (11)

where the function HJ,(s) has the left hand cut, Eq. (8), and ©Q],(s) the right hand
cut, Eq. (5), and Pi)\(s) is a real polynomial. While 7—[5)\(3) is the full left hand cut func-
tion, it is often convenient to model this function by some thLA (for instance, the Born
term) and rewrite Eq. (11) as

Fin(s) = Po(s) hin(s) Qa(s) + Pols) n(s) - (12)

Pg and Pe (with I, .J, A labels suppressed) may now be more complicated functions along
the left hand cut, but they will continue to be smooth along the right hand cut away from
their singularities. In physical terms, the first term models the simple well understood
cross-channel exchanges and then Pc(s) incorporates the rest as direct channel contribu-
tions. Near m7 threshold, h{LA is just the pion exchange Born term and there are essentially
no direct channel effects other than those of final state interactions automatically included
in Eqgs. (11,12). There

FIL(s) ~ Po(s) Biy(s) 2Ly (s) (13)

to a good approximation. It is this fact that allows the low energy cross-section to be
accurately predicted as we discuss in the next section.
One can go to slightly higher 77 masses, 500 MeV or so, by taking

W(s) = BT(s) + LV=(s) (14)
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in Eq. (12) with P¢ still zero. However, above that energy, direct channel effects ( or
equivalently heavier mass cross-channel exchanges ) become increasingly important and
definite predictions possible near threshold must give way to fitting data [3, 4, 11]. This is
necessary to determine the form of P (s) and hence the direct channel couplings.

3 Dispersive Predictions

At low energies we can evaluate the dispersion relations for the S and higher waves,

Eqgs. (6,10). We input

(i) the phases of the nm partial wave amplitude from M,, = 2m, to 800 or 900 MeV
(above that the phases are irrelevant for the vy — 77 cross-section at low energies),

(ii) the discontinuity of the left hand cut — m-exchange plus whatever,

(iii) the slope of the vy — m7m S-wave amplitudes minus their Born components in the
sub-threshold region needed to fix the subtraction constants, d, in Eq. (6).

For orientation, we first perform a model calculation. We input

(i) the phases of Weinberg’s model of m7 scattering [20],
(ii) assume only m-exchange in the crossed channels, and

(iii) we fix the slopes at s = m2 from one loop xPT [18, 19] as there the neutral S-wave
vanishes, i.e. s, = m?2.

We turn the handle of the machinery defined in Eqs. (3-10,13,14) and out comes the cross-
section for vy — m°7°% marked “Wx” shown in Fig. 5. Near threshold this is identical with
the one loop calculation of this process in xPT by Bijnens and Cornet and by Donoghue,
Holstein and Lin [18, 19]. Both the lines “Wr” and “1¢/xPT” exhibit the much discussed
disagreement with the near threshold data of Crystal Ball [10]. Above 500 MeV, the
dispersive result flattens out, as it has to from unitarity, unlike one loop yPT . This
calculation, which is here wholly numerical, has also been performed semi-analytically by
Donoghue and Holstein [21], who simplify this exercise by setting | Q(s) | cosdl = 1
so that Im[Q}(s)7!] can be replaced by —BReT/(s) in order to compute the integral in
Eq. (6).

After this consistency check, we next input experimental mm phases, based on analyses of
the CERN-Munich results by Ochs, by Estabrooks and Martin and by Hoogland et al. [22]
extrapolated to threshold using the Roy equations ( which are the partial wave projection
of twice subtracted dispersion relations embodying full three channel crossing symmetry )
for different values of the I = 0 S-wave mm scattering length a). The complete details
of these calculations are given in [6]. Figs. 5-7 show the predictions for the integrated
vy — 7% cross-section. Firstly, in Fig. 5 we have the curve “EX Pr” with the input of
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Figure 5: Integrated cross-section for vy — 7%7% as a function of the 77 invariant mass,

