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SM and/or to find hints of BSM physics

@ to use the top to probe the EWSB sector
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Top ID card

tiR

@ mass set by the EWSB:  m; = yv/V2

th17OGeV # ytNl

strong interaction with the Higgs
hints of a special role in the EWSB mechanism

@ very short lifetime: it decays before hadronising
7~ 107%s, T7h~ (L5GeV) ™ < Agep ~ (200 MeV) ™!

¥ no spectroscopy
< spin transferred to decay products: VVb
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- - tree level mw = my cos
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SO Omyy X mf Imw x Inmpg

om:= | GeV = dmw(m;) = 6 MeV if dmw = 10-15 MeV
then dm:= 1-2 GeV




Effects on Higgs mass
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my > |1 14.4 GeV
from direct search at LEP

mn = 8713657 GeV
from EWV fits

At 95% CL

my < 160 GeV from EWV fits
my < 190 GeV combined with
direct search at LEP

use m; to estimate mn from EVV corrections

as m; changes, large shifts in my




Hierarchy problem in the SM

the top affects sizeably the stability of my
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shift on the Higgs mass I
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top gauge higgs




Fine tuning and unnaturalness
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Fine tuning and unnaturalness

Higgs self-energy
2 (M2 2 (M2 3Gr
my(Q°) —my(Qg) =

4/ 272

(2miy +my +m7 — 4m;)(Q° — QF)

implies that

m (Q2) — 9T

4/ 272
because for ()7 = O(v?) the Higgs mass is in the range of the EW data m7,(Q5) = O(v?)

(2m3y, +m% + m3 — 4m?) Qi = const. = O(v?)

but for Q2 = O(M3%,) one must fine tune m7;(M3,) to the level of v?/Mz, ~ 107

for the cancellation to yield a figure of O(v?) ===  unnatural




Weakly coupled models at the TeV scale

Symmetry principles protect against power-like divergences

photon self-energy 5m,2y o<><+ mi In A

MQW gauge symmetry protects against quadratic divergence

A natural solution to hierarchy: supersymmetry

postulate a new symmetry principle, which yields new particles that
cancel the quadratic divergences of the Higgs self-energy, such that

dm3 ~ O(m3;)In A

dm3 o< Gpm;In(my/m;)
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Weakly coupled models at the TeV scale

Another solution to hierarchy: little Higgs models

embed SM in a larger group

Higgs field is a Goldstone boson from a global symmetry breaking

cancel top loop with a heavy top-like quark, T

f symmetry-breaking
scale of O(I TeV)

EW precision measurements imply that mris large
LHC can explore mr up to 2 TeV, but huge statistics are required

T = tH and tZ decays allowed



t tbar production from Tevatron to LHC

q

Tevatron 85 %

LHC ~ 10 % ~ 90 %

10 tt pairs/day =3 ~ 20000 tt produced
60 % with pe(tt) > |5 GeV

. 3 at hi lumi
| tt pall"S/ S€C ~107 tt produced/year

70 % with p:(tt) > 30 GeV

Tevatron <

LHC <




t tbar production from Tevatron to LHC

pb tt W-oev | W-oev+4j
Tevatron 7 2000 I

LHC 910 18500 220
ratio |30 9 220

p1i>20GeV |n|<3 AR>07

& tt cross section increases more than 100 times from Tevatron to LHC
(Drell-Yan only 9 times) = top is a major bckgnd to a lot of NP

& however, also a lot of hard radiation from Drell-Yan




LHC  vs=14TeV L=10%cm%s™ rae evivear T HC is a QCD machine
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integrated luminosity (per year)

L = 100 fb! yr
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With | fb-! we shall get ...

final state events overall # of events (2008)
jets (pt > 100 GeV) 10°
jets (pt > | TeV) 10

W — ev 2-107 107 (Tevatron)
Z —ete 2-10° 106 (LEP)

5-10' 10° (BaBar, Belle)
9-10° 2-10* (Tevatron)

even at very low luminosity, LHC beats all the other accelerators




t tbar x-section at the Tevatron

T. Schwarz, Fermilab wine & cheese, Oct 08
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[J]Cacciari et al., arXiv:0804.2800 (2008) g = 6.7310.72
[“]Kidonakis & Vogt, arXiv:0805.3844 (2008) ’ —0.63
[[IMoch & Uwer, arXiv:0807.2794 (2008)

