Top physics at LHC

Vittorio Del Duca INFN LNF

NURT 09

Habana II February 2009

Top goals

to measure top properties (mass, spin, couplings) as accurately as possible in order to confirm the SM and/or to find hints of BSM physics

Top goals

- to measure top properties (mass, spin, couplings) as accurately as possible in order to confirm the SM and/or to find hints of BSM physics
- fo use the top to probe the EWSB sector

Top ID card

tⁱR

Top ID card

tⁱR

$$\begin{array}{c} \left(\begin{array}{c} t_{2/3} \\ b_{-1/3} \end{array}\right)_{L}^{i=1,2,3} \end{array}$$

mass set by the EWSB: $m_t = y_t v / \sqrt{2}$ $m_t \sim 170 \, \text{GeV} \longrightarrow y_t \sim 1$ strong interaction with the Higgs

hints of a special role in the EWSB mechanism

Top ID card

$$\begin{pmatrix} t_{2/3} \\ b_{-1/3} \end{pmatrix}_{L}^{i=1,2,3}$$

mass set by the EWSB: $m_t = y_t v / \sqrt{2}$ $m_t \sim 170 \,\text{GeV} \longrightarrow y_t \sim 1$

strong interaction with the Higgs hints of a special role in the EWSB mechanism

very short lifetime: it decays before hadronising $\tau_t \sim 10^{-24} s$, $\Gamma^{-1} \sim (1.5 \,\mathrm{GeV})^{-1} \ll \Lambda_{\mathrm{QCD}}^{-1} \sim (200 \,\mathrm{MeV})^{-1}$

- no spectroscopy
- spin transferred to decay products: Wb

Top & unitarity

$$a_{0} \sim \frac{s}{v^{2}} \sim \frac{s}{v^{2}} \sim \frac{s}{v^{2}} \sim \frac{m_{H}^{2}}{v^{2}} \sim \frac{m_{H}^{2}}{v^{2}}$$

$$a_0 \sim \frac{a_0 \widetilde{sm}_f}{a_0 v^2} \frac{\sqrt{sm}_f}{v^2} \frac{\sqrt{sm}_f}{v^2} \frac{\sqrt{sm}_f}{v^2} \sim \frac{m_f^2}{v^2}$$

top, Higgs and EWSB are intertwined

Top & unitarity

top, Higgs and EWSB are intertwined

Top & unitarity

top, Higgs and EWSB are intertwined

Effects on global EW fits

Effects on global EW fits

Effects on global EW fits

 $\delta m_t = I \text{ GeV} \Rightarrow \delta m_W(m_t) = 6 \text{ MeV}$

if $\delta m_W = 10-15$ MeV then $\delta m_t = 1-2$ GeV

Effects on Higgs mass

 $m_H > 114.4 \text{ GeV}$ from direct search at LEP

 $m_{H} = 87^{+36}_{-27} \text{ GeV}$ from EW fits

At 95% CL $m_H < 160$ GeV from EW fits $m_H < 190$ GeV combined with direct search at LEP

Effects on Higgs mass

 $m_H > 114.4 \text{ GeV}$ from direct search at LEP

 $m_{H} = 87^{+36}_{-27} \text{ GeV}$ from EW fits

At 95% CL $m_H < 160$ GeV from EW fits $m_H < 190$ GeV combined with direct search at LEP

use m_t to estimate m_H from EW corrections

Effects on Higgs mass

 $m_H > 114.4 \text{ GeV}$ from direct search at LEP

 $m_{H} = 87^{+36}_{-27} \text{ GeV}$ from EW fits

At 95% CL $m_H < 160$ GeV from EW fits $m_H < 190$ GeV combined with direct search at LEP

- use m_t to estimate m_H from EW corrections
- as m_t changes, large shifts in m_H