FE = \/s. The data are from Crystal Ball [3] scaled to the full angular range by a factor of
1.25. The line marked 14y PT is the prediction of one loop Chiral Perturbation Theory [18,
19]. The curve marked “Wr” is the dispersive calculation using Weinberg phases [20], while
that labelled “FE X Pr” are the predictions from experimental 77 phases as described in [6]
— both with just m-exchange for the left hand cut.
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Figure 6: Integrated cross-section for vy — 77% as a function of the 77 invariant mass,
FE = \/s. The data are from Crystal Ball [3] scaled to the full angular range by a factor
of 1.25. The band depicts our dispersive prediction using the central phases of Fig. 17 of
Ref. 6 with ) = 0.2. The shaded area is a reflection of both the experimental uncertainty
above 500 MeV in the S-wave mm phases and the different asymptotics for the vector
exchanges [6]. The band delineated by the dashed lines and the solid central curve marked
20x PT is the prediction of 2 loop Chiral Perturbation Theory [24].
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Figure 7: Integrated cross-section for vy — 7%7% as a function of the w7 invariant mass,
FE = \/s. The data are from Crystal Ball [10] scaled to the full angular range by a factor of
1.25. The three bands show the effect of varying the sub-threshold zero for vy — 77® from
s, = tm?2 (the lower, horizontally shaded region) to m? (the unshaded region bounded

by the dotted lines) to 2m? (the higher, vertically shaded region). Again the bands mark
the uncertainties in the calculations [6].
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7 exchange, experimental 77 phases with a3 = 0.2 and s, = m?2. This is already in better
agreement with the near threshold data. In Fig. 6 we add, to the inputs of Fig. 5, p and w
exchanges. The values of the couplings of the various ¢ and u-channel exchanges on-mass
shell have been given by Ko [23] and are discussed in [6]. The addition of p,w exchange
brings an even better measure of agreement with experiment over a much larger energy
range up to 500-600 MeV (as may have been anticipated from Fig. 3). In Fig. 6 we also
show the band (2¢xPT) given by the recently completed two loop calculation in yPT by
Bellucci, Gasser and Sainio [24]. This is in good agreement with the dispersive results —
the small discrepancy near threshold is due to a small difference in the 77 phases input into
our calculation and those of YPT near threshold. The two loop calculation depends on a
significant number of new constants, beyond the lowest order parameters f, and m,. These
new constants have their analogue in the dispersive approach, Eq. (12), as we comment on
later.

To have an idea of how much the dispersive predictions for vy — m7 reflect our specific
inputs, we illustrate the dependence on the position, s, of the zero in the vy — 7%7% S-wave
and on the low energy mm phases. Thus Fig. 7 shows the results with 7, p,w exchanges,
ay = 0.2 and s, = %mfr, m?2, 2m?2 in turn, while Fig. 8 has the same left hand cut, but
with s, = m? and af = 0.1,0.2,0.3. Of course, yPT has a definite view of what these
parameters aJ and s, are. Figs. 6-8 illustrate how data on vy — 7°7°
predictions.

Fig. 9 shows the corresponding prediction from the present dispersive approach for
vy — mT7~ , with the same inputs as for Fig. 8. Notice that in the charged channel, the

can calibrate these

effect of final state interactions is to enhance the Born cross-section very close to threshold
and then suppress it above 360 MeV. One loop xPT for the charged channel only displays
the near threshold enhancement. The two loop calculation presently under way may be
expected to show the same suppression above 400 MeV, if it is to agree with this dispersive
result and, of course, experiment. This will be an interesting test.

We see from Figs. 8,9 that our dispersive results mean that to determine the mm scat-
tering length aJ to an accuracy of £0.1 requires the integrated vy — w7 cross-section
between 300 and 400 MeV to be measured to an accuracy of £20 nb in the #*7~ channel
and £1.5 nb in the 7°7° mode. This should be quite possible at DA®NE, but to achieve
considerably greater accuracy seems less likely in the 4y channel. Rather these processes
provide a consistency check on otherwise measured m7 phases and give a way of pinning
down the slopes of the low energy amplitudes that fix the zero s,, for example. Of course,
XPT makes a definite statement about how far from m? the zero position, s,, can be,
but tests of this theory require us to analyse data without inputting this information.
As seen from the predictions of Fig. 7, to do this very accurately looks a tall order. We
will comment on the implications of this for the model-independent extraction of the pion
polarizabilities in Sect. 4.