% (stat) +(syst)+{lumi)

DIL I 6.7+0.8+0.4-0.4 _ +0.46
(L=2.8 fb"") | 6.73:0.8:0.410 g 6'90—0.64
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® _— — _
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SLT elgct i 7.8+2.4+1.4+0.5
(L=1.7 fb") |

CDF com i 7.0+0.3+0.4+0.4
2IDOF= 0.5 il m=175 Gevic? A g
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4 5 6 7 8 9 10 M _90

s(pp — tf) (pb) o)
assume m:= |75 GeV based on L = 2.8 fb"!




t tbar x-section at the Tevatron
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Parton luminosities
PDF uncertainties

95% of total cross section for s < (600 GeV)?
Total uncertainty driven by overall PDF uncertainty, due to sensitivity of the gluon PDF at large x
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T. Schwarz, Fermilab wine & cheese, Oct 08
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TH & EXP have
comparable errors

theory is NLO + NLL

CDF Run Il Preliminary 2.8 fb
Moch & Uwer, arXiv:0807.2794 (2008)
Cacciari et al., arXiv:0804.2800 (2008)

- Kidonakis & Vogt, arXiv:0805.3844 (2008)
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Top Quark Mass (GeV/c?)




FaCtO ri Sati O n extracted from data

evolved through DGLAP
computed in pQCD

is the separation between
the short- and the long-range interac|/ons
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. }X X =W, Z,H,QQ, high- Erjets, ...

1999998 0 is known as a fixed-order expansion in as

\i‘””’.

" 6 =Cad(l+cias+cpaz +...)
@ c1 = NLO ¢z = NNLO
or as an all-order resummation
6 = Ca[l+ (ci1L + cio)as + (caaL? + cor L + ca0)as + .. ]
L=I(M/qr),In(1 —x),In(1/x),In(1 —-T),...
C11,C22 = |L c10,C21 = NLL c20 = NNLL
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Estimate of TH uncertainties
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NLO: good estimate of the cross section, first estimate of the uncertainty
NNLO: good estimate of the uncertainty




t tbar x-section at the Tevatron

Approximate NNLO (scale variations) Moch, Uwer April 08

I 1 r L r L] r L] 13 ] 1E I L] L3 i L] L] L v i I T T L 'I L ]
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m, = 171 GeV o= .qlpb]for 110 pd”  for 760 pb” E

ﬁ M NLD-::r-:.rr_ur:
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solid line: central value at g = m.
upper (lower) dashed line: value at 4 = m¢/2 (M = 2my)
band: scale variation + PDF uncertainties (MRST-2006 NNLO)




t tbar x-section at the LHC

Moch, Uwer April 08
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95% of total cross section for s < (I TeV)?
Total uncertainty is about half as large as at Tevatron




t tbar x-section at the LHC

At the LHC threshold region less important than at the Tevatron
theory improvement goes through NNLO calculations
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solid line: central value at J = m¢

upper (lower) dashed line: value at g4 = m¢/2 (M = 2m)
band: scale variation + PDF uncertainties (MRST-2006 NNLO)




t tbar x-section at the LHC

At the LHC threshold region less important than at the Tevatron
theory improvement goes through NNLO calculations
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solid line: central value at J = m¢

upper (lower) dashed line: value at g4 = m¢/2 (M = 2m)
band: scale variation + PDF uncertainties (MRST-2006 NNLO)

CTEQ65  ©=908 fggggz; (scales) f;gggi% (PDFs) pb

Mangano'08

. +89(9.2% +11(1.1%
MRSTW-06 ¢ =961 —91%9.4%; (scales) _12'(:1_2%; (PDFs) pb

PDF underestimated ?