Hierarchy problem in the SM

the top affects sizeably the stability of m_H

Fine tuning and unnaturalness

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

Fine tuning and unnaturalness

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

implies that

$$m_H^2(Q_0^2) - \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) Q_0^2 = const. = \mathcal{O}(\mathbf{v}^2)$$

because for $Q_0^2 = \mathcal{O}(\mathrm{v}^2)$ the Higgs mass is in the range of the EW data $m_H^2(Q_0^2) = \mathcal{O}(\mathrm{v}^2)$

Fine tuning and unnaturalness

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

implies that

$$m_H^2(Q_0^2) - \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) Q_0^2 = const. = \mathcal{O}(\mathbf{v}^2)$$

because for $Q_0^2 = \mathcal{O}(\mathrm{v}^2)$ the Higgs mass is in the range of the EW data $m_H^2(Q_0^2) = \mathcal{O}(\mathrm{v}^2)$

but for $Q_0^2 = \mathcal{O}(M_{Pl}^2)$ one must fine tune $m_H^2(M_{Pl}^2)$ to the level of $v^2/M_{Pl}^2 \sim 10^{-33}$ for the cancellation to yield a figure of $\mathcal{O}(v^2)$ \longrightarrow unnatural

Weakly coupled models at the TeV scale

Symmetry principles protect against power-like divergences

photon self-energy $\delta m_{\gamma}^2 \propto \chi^2 + m_{\gamma}^2 \ln \Lambda$ gauge symmetry protects against quadratic divergence

A *natural* solution to hierarchy: supersymmetry

postulate a new symmetry principle, which yields new particles that cancel the quadratic divergences of the Higgs self-energy, such that

 $\delta m_H^2 \sim \mathcal{O}(m_H^2) \ln \Lambda$

 $\delta m_H^2 \propto G_F \, m_t^4 \ln(m_t/m_{\tilde{t}})$

Weakly coupled models at the TeV scale

Another solution to hierarchy: little Higgs models

embed SM in a larger group

Weakly coupled models at the TeV scale

Another solution to hierarchy: little Higgs models

embed SM in a larger group

Higgs field is a Goldstone boson from a global symmetry breaking

Weakly coupled models at the TeV scale Another solution to hierarchy: little Higgs models

- embed SM in a larger group
 - Higgs field is a Goldstone boson from a global symmetry breaking cancel top loop with a heavy top-like quark,T

Weakly coupled models at the TeV scale Another solution to hierarchy: little Higgs models

- embed SM in a larger group
 - Higgs field is a Goldstone boson from a global symmetry breaking cancel top loop with a heavy top-like quark,T

EW precision measurements imply that m_T is large LHC can explore m_T up to 2 TeV, but huge statistics are required Weakly coupled models at the TeV scale Another solution to hierarchy: little Higgs models

- embed SM in a larger group
 - Higgs field is a Goldstone boson from a global symmetry breaking cancel top loop with a heavy top-like quark,T

EW precision measurements imply that m_T is large LHC can explore m_T up to 2 TeV, but huge statistics are required

$$T \Rightarrow tH$$
 and tZ decays allowed

t tbar production from Tevatron to LHC

15 % 85 % **Tevatron** ~ 10 % ~ 90 % LHC Tevatron $\begin{pmatrix} 10 \text{ tt } pairs/day \longrightarrow ~ 20000 \text{ tt } produced \\ 60\% \text{ with } p_t(\text{tt}) > 15 \text{ GeV} \end{pmatrix}$ LHC $\begin{pmatrix} I \text{ tt pairs/sec} & \longrightarrow \\ ~10^7 \text{ tt produced/year} \\ 70\% \text{ with } p_t(\text{tt}) > 30 \text{ GeV} \end{pmatrix}$

t tbar production from Tevatron to LHC

рb	tt	$W \rightarrow e v$	W → e v + 4 j
Tevatron	7	2000	
LHC	910	18500	220
ratio	130	9	220