It is important to realise that the 77~ and 7%7° cross-sections are strongly correlated.
A 10% change in the charged data near threshold would mean a 100% change in the neutral
cross-section. Thus early hints from the very small statistics experiment of DM1/2 [25]
that the low energy vy — 717~ cross-section may be a factor of two larger than the Born
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Figure 8: Integrated cross-section for vy — 7%7% as a function of the 77 invariant mass,

FE = \/s. The data are from Crystal Ball [10] scaled to the full angular range by a factor
of 1.25. The lines, labelled by the value of the I = 0 7 S-wave scattering length in steps
of 0.05 from 0.1 to 0.3, illustrate the effect of different extrapolations of the w7 phases
above 520 MeV down to threshold on the dispersive prediction [6]. The bands above 500
MeV on the ¢ = 0.1 and 0.3 curves mark the range generated by different asymptotics
for the vector exchanges [6].
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Figure 9: Dispersive predictions for the integrated cross-section for the vy — 777~ cross-
section as a function of the 77 invariant mass, £ = /s. The lines, labelled by the value
of the I = 0 7w S-wave scattering length in steps of 0.1 from 0.1 to 0.3, illustrate the effect
of different extrapolations of 77 phases above 520 MeV down to threshold [6] (cf. Fig. 8).
The curve marked B is the Born cross-section [1, 3].
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Figure 10: (a)Integrated cross-section for thg45y — 777~ as a function of the 77 invariant
mass, I/ = /s, from Mark II [7] ; (b) the corresponding differential cross-sections as a
function of cos # in the stated mass bins (in units of GeV). The curves are the fits up to
1.4 GeV from the dispersive analysis of Ref. 11.
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Figure 11: Integrated cross-section for the vy — 7%7° as a function of the w7 invariant
mass, £/ = /s, from Crystal Ball [10]. The histograms are from the dispersive analysis
up to 1.4 GeV of Ref. 11. They show two fits with different f5(980) — v+ couplings.
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cross-section would have required a vy — 7%7°% cross-section of 100 nb [4] rather than

the ~10 nb seen by Crystal Ball (Fig. 4) near threshold. It is this close correlation and
agreement between the Mark Il and Crystal Ball data of Figs. 4,10,11 that is so reassuring.
DA®NE should be able to probe this further and allow a better low energy anchor for
partial wave analyses at higher energies, to which we now turn.

The region of applicability of the dispersive predictions we have presented here is below
500 MeV or so. Above that details of cross-channel exchanges and inelastic phases become
increasingly relevant. The representation of the vy — 77 amplitude in terms of left hand
cut effects becomes less and less economical as the various exchanges 7, nm, 77w, p, w, ay,
by, pp, pw, etc., crowd in towards the vy — w7 physical region, Fig. 3. Instead a direct
channel representation of the non-pion exchange effects becomes the most economical, as
described above, Eq. (12) with Po # 0. Of course, the two descriptions are equivalent,
but a single direct channel resonance is generated by an infinite number of cross-channel
exchanges and the description of the former is clearly far more economical. Nevertheless,
from 600 MeV to 2 GeV, the pion exchange Born term continues to play a significant role
(Fig. 3) [3, 4].

This is most readily illustrated for the D-wave, for which the helicity 2 component
becomes rapidly important away from threshold. This partial wave exhibits the f,(1270)
resonance, Figs. 4,10-12, which is known to be a highly elastic 77 resonance with a weak
coupling to the K'K channel [12], just as expected from ideal mixing. It is natural to
assume that this partial wave in the 4y — 77 channel continues to have the same phase
as in mm — 7w above the inelastic threshold, indeed through the f3(1270) region up to
1.5 GeV, say. Then, the final state corrections to the Born amplitude are calculable, using
Egs. (10,12) with o = B™. As noted by Mennessier [14] and by Morgan and the present
author [3] in this context and by Basdevant and Berger [26] in other related situations, this
amplitude actually has a zero close to the resonance position, here near 1270 MeV. Thus
the modifications to the real pion exchange Born term necessary to make it agree with
unitarity and have the phase of 90° at the f, mass, also place a zero there. In terms of
Feynman diagrams, this means the graphs (a, b) of Fig. 13 do not contribute to the fy-peak
(though importantly they do affect its observed shape). Rather a direct vy coupling of
the f3(1270) is needed, Fig. 13c, or equivalently a sum of a large number of cross-channel
exchanges. Thus, in accord with common sense, the vy — f3(1270) coupling cannot be
predicted, unless one knows all the cross-channel exchange couplings. Rather one must
determine such resonance couplings from the measured cross-sections.