MRST-CTEQ =53 £33 pb



Top mass history

B

direct measurements

SM fits

feal
hint of a large top mass from EWV fits




Top mass

Top-Quark Mass [GeV]

1725+1.8

D& 1727+ 1.8

Average 1726+ 1.4

‘DoF:9.2/10

LEP1/SLD

LEP1/SLD/m,,/T,,

140

March 08

e
m: = 1726 £ 0.8 = |.I GeV

error is now at % level




Top mass

Top-Quark Mass [GeV] March 08

1725+ 1.8

% 172.7 +1.8

Average 172.6 + 1.4 | <
“DoF:9.2/10 m: = 1726 £ 08 £ |.| GeV

LEP1/SLD : error is now at % level

LEP1/SLD/m,T,

140

om/m=02d0/c TH: 00/0=9% =% Am =3 GeV

At the LHC the expected EXP error is Am = | GeV
so the TH cross section should be known at 3% level




Top spin

dinT'y 1+ aycosxy

dcos X f 2

Q@ In top decay, its spin is 100% correlated (0tr = |) with I* direction

Q@ QCD corrections are tiny 1O P

1)

Q@ probe of BSM (e.g. H" would lower ) “or

0.6 -

0.4 —

0.2

(1,/Ty) dI'/d{cos ¥

1 en = —0.04

0.0 =
-1.0




t tbar as a background

tt ingg = H & qq = qqH, with H =WW
tt in single top

tt jets in ttbb & ttH

tt jets & ttW in SUSY searches

theory tools

@ NLO + shower for tt production with spin correlations
MC@NLO, POWHEG

@ NLO + shower single-top production with spin correlations
MC@NLO

Q@ tt+/jet at NLO
Q@ ttjets, ttQQ jets: ME + shower in ALPGEN, MADEVENT, SHERPA




Higgs production modes at the LHC

In proton collisions at 14 TeV, and for My > 100 GeV
the Higgs is produced mostly via

Q@ gluon fusion g9 — H

« largest rate for all My

ws proportional to the top Yukawa coupling ¥:

weak-boson fusion (WBF) ¢q — qqH

) second largest rate (mostly u d initial state)
L

proportional to the VWWWH coupling

tt(bb)H associated production
fourth largest rate
same initial state as in gluon fusion, but higher x range
proportional to the heavy-quark Yukawa coupling yo

possible discovery channel for a light H = bb
bb = H for MSSM




Top & flavour physics

Ji=uryudy === J =Ury.VoxuDr
weak eigenstates mass eigenstates

0.224 £ 0.012 0.996 +£0.013 (41.3+1.5) x 1073

0.9738 + 0.0005 0.2200 +0.0026 (3.67 +=0.47) x 103
IVekm| =
7 7 7

(assuming 3 generations) unitarity implies

1Vig| ~ 0.0048 — 0.014, |Vis| =~ 0.037 — 0.043, |Vj| ~ 0.9990 — 0.9992

O(\3) O(\2) O(1)
with A = 0.22




Top & flavour physics

Ji=uryudy === J =Ury.VoxuDr
weak eigenstates mass eigenstates

0.224 £ 0.012 0.996 +£0.013 (41.3+1.5) x 1073

0.9738 + 0.0005 0.2200 +0.0026 (3.67 +0.47) x 103
IVekm| =
7 7 7

(assuming 3 generations) unitarity implies

Vi4| ~ 0.0048 — 0.014, |Vi| ~ 0.037 — 0.043, |Vjp| ~ 0.9990 — 0.9992

O(\3) O(\2) O(1)
with A = 0.22

for example, CDF measurements on Bs mixing
AMgs = 1?+33f§r'§12(5tat.) + 0.07(syst.)ps 1

implies (in good agreement with SM predictions)
0.20 < |Via/Vis| < 0.22




Top & flavour physics at Tevatron

top can decay into a real W Ly~ Grm? ([Vip]? + [Vis|* + [Via|?)
but only ratio of widths is measured

_Tt—Wb) Vi |?
Lt —Waq)  [Vial]* + [Vis|* + Vi [*

R

1+12__{_8'1291(Stat)__}_gr'llg(SySt), CDF, 1,03&?"113 (stat 4+ syst), D@

but this only entails that |Vis|/|Vis| and |Vi|/|Vis| are small
it has no bearing on size of Vy




Top & flavour physics at Tevatron

top can decay into a real W Ly~ Grm? ([Vip]? + [Vis|* + [Via|?)
but only ratio of widths is measured

_Tt—Wb) Vi |?
Lt —Waq)  [Vial]* + [Vis|* + Vi [*

R

1+12__{_8'1291(Stat)__}_gr'llg(SySt), CDF, 1,03&?"113 (stat 4+ syst), D@

but this only entails that |Vis|/|Vis| and |Vi|/|Vis| are small
it has no bearing on size of Vy

so Vi, cannot be measured from top decay
need quantities which are proportional only to |V|?