 $p_{T_j} > 20 \text{ GeV} |\eta_j| < 3 \quad \Delta R > 0.7$

LHC is a QCD machine

SM processes are backgrounds to New Physics signals

design luminosity L = 10^{34} cm⁻² s⁻¹ = 10^{-5} fb⁻¹ s⁻¹

integrated luminosity (per year) $L \approx 100 \text{ fb}^{-1} \text{ yr}^{-1}$

With I fb⁻¹ we shall get ...

final state	events	overall # of events (2008)
jets (p⊤ > 100 GeV)	10 ⁹	
jets (p⊤ > I TeV)	I 0 ⁴	
$W \to e \nu$	2 · 10 ⁷	10 ⁷ (Tevatron)
$Z \to e^+ e^-$	2 · 10 ⁶	10 ⁶ (LEP)
$b\overline{b}$	5·10 ¹¹	10 ⁹ (BaBar, Belle)
$t\overline{t}$	9 · 10 ⁵	2 · 10 ⁴ (Tevatron)

even at very low luminosity, LHC beats all the other accelerators

t tbar x-section at the Tevatron

T. Schwarz, Fermilab wine & cheese, Oct 08

t tbar x-section at the Tevatron

95% of total cross section for $s < (600 \text{ GeV})^2$

Total uncertainty driven by overall PDF uncertainty, due to sensitivity of the gluon PDF at large x

TH & EXP have comparable errors

theory is NLO + NLL

NLO: good estimate of the cross section, first estimate of the uncertainty NNLO: good estimate of the uncertainty

t tbar x-section at the Tevatron

Moch, Uwer April 08

Approximate NNLO (scale variations)

solid line: central value at $\mu = m_t$ upper (lower) dashed line: value at $\mu = m_t/2$ ($\mu = 2m_t$) band: scale variation + PDF uncertainties (MRST-2006 NNLO)

t tbar x-section at the LHC

Moch, Uwer April 08

Total uncertainty is about half as large as at Tevatron

t tbar x-section at the LHC

At the LHC threshold region less important than at the Tevatron theory improvement goes through NNLO calculations

solid line: central value at $\mu = m_t$ upper (lower) dashed line: value at $\mu = m_t/2$ ($\mu = 2m_t$) band: scale variation + PDF uncertainties (MRST-2006 NNLO)

t tbar x-section at the LHC

At the LHC threshold region less important than at the Tevatron theory improvement goes through NNLO calculations

Top mass history

Top Mass (GeV/c²)

Top mass

Top mass

 $\delta m/m = 0.2 \ \delta \sigma/\sigma$ TH: $\delta \sigma/\sigma = 9\%$ \longrightarrow $\Delta m = 3 \text{ GeV}$

At the LHC the expected EXP error is $\Delta m = I \text{ GeV}$ so the TH cross section should be known at 3% level

Top spin

$d\ln\Gamma_f$	$\frac{1+\alpha_f\cos\chi_f}{1+\alpha_f\cos\chi_f}$
$\overline{d\cos\chi_f}$ –	2

In top decay, its spin is 100% correlated ($\alpha_f = 1$) with l^+ direction

- QCD corrections are tiny
- probe of BSM (e.g. H^+ would lower α_f)

t tbar as a background

- **tt** in $gg \Rightarrow H \& qq \Rightarrow qqH$, with $H \Rightarrow WW$
- tt in single top
 - tt jets in ttbb & ttH
- tt jets & ttW in SUSY searches

theory tools

- NLO + shower for tt production with spin correlations MC@NLO, POWHEG
- NLO + shower single-top production with spin correlations MC@NLO
 - tt + 1 jet at NLO
 - tt jets, ttQQ jets: ME + shower in ALPGEN, MADEVENT, SHERPA

Higgs production modes at the LHC

In proton collisions at 14 TeV, and for $M_H > 100~{\rm GeV}$ the Higgs is produced mostly via