An exactly analogous zero (seen in Fig. 12) occurs in the [ = 0 S-wave Born amplitude,
modified by final state interactions, at 600 MeV [3], as a result of the broad 77 enhance-
ment, the fo/e(1000)/ fo(1300). Again simply adding Breit-Wigners to Born amplitudes
fails to respect Watson’s theorem and the above machinery is essential for any meaning-
ful extraction of resonance couplings. Thus to go beyond about 500 MeV in describing
vy — 7m scattering, one must include direct f(1270), fo/€(1000) and fo/5*(980) couplings
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Figure 12: Typical integrated cross-sections for individual [ = 0 partial wave components
for vy — 77 as a function of vy c.m. energy from the Amplitude Analysis of the fits of
Figs. 10,11 [11]. Notice that the S-wave is highly structured. The peak near threshold
largely reflects the Born term. The dip at 600 MeV is caused by the effect of final state
interactions on this Born term. These final state interactions are dominated by the broad
Jo/€(1000), which is seen up to 1300 MeV, on top of which is the narrow f,/5*(980) signal.
D denotes the total spin two component, i.e. the sum of helicity 0 and 2, while Dy is just
the helicity 0 part.
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Figure 13: (a,b) Feynman diagrams displaying the contribution of final state scattering for
the Born amplitude through a resonance, R, encoded in the Pg term of Eq. (11) ; (c) the
direct coupling of the same resonance to vy and 77 emobodied in the P term of Eq. (11).
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4 in a way consistent with analyticity, Watson’s theorem and Low’s low energy theorem.

Such an analysis was performed by David Morgan and myself [11] to the earlier Crystal
Ball statistics on vy — 7%7° [10] and Mark II results on vy — 7t7~ [7] and a new analysis
was begun together with Karch [27], incorporating the increased Crystal Ball statistics
above 800 MeV and the newer CELLO data [8] on the charged channel. In Figs. 10,11
are shown illustrative results (the corresponding plots for vy — 7%7% angular distributions
are to be seen in Ref. 11). One sees that the dispersive description fits the integrated and
differential cross-sections up to 1400 MeV remarkably well. This allows a partial wave
separation, the I = 0 components being shown in Fig. 12. This leads to the following
couplings [11] for the f3(1000), fo(980) and f,(1270) (quoted in the PDG tables [12]) :

T(fo/S*(980)) = v7) = (0.63+0.14) keV ;
I'(fo/e (1000)) = vy) = (54 £23)keV ; (15)
D(f,(1270)) = vy) = (2.35 4 0.65) keV .

4 Polarizabilities

The polarizabilities — electric a,, magnetic § — of a particle, like its charge radius, reflect
its response to an electromagnetic stimulus [28, 21, 29]. They are related to how the
Compton amplitudes approach the Born limit at threshold. Thus the combination (a—3) is
determined by the slope of the S-wave vy — w7 amplitude at the cross-channel threshold :

(0 — @) = dear m Foo(s) — Boo(s)

m, s—0 S

: (16)

where for the charged pion case B is the one-pion-exchange Born amplitude, B™, ¢ = 1, and
for neutral pions B = 0, ¢ = —1 with our definition of Eq. (4). In terms of the dispersive
representation of Eqs. (6-9), these polarizabilities are simply related to the subtraction
constants [6] and, of course, the p,w exchange contributions at s = 0 :

(a—=p). = fn—“ :@do + @dz - \/?cp'(())} :
(a—=PB)n = i—i :@do - @dz + \/;cp’(()) — £¥'(0)

Moreover, these combinations are sensitively related to the position of any sub-threshold
zeros. In the neighbourhood of s = 0, the charged and neutral S-wave amplitudes can be

*These coupling parameters also arise in two and higher loop YPT . For example, in the two loop
calculation [24] the ¥y couplings of the scalar and tensor resonances are included as well as the y7 couplings
of the vector and axial vector mesons and the usual Chiral Lagrangian parameters £;.
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parametrized as
Fe o~ B+ b.s(s.—s) , F" =~ bys(s—s,) , (18)

then
(@=B)e = bese , (a—=P0)n = busn . (19)