=== single Top




Single Top & flavour physics at Tevatron

t

t channel: spacelike W

o(pp — tX) = |Vip|*op + |Vis|?0s + [Via| 04
NLO: 2 pb
s channel: timelike W
o(pp — tX) = (|Vip|? + [Via|? + [Vig|?)or®—chanmel
NLO: 0.9 pb




Single Top & flavour physics at Tevatron

CDF and D@ tb+tgb Cross Section

CDF Decision Trees
22t

CDF Matrix Elemeants
22m

CDF Neural Networks
221

CDF Likelihoo d Funcs
22t

CDF Combination
preliminary

D3 Decision Trees
08fo

D3 Matrix Elements
0.9

D3 Bayesian NNs
09 fo

D@ Combination

o 19432’ ph

o 22 ‘g*f pb

+0.8

e L

+0.8
0.8

P +0.7
. 0.7 i1 4]
+1.4
1.4

+18
1.4

+16
~1.4

+1.3
7 43 PP

10
o (pp — tb+X, tgb+X) [pb]

t .
t channel: spacelike W

o(pp — tX) = [V|?op + |Vis|?0s + |Vial*0a
NLO: 2 pb
s channel: timelike W
o(pp — tX) = (|Vig|2 + |Via|? + [Vya|2)o® ~channel
NLO: 0.9 pb

o(pp — tb+ X, tgb+ X) =2.24+0.7 pb
with 2.2 pb-! and 3.7 o significance

o(pp —tb+ X, tgb+ X) =4.74+ 1.3 pb
with 0.9 pb-! and 3.4 o significance




Single Top & flavour physics at LHC

t channel

largest rate at the LHC

final state: forward jet, central top,
sometimes extra forward b

main background: Wbb + jet
sensitive to new production
modes through FCNC (gc — qt)

s channel

smallest rate at the LHC

Drell-Yan can be used as a normalise it
final state: high-pr b jet

main background: tt, t + jet, Wbb
sensitive to vector (W’) resonances
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t channel s channel

largest rate at the LHC

final state: forward jet, central top,
sometimes extra forward b

main background: Wbb + jet
sensitive to new production
modes through FCNC (gc — qt)

smallest rate at the LHC

Drell-Yan can be used as a normalise it
final state: high-pr b jet

main background: tt, t + jet, Wbb
sensitive to vector (W’) resonances

At the LHC there is also the Wt channel:real W & W5, —

leptonic-decay final state:

2 leptons, | b jet, missing Er ) fﬁi;w;ﬁ W




Single Top & flavour physics at LHC

t channel s channel

largest rate at the LHC

final state: forward jet, central top,
sometimes extra forward b

main background: Wbb + jet
sensitive to new production
modes through FCNC (gc — qt)

smallest rate at the LHC

Drell-Yan can be used as a normalise it
final state: high-pr b jet

main background: tt, t + jet, Wbb
sensitive to vector (W’) resonances

At the LHC there is also the Wt channel:real W £ i,

leptonic-decay final state:
2 leptons, | b jet, missing Et

0 (NLO) [pb]

s channel

t channel

Wt channel

Tevatron

0.9

2.0

negligible

LHC

10.2

245.0

60.0




Conclusions

top is one of best probes of EWSB and fermion masses

measure top features (mass, spin, couplings) as well as possible
to have hints on BSM physics

common feature of BSM models is to have top partners

EXP:Tevatron is doing a wonderful job, and lumi keeps growing
LHC will be blessed by huge statistics

TH: is steadily improving
plethora of BSM models with top partners
sophisticated MC models already available

more NLO calculations are in progress