- gluon fusion $gg \to H$
 - largest rate for all $\,M_{H}$
 - ho proportional to the top Yukawa coupling y_t
 - weak-boson fusion (WBF) $qq \rightarrow qqH$
 - second largest rate (mostly u d initial state)
 - proportional to the WWH coupling
- $t\bar{t}(b\bar{b})H$ associated production
 - fourth largest rate
 - same initial state as in gluon fusion, but higher x range
 - proportional to the heavy-quark Yukawa coupling y_Q
 - possible discovery channel for a light $H \rightarrow bb$
 - $bb \rightarrow H$ for MSSM

$$J_{\mu}^{+} = \bar{u}_{L}\gamma_{\mu}d_{L} \xrightarrow{\text{mass eigenstates}} J_{\mu}^{+} = \bar{U}_{L}\gamma_{\mu}\mathbf{V}_{\mathsf{CKM}}D_{L}$$

$$J_{\mu}^{+} = \bar{u}_{L}\gamma_{\mu}d_{L} \xrightarrow{J_{\mu}^{+}} J_{\mu}^{+} = \bar{U}_{L}\gamma_{\mu}V_{CKM}D_{L}$$
weak eigenstates
$$|\mathbf{V}_{\mathsf{CKM}}| = \begin{pmatrix} 0.9738 \pm 0.0005 & 0.2200 \pm 0.0026 & (3.67 \pm 0.47) \times 10^{-3} \\ 0.224 \pm 0.012 & 0.996 \pm 0.013 & (41.3 \pm 1.5) \times 10^{-3} \\ ? & ? & ? \end{pmatrix}$$

$$(\text{assuming 3 generations) unitarity implies}$$

$$|V_{td}| \simeq 0.0048 - 0.014, \quad |V_{ts}| \simeq 0.037 - 0.043, \quad |V_{tb}| \simeq 0.9990 - 0.9992$$

$$\mathcal{O}(\lambda^{3}) \qquad \mathcal{O}(\lambda^{2}) \qquad \mathcal{O}(1)$$
with $\lambda \approx 0.22$

$$\begin{split} J_{\mu}^{+} &= \bar{u}_{L}\gamma_{\mu}d_{L} \xrightarrow{\text{mass eigenstates}} J_{\mu}^{+} = \bar{U}_{L}\gamma_{\mu}\mathbf{V}_{\mathsf{CKM}}D_{L} \\ J_{\mu}^{+} &= \bar{u}_{L}\gamma_{\mu}d_{L} \xrightarrow{} J_{\mu}^{+} = \bar{U}_{L}\gamma_{\mu}V_{CKM}D_{L} \\ \text{weak eigenstates} & \text{mass eigenstates} \\ |\mathbf{V}_{\mathsf{CKM}}| &= \begin{pmatrix} 0.9738 \pm 0.0005 & 0.2200 \pm 0.0026 & (3.67 \pm 0.47) \times 10^{-3} \\ 0.224 \pm 0.012 & 0.996 \pm 0.013 & (41.3 \pm 1.5) \times 10^{-3} \\ ? & ? & ? \end{pmatrix} \\ \text{(assuming 3 generations) unitarity implies} \\ |V_{td}| &\simeq 0.0048 - 0.014, \quad |V_{ts}| \simeq 0.037 - 0.043, \quad |V_{tb}| \simeq 0.9990 - 0.9992 \\ \mathcal{O}(\lambda^{3}) & \mathcal{O}(\lambda^{2}) & \mathcal{O}(1) \\ & \text{with } \lambda \approx 0.22 \end{split}$$

for example, CDF measurements on B_s mixing $\Delta M_s = 17.33^{+0.42}_{-0.21}$ (stat.) ± 0.07 (syst.)ps⁻¹ implies (in good agreement with SM predictions) $0.20 < |V_{td}/V_{ts}| < 0.22$

but this only entails that $|V_{y}| = |A_{ta}| + |V_{ta}|/|V_{tb}|$ and the it bas no bearing on size of Vanstrained at all.