2
™

Note that this approximation is only valid for 0 < s < 4m?, since the amplitudes have a

cusp at 7w threshold, which is particularly marked in the 7% amplitude, see Fig. 25 of
Ref. 6 or Fig. 8 of Bellucci et al. [24] in 2 loop standard xPT or Fig. 6 of Knecht et al. [30]
in 1 loop generalized yPT . Of course YPT has a definite expectation for the values of s.
and s,. However, we have seen from Fig. 7 that present (or even future) data cannot tell
without a model parametrization whether the sub-threshold zero in the neutral channel is
at s, = m?2/2, m2 or 2m?. This variation leads to a factor of four difference in the neutral
polarizability (a — 3), from —0.6 to —2.7 x 107** cm?®. These values are merely illustrative
5 in practice the range of uncertainty of a model-independent extraction is still larger.
Moreover, present data even allow s. to be zero, so (o — 3). could be zero, also with a very
large uncertainty.

Rather than use the sub-threshold behaviour around s = m?

- as we have done in Sect. 3

to fix the S—wave subtraction constants, dr, Kaloshin and Serebryakov [31] have attempted
a closely related dispersive analysis in which the subtraction constants for the S-wave are
parametrized directly in terms of the polarizabilities (& — 3).,,. They find in units of 107*3
em®: (a—f). = (5.3+£1.0) ; (a—p3), = (0.6 +1.8). As just remarked a value of
(a — ). = 0 is perfectly consistent with the charged channel data, so why have Kaloshin
and Serebryakov [31] excluded this by many standard deviations 7 This is because though
they only fit the Mark 1T vy — ntx~ data [7] below 400 MeV, they include in their fit
data on vy — 7%% [10] up to 850 MeV and yet assume they know the form of all the
cross-channel exchanges m, p, w very far from their ¢ and u-channel poles. The existence
of the fo/e(1000) and fo/5*(980), the former markedly affects data at 800 MeV, because
of its large width (Fig. 12), require many more exchanges than p and w. Moreover, even
in going from the p and w poles at ¢ = m?,, where the couplings are, of course, determined
by the measured V' — 77 rates, to the Compton threshold at ¢{ = m?2, the couplings can
change by a factor of 2 — a simple Veneziano-like model with towers of resonances, not just
the p and w gives a factor of 7/2 ¢, To then assume at 850 MeV, where —m} < ¢, u <0,
the pure p and w exchange amplitudes have the same couplings as at ¢{,u = +m¥ is a
grossly over-simplified model leading to far too small an estimate of the uncertainties on
the supposedly determined polarizabilities. That the details of the cross-channel exchanges
become increasingly important at higher 77 masses can be seen from Fig. 3 and from the
band shown in Fig. 6.

We now turn to the determination of (o + ) combinations of polarizabilities. While
the (a— )., are related to how the vy — 7w S-waves approach their Born term as s — 0,

®note that the values quoted in Ref. 6 are for | @ — 3 |,, and are in different units.
Sthereby dramatically affecting their contributions to Eq. (6) of Ref. 31.
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Eq. (16), the (a+ 3).n are determined by the way the helicity two D-waves approach their
Born term at the same Compton threshold. These are even more difficult to determine
from vy — mm data. As we have stressed, it is only in the very low energy region that
cross-channel exchange contributions are accurately calculable. Below 500 MeV, the D-
wave amplitude is overwhelmingly (~ 99%) controlled by its Born component. It is the
residual ~ 1% that has to be extrapolated to s = 0 to determine the (a+3) combinations of
polarizabilities, clearly an impossible task with present data that only cover a very limited
part of the angular range. More accurate separation of higher waves with helicity two will
become possible using the azimuthal information that the DA®NE ~~ experiment should
provide [32, 33, 34]. However, this has not deterred Kaloshin, Persikov and Serebryakov [35]
from attempting a first estimate of the (a+ 3) with amazing results. They have once again,
even up to 1.4 GeV in 71 mass, assumed only elementary 7, p and w exchange determine
the left hand cut effects. No obvious ¢, u-dependence is included in the pole numerators,
even though ¢, u-channel unitarity demand these. They then add an f»(1270) direct channel
contribution assuming this to be wholly helicity two with no S-wave background under this.
While present data are not incompatible with this, they are equally consistent (see Fig. 12)
with 30% of the I = 0 cross-section from 1-1.4 GeV being S-wave [11, 8] and possibly 30%
of the D-wave having helicity zero [11]. This provides at least a 40-50% uncertainty in
the fy-contribution to the helicity two D-wave cross-section. Yet Kaloshin et al. [35] quote
values of (a4 ), with 5% errors : (o + ), = (1.00 +0.05), far away at s = 0.

In the dispersive treatment discussed above, the description of the f3(1270) region in
terms of Eq. (12), Q{L/\(S) embodies the expected Breit-Wigner shape of the resonance,
while Pc(s) provides a smooth modulation of this over the peak in much the same way as
the p-line shape in ete™ — 717~ differs smoothly from that in 77 elastic scattering. The
exact form of Pc(s) depends, of course, on the structure of the left hand cut discontinuity
embodied in the model for 7 ,(s) defining P in Eq. (12). Kaloshin et al. take their
analogue of P¢(s) to be a constant, as far as its s-dependence is concerned. However, Pe(s)
is really built from many ¢ and u-channel exchanges. While these do generate a smooth
form over the fy-region from 1 to 1.4 GeV, for almost any couplings, it is the exact values of
these individually that determines the extrapolation to s = 0 (cf. the analogue of Eq. (17)).
Consequently, the analysis of Kaloshin, Persikov and Serebryakov [35] is misguided. Fitting
in the fy-region can in no way determine the polarizability (a+ ) charged or neutral. This
is obvious from the structure of Fig. 3, where exchanges crowd in near the physical region
and only their collective effect is measured, whereas in extrapolating to s = 0, it is the
individual exchange contributions that matter.

All this means that the only way to measure the pion polarizabilities is in the Compton
scattering process near threshold and not in 4y — 77 . Though low energy vy — 77 scat-
tering is seemingly close to the Compton threshold (/s > 2m, to /s = 0) and so the
extrapolation not very far, the dominance of the pion pole (for final state interaction effects,
for example) means that the energy scale for this continuation is m,. Thus the polarizabil-
ities cannot be determined accurately from v experiments in a model-independent way
and must be measured in the Compton scattering region [29].
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5 Summary

Measurements of vy — 77 scattering at DA®NE will fulfill a number of aims :

a) they will test the predictions of yPT |

(a)
(b) they will fix the sub-threshold zero in the yy — 7°7° channel,

(c) they will provide an independent check of low energy 7m phases, and

(d) they will anchor partial wave analyses of data at higher 77 masses, and so allow a
better determination of the couplings of the scalars f,/5*(980) and fy/€(1000) so

crucial for understanding their quark composition [11, 36].

For all these, measurements of the angular distributions over as complete a coverage as
possible is vital [33, 37]. We have much to learn.

To conclude : the importance of measuring vy — 77 scattering at DA®NE should not be
underestimated. Consequently, we eagerly await the precision measurements of the KLOE

detector at DA®NE.

It is a pleasure to thank Rinaldo Baldini, Stefano Bellucci, André Courau, Jurg Gasser,
David Morgan and Jorge Portolés for numerous invaluable discussions.

355



References

[1] S.J. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. D4 (1971) 1532 ;
V.M. Budnev, LF. Ginsburg, G.V. Meledin and V.G. Serbo, Phys. Rep. 15C
(1975) 181 ;
M. Poppe, Int. Journ. Mod. Phys. A1 (1986) 545 ;
Ch. Berger and W. Wagner, Phys. Rep. 146C (1987) 1 ;
H. Kolanoski and P. Zerwas in “High energy electron-positron physics”, ed. A.Ali and
P. Soding (World Scientific, 1988) ;
S. Cooper, Ann Rev. Nucl & Part. Phys. 38 (1988) 705 ;
D.Morgan, M.R. Pennington and M.R. Whalley, J.Phys. G20 (Supp. 8A) (1994) Al.

[2] F.E. Low, Phys. Rev. 96 (1954) 1428 ;
M. Gell-Mann and M.L. Goldberger, Phys. Rev. 96 (1954) 1433 ;
H.D.I. Abarbanel and M. Goldberger, Phys. Rev. 96 (1968) 1594.

[3] D. Morgan and M.R. Pennington, Phys. Lett. 192B (1987) 207 , Z. Phys. C37 (1988)
431, 7. Phys. €39 (1988) 590.

[4] M.R. Pennington, Proc. VIII International Workshop on photon-photon collisions,
Shoresh, Israel, 1988, ed. U. Karshon (World Scientific, 1988) pp. 297-325.

[5] DA®NE Physics Handbook, ed. I.. Maiani, G. Pancheri and N. Paver (INFN, Frascati,
1992).