Top & flavour physics at Tevatre top can decay into a real W $\Gamma_t \sim G_F m_t^3 (|V_{tb}|^2 + |V_{ts}|^2)$ but only ratio of widths is measured $R = \frac{\Gamma(t \rightarrow Wb)}{\Gamma(t \rightarrow Wq)} = \frac{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$ 1.12^{+0.21}_{-0.19}(stat)^{+0.17}_{-0.13}(syst), CDF, 1.03^{+0.19}_{-0.17} (stat + syst), DØ

but this only entails that $|V_{y}| = |A_{tb}| and the is an equal <math>|V_{tb}| = |S_{tb}| |V_{tb}|$ and the it bearing on size of tonstrained at all.

so V_{tb} cannot be measured from top decay need quantities which are proportional only to $|V_{tb}|^2$

Single Top & flavour physics at Tevatron

t channel: spacelike W $\sigma(pp \to tX) = |V_{tb}|^2 \sigma_b + |V_{ts}|^2 \sigma_s + |V_{td}|^2 \sigma_d$ NLO: 2 pb s channel: timelike W $\sigma(pp \to tX) = (|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2) \sigma^{s-\text{channel}}$ NLO: 0.9 pb

It of single top search at CDF:

 $^{ ext{t-channel}} < ext{3.2pb}; \qquad \sigma^{ ext{s-channel}} < ext{3.1pb}$

1pb

Single Top & flavour physics at Tevatron

t channel: spacelike W $\sigma(pp \to tX) = |V_{tb}|^2 \sigma_b + |V_{ts}|^2 \sigma_s + |V_{td}|^2 \sigma_d$ NLO: 2 pb s channel: timelike W $\sigma(pp \to tX) = (|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2)\sigma^{s-\text{channel}}$ NLO: 0.9 pb 1pb $\sigma(p\bar{p} \rightarrow tb + X, tqb + X) = 2.2 \pm 0.7 \text{ pb}$ with 2.2 pb⁻¹ and 3.7 σ significance

 $\sigma(p\bar{p} \rightarrow tb + X, tqb + X) = 4.7 \pm 1.3 \text{ pb}$

with 0.9 pb⁻¹ and 3.4 σ significance

Single Top & flavour physics at LHC

t channel

s channel

largest rate at the LHC final state: forward jet, central top, sometimes extra forward b main background: Wbb + jet sensitive to new production modes through FCNC ($qc \rightarrow qt$)

smallest rate at the LHC Drell-Yan can be used as a normalise it final state: high- $p_T b$ jet main background: *tt*, *t* + jet, Wbb sensitive to vector (W') resonances

Single Top & flavour physics at LHC

t channel

s channel

largest rate at the LHC final state: forward jet, central top, sometimes extra forward b main background: Wbb + jet sensitive to new production modes through FCNC ($qc \rightarrow qt$)

smallest rate at the LHC Drell-Yan can be used as a normalise it final state: high- $p_T b$ jet main background: *tt*, *t* + jet, Wbb sensitive to vector (W') resonances

At the LHC there is also the Wt channel: real W

leptonic-decay final state: 2 leptons, 1 b jet, missing E_T

Single Top & flavour physics at LHC

t channel

s channel

largest rate at the LHC final state: forward jet, central top, sometimes extra forward b main background: Wbb + jet sensitive to new production modes through FCNC ($qc \rightarrow qt$)

smallest rate at the LHC Drell-Yan can be used as a normalise it final state: high- $p_T b$ jet main background: *tt*, *t* + jet, *Wbb* sensitive to vector (W') resonances

At the LHC there is also the Wt channel: real W

leptonic-decay final state:

2 leptons, l b jet, missing E_T

σ (NLO) [pb]	s channel	t channel	Wt channel
Tevatron	0.9	2.0	negligible
LHC	10.2	245.0	60.0

Conclusions

top is one of best probes of EWSB and fermion masses

- common feature of BSM models is to have top partners
- EXP: Tevatron is doing a wonderful job, and lumi keeps growing LHC will be blessed by huge statistics
- TH: is steadily improving plethora of BSM models with top partners sophisticated MC models already available more NLO calculations are in progress