[6] M.R. Pennington in [5], p. 379.

[7] J. Boyer et al. (Mark 11 Collab.), Phys. Rev. D42 (1990) 1350.

8] H.J. Behrend et al. (CELLO Collab.), Z. Phys. C56 (1992) 381.

[9] Ch. Berger et al. (PLUTO Collab.), Z. Phys. €26 (1984) 199.

[10] H. Marsiske et al. (Crystal Ball/DORIS Collab.), Phys. Rev. D41 (1990) 3324.
[11] D. Morgan and M.R. Pennington, Z. Phys. C48 (1990) 623.

[12] Particle Data Group, Review of Particle Properties, Phys. Rev. D50 (1994) 1173.

[13] D.H. Lyth, Nucl. Phys. B30 (1971) 195, Nucl. Phys. B48 (1972) 537; J. Phys. G10
(1984) 39, J. Phys. G10 (1984) 1777.

[14] G. Mennessier, Z. Phys. C16 (1983) 241 ;
G. Mennessier and T.N. Truong, Phys. Lett. 177B (1986) 195.

[15] K.M. Watson, Phys. Rev. 88 (1952) 1163.
[16] R. Omnes, Nuovo Cim. 8 (1958) 316.

356



[17]
[18]
[19]
[20]
[21]
[22]

23]
[24]
[25]

[30]
31]
32]
33]
[34]
[35]

D. Morgan and M.R. Pennington, Phys. Lett. B272 (1991) 134.

J. Bijnens and F. Cornet, Nucl. Phys. B296 (1988) 557.

J.F. Donoghue, B.R. Holstein and Y.C. Lin, Phys. Rev. D37 (1988) 2423.
S. Weinberg, Phys. Rev. Lett. 17 (1966) 616.

J.F. Donoghue and B.R. Holstein, Phys. Rev D48 (1993) 137.

W. Ochs, Univ. of Munich thesis, 1974 ;
P. Estabrooks and A.D. Martin, Nucl. Phys. B79 (1974) 301 ;
W. Hoogland et al., Nucl. Phys. B126 (1977) 109.

P. Ko, Phys. Rev D41 (1990) 1531.
S. Bellucci, J. Gasser and M.E. Sainio, Nucl. Phys. B423 (1994) 80.

A. Courau et al. (DM1 Collab.), Nucl. Phys. B271 (1986) 1 ;
7. Ajaltouni et al. (DM2 Collab.), Phys. Lett. B194 (1987) 573.

J-1. Basdevant and E.L. Berger, Phys. Rev. D16 (1977) 657.
K. Karch, D. Morgan and M.R. Pennington (unpublished work, 1991).
B.R. Holstein, Comm. Nucl Part. Phys. 20 (1992) 301.

J. Portolés and M.R. Pennington, contribution to the Second DA®NE Physics Hand-
book, eds. G. Pancheri and N. Paver (INFN, Frascati, 1995)(to be published).

M. Knecht, B.Moussallam and J. Stern, Nucl. Phys. B429 (1994) 125.

A.E. Kaloshin and V.V. Serebryakov, Z. Phys. C (to be published).

P. Kessler and S. Ong, Phys. Rev. D46

G. Alexander et al., Frascati preprint LNF-93/030 (1993).

A. Courau and S. Ong, verbal contributions to the Working Group on DA®NE Physics.

A.E. Kaloshin, V.M. Persikov and V.V. Serebryakov, Irkutsk preprint ISU-TAP-TH-
94-01.

T. Barnes, Proc. VII Int. Workshop on photon-photon collisions, Paris, 1986, ed. A.
Courau ; Phys. Lett. 165B (1985) 434 ;

N.N. Achasov and V.N. Ivanchenko, Nucl. Phys. B315 (1989) 465 ;

F.E. Close, Proc. Workshop on Physics and Detectors for DA®NE, Frascati, April
1991, ed. G. Pancheri (INFN, Frascati) pp. 309-313 ;

M.R. Pennington, Proc. of meeting on Two-Photon Physics from DA®NE to LEP200
and Beyond, Paris (Feb., 1994) ed. F. Kapusta and J. Parisi (to be published).

557



[37] F. Anulli et al., “The KLOE small angle tagging system at DA®NE”, in this Hand-
book.

358